[en] Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Disciplines :
Neurology
Author, co-author :
HENEKA, Michael ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
van der Flier, Wiesje M; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
Jessen, Frank; Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
Hoozemanns, Jeroen; Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
Thal, Dietmar Rudolf ; Department of Pathology, University Hospitals Leuven, Leuven, Belgium ; Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium ; Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
Boche, Delphine ; Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
Brosseron, Frederic ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Teunissen, Charlotte ; Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
Zetterberg, Henrik; Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
Jacobs, Andreas H; European Institute for Molecular Imaging, University of Münster, Münster, Germany
Edison, Paul ; Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
Ramirez, Alfredo ; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany ; Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
Cruchaga, Carlos; Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
Lambert, Jean-Charles ; Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
Laza, Agustin Ruiz ; ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
Sanchez-Mut, Jose Vicente ; Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
Fischer, Andre ; Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany ; Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
Castro-Gomez, Sergio ; Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany ; Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany ; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
Stein, Thor D; Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
Kleineidam, Luca ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
Wagner, Michael ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
Neher, Jonas J; Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany ; Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
Cunningham, Colm; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland ; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
Singhrao, Sim K; Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
Prinz, Marco ; Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany ; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
Glass, Christopher K; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA ; Department of Medicine, University of California San Diego, La Jolla, CA, USA
Schlachetzki, Johannes C M; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
Butovsky, Oleg; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
Kleemann, Kilian; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
De Jaeger, Philip L ; Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
Scheiblich, Hannah; Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
Brown, Guy C ; Deparment of Biochemistry, University of Cambridge, Cambridge, UK
Landreth, Gary ; School of Medicine, Indiana University, Indianapolis, IN, USA
Moutinho, Miguel ; School of Medicine, Indiana University, Indianapolis, IN, USA
Grutzendler, Jaime ; Department of Neurology, Yale School of Medicine, New Haven, CT, USA ; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
Gomez-Nicola, Diego ; School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
McManus, Róisín M ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Andreasson, Katrin ; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
Ising, Christina ; Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
Karabag, Deniz; Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
Baker, Darren J; Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA ; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
Liddelow, Shane A ; Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA ; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA ; Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
Verkhratsky, Alexei ; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
Tansey, Malu ; College of Medicine, University of Florida, Gainsville, FL, USA
Monsonego, Alon ; Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Aigner, Ludwig ; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
Dorothée, Guillaume ; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
Nave, Klaus-Armin ; Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
Simons, Mikael; Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
Constantin, Gabriela ; Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
Rosenzweig, Neta; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
Pascual, Alberto ; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
Petzold, Gabor C ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Vascular Neurology, University of Bonn, Bonn, Germany
Kipnis, Jonathan ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA ; Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
VENEGAS MALDONADO, Carmen Jesica ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg ; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain ; Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
Colonna, Marco ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
Walter, Jochen ; Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
Tenner, Andrea J ; Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA ; Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA ; Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
O'Banion, M Kerry ; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA ; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
Steinert, Joern R; Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
Feinstein, Douglas L; Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
Sastre, Magdalena ; Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
Bhaskar, Kiran ; Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
Hong, Soyon ; UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
Schafer, Dorothy P; Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
Golde, Todd; Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA ; Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
Ransohoff, Richard M ; Third Rock Ventures, Boston, MA, USA
Morgan, David ; Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
Breitner, John; Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
Mancuso, Renzo ; Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium ; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
RIECHERS, Sean-Patrick Hermann ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
A.F. received funds from Germany\u2019s Excellence Strategy (EXC 2067/1 390729940). A.J.T. is supported by the National Institutes of Health (NIH) grant (U54 AG054349). D.L.F. is supported by grant IK6BX004852-01 from the Department of Veterans Affairs. D.B. acknowledges support from the Medical Research Council UK, Alzheimer\u2019s Research UK and the European Union. She thanks the UK Brain Banks and BRAIN UK for providing tissue for her studies. D.J.B. is supported by the NIH (R01AG053229, R01AG068076, U54AG079779), the Minnesota Partnership for Biotechnology and Medical Genomics (MNP #18.04), and the Glenn Foundation for Medical Research. C.Cunningham is funded by the Irish Research Council, National Institutes of Health, the Dutch Research Council (ZonMW) and Alzheimer\u2019s Research UK. D.G.-N. was supported by grants from the Medical Research Council (MR/P024572/1, MR/Y004116/1). C.V. was supported by the RYC2022-036191-I, funded by MCIN/AEI/10.13039/501100011033 and European Social Fund Plus. C.T. is supported by the European Commission Marie Curie International Training Network, grant agreement No. 860197 (MIRIADE) and TAME, Innovative Medicines Initiatives 3TR (Horizon 2020, grant No. 831434), EPND (IMI 2 Joint Undertaking (JU), grant No. 101034344) and JPND (bPRIDE, CCAD), European Partnership on Metrology, co-financed from the European Union\u2019s Horizon Europe Research and Innovation Programme and by the Participating States (22HLT07 NEuroBioStand), CANTATE project funded by the Alzheimer Drug Discovery Foundation, Alzheimer Association, Michael J Fox Foundation, Health Holland, ZonMW, Alzheimer Drug Discovery Foundation, The Selfridges Group Foundation, and Alzheimer Netherlands. C.T. is a recipient of ABOARD, which is a public\u2013private partnership receiving funding from ZonMW (#73305095007) and Health Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). C.T. is a recipient of TAP-dementia, a ZonMw-funded project (#10510032120003) in the context of the Dutch National Dementia Strategy. D.M. is supported by ZEN24-1070221 from the Alzheimer\u2019s Association and R01 AG055072, R01 AG077651, and P30 AG072931 from NIH. D.R.T. received support from Research Foundation \u2013 Flanders (FWO; G065721N), Stichting Alzheimer Onderzoek (SAO/FRA 2023/0009) and Alzheimer\u2019s Association (22-AAIIA-963171). D.S. was supported by NINDS-R01NS117533, NIA-RF1AG068281 and NIH-R24OD036199. G.C. is supported by the NextGenerationEU and National Recovery and Resilience Plan, National Biodiversity Future Center and PE grant MNESYS (PE0000006). G.C.P. received funding from the German Science Foundation (PE1193/6-2), ERA-NET (MICRO-BLEEDs and TACKLE-CSVD), and the Fondation Leducq (Transatlantic Network of Excellence 23CVD03); he is a member of the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) excellence cluster ImmunoSensation2. G.D. thanks the Agence Nationale de la Recherche (grants #ANR-21-CE17-0054-01; #ANR-24-CE18-2770-02), Fondation Alzheimer, Fondation pour la Recherche M\u00E9dicale, Fondation Pierre Deniker, Association France Alzheimer and Fondation Vaincre Alzheimer for funding his research. H.Z. is a Wallenberg Scholar and a Distinguished Professor at the Swedish Research Council supported by grants from the Swedish Research Council (#2023-00356; #2022-01018 and #2019-02397), the European Union\u2019s Horizon Europe Research and Innovation Programme under grant agreement No. 101053962, and Swedish State Support for Clinical Research (#ALFGBG-71320). J.B. was supported by a research grant from the Canada Institute for Health Research. J.G. was funded by the JPB Foundation, the Cure Alzheimers Fund and The Alzheimer\u2019s Association. J.C.M.S. is supported by a clinical fellowship from the Alzheimer\u2019s Association (AACSF). J.V.S.-M. is supported by grants from the Pasqual Maragall Foundation (PMRP/2022/1184) and Spanish (PID2022-143263OB-I00) and Valencian (PROMETEO/2021/045) governments. K.-A.N. has been supported by grants from the DFG (TRR274), European Research Council (ERC; AdG MyeliNANO) and the Adelson Medical Research Foundation (AMRF). K.B. was funded by the NIH grant RF1NS083704. L.A. is supppoted by the Austrian Science Fund FWF Project #P35417-B. K.A. is the Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences and is supported by NIH grants RF1 AG070839, RF1 AG079131, and RF1 AG080742, the Wu Tsai Neurosciences Institute Knight Initiative for Brain Resilience at Stanford University, and she is a Chan Zuckerberg Biohub-San Francisco Investigator. M.K.O. is supported by grant 80NSSC21K0542 from NASA. O.B. is funded by grants from NIH-STTR (R41AG073059), Cure Alzheimer Fund, BrightFocus Foundation (2020A016806), NIH/NIA (R01 AG051812), NIH (R01 AG054672), NIH (R01 AG075509), NIH (R01 NS088137-10), NIH (R21AG076982), and NIH/NINDS (R01 NS088137). R.Mancuso has funding from the ERC under the European Union\u2019s Horizon 2020 Research and Innovation Programme (project no. 101041867 - XenoMicrogliaAD), Fonds voor Wetenschappelijk Onderzoek (grants No. G0C9219N, G056022N and G0K9422N), the Alzheimer\u2019s Association USA (2018-AARF-591110, 2018-AARF-591110-RAPID, E2A-23-1148152, ABA-22-968700). He also receives funding from BrightFocus Foundation (A2021034S), SAO-FRA (grants No. 2021/0021 and SAO-FRA 20230019) and the University of Antwerp (BOF-TOP 2022-2025). R.McManus is supported by grants from the European Union Joint Programme Neurodegenerative Disease (JPND) (01ED2409B), the Alzheimer\u2019s Association (24AARF-1243474) and from the DFG, under Germany\u2019s Excellence Strategy \u2013 EXC2151 \u2013 390873048, along with Project-ID 432325352 \u2013 SFB 1454. S.C.G. is supported by the Alzheimer Forschung Initiative e.V (Grant 21060), the Hertie Network of Excellence in Clinical Neuroscience (Grant 2021-1A-12), the Bonn Neuroscience Clinician Scientist Program (Neuro-aCSis), and the DFG (EXC2151\u2013390873048). S.H. is supported by the UK Dementia Research Institute (UKDRI-1011) and the Chan Zuckerberg Initiative Neurodegeneration Network. J.J.N. is currently supported through Germany\u2019s Excellence Strategy (EXC 2145 SyNergy\u2013 ID 390857198), the Else Kr\u00F6ner-Fresenius Stiftung (2018-A158), the Charitable Hertie Foundation (P1200024), the BrightFocus Foundation (A2021035S) and Alzheimer\u2019s Association (ADSF-24-1345513-C). W.M.vdF. performs research at the Alzheimer Center Amsterdam as part of the neurodegeneration research programme of Amsterdam Neuroscience. Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting Steun Alzheimercentrum Amsterdam. The chair held by W.M.vdF. is supported by the Pasman Stichting. W.M.vdF. is a recipient of ABOARD, which is a public\u2013private partnership receiving funding from ZonMW (#73305095007) and Health Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). W.M.vdF. is a recipient of TAP-dementia ( www.tap-dementia.nl ), receiving funding from ZonMw (#10510032120003).
J. Gotz L.G. Bodea M. Goedert Rodent models for Alzheimer disease Nat. Rev. Neurosci. 2018 19 583 598 1:CAS:528:DC%2BC1cXhs1Ols7nO 30194347 10.1038/s41583-018-0054-8
H. Sasaguri et al. Recent advances in the modeling of Alzheimer’s disease Front. Neurosci. 2022 16 807473 35431779 9009508 10.3389/fnins.2022.807473
A. Sierksma V. Escott-Price B. De Strooper Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets Science 2020 370 61 66 1:CAS:528:DC%2BB3cXhvF2itb%2FP 33004512 10.1126/science.abb8575
A. Alzheimer Uber eine eigenartige Erkrankung der Hirnrinde Allg. Z. Psychiatr. 1907 64 146 148
E. Redlich Uber miliare Sklerose der hirnrinde bei seniler Atrophie Jahrb. Psychiatry Neurol. 1898 17 208 216
P. Eikelenboom F.C. Stam Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study Acta Neuropathol. 1982 57 239 242 1:STN:280:DyaL3s%2FhvV2hug%3D%3D 6812382 10.1007/BF00685397
W.S. Griffin J.G. Sheng G.W. Roberts R.E. Mrak Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution J. Neuropathol. Exp. Neurol. 1995 54 276 281 1:STN:280:DyaK2M7ot1WltA%3D%3D 7876895 10.1097/00005072-199503000-00014
V.N. Lagomarsino et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors Neuron 2021 109 3402 3420.e9 1:CAS:528:DC%2BB3MXhvFegt7jM 34473944 8571042 10.1016/j.neuron.2021.08.003
P.L. McGeer S. Itagaki H. Tago E.G. McGeer Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR Neurosci. Lett. 1987 79 195 200 1:STN:280:DyaL1c%2FjvFKrtg%3D%3D 3670729 10.1016/0304-3940(87)90696-3
J.G. Sheng R.E. Mrak W.S. Griffin Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages J. Neuropathol. Exp. Neurol. 1997 56 285 290 1:STN:280:DyaK2s3gvFansA%3D%3D 9056542 10.1097/00005072-199703000-00007
P.L. McGeer H. Akiyama S. Itagaki E.G. McGeer Activation of the classical complement pathway in brain tissue of Alzheimer patients Neurosci. Lett. 1989 107 341 346 1:STN:280:DyaK3c7jslCksA%3D%3D 2559373 10.1016/0304-3940(89)90843-4
J. Rogers J. Luber-Narod S.D. Styren W.H. Civin Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease Neurobiol. Aging 1988 9 339 349 1:STN:280:DyaL1M%2FktVCgtg%3D%3D 3263583 10.1016/S0197-4580(88)80079-4
S.D. Styren W.H. Civin J. Rogers Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain Exp. Neurol. 1990 110 93 104 1:CAS:528:DyaK3MXhvVehtLs%3D 1698655 10.1016/0014-4886(90)90054-V
W.S. Griffin et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease Proc. Natl Acad. Sci. USA 1989 86 7611 7615 1:STN:280:DyaK3c%2FhslGhug%3D%3D 2529544 298116 10.1073/pnas.86.19.7611
M.T. Heneka R.M. McManus E. Latz Inflammasome signalling in brain function and neurodegenerative disease Nat. Rev. Neurosci. 2018 19 610 621 1:CAS:528:DC%2BC1cXhslSnt7jO 30206330 10.1038/s41583-018-0055-7
S. Strauss et al. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients Lab. Invest. 1992 66 223 230 1:STN:280:DyaK387jvFOqtA%3D%3D 1370967
S. Moonen et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons Acta Neuropathol. 2023 145 175 195 1:CAS:528:DC%2BB38XjtV2lu77L 36481964 10.1007/s00401-022-02528-y
D.R. Thal et al. Progression of neurofibrillary changes and PHF-tau in end-stage Alzheimer’s disease is different from plaque and cortical microglial pathology Neurobiol. Aging 1998 19 517 525 1:CAS:528:DyaK1MXitFamtLc%3D 10192210 10.1016/S0197-4580(98)00090-6
B.D.C. Boon et al. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease J. Neuroinflammation 2018 15 29843759 5975447 10.1186/s12974-018-1180-y 170
E. Zotova et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization Brain 2013 136 2677 2696 23943781 10.1093/brain/awt210
Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) Lancet 2001 357 169 175 10.1016/S0140-6736(00)03589-3
D.K. Franco-Bocanegra et al. Microglial motility in Alzheimer’s disease and after Aβ42 immunotherapy: a human post-mortem study Acta Neuropathol. Commun. 2019 7 174 31703599 6842157 10.1186/s40478-019-0828-x
D. Boche J.A.R. Nicoll Invited review — understanding cause and effect in Alzheimer’s pathophysiology: implications for clinical trials Neuropathol. Appl. Neurobiol. 2020 46 623 640 1:CAS:528:DC%2BB3cXislWnt7rM 32643143 10.1111/nan.12642
T. Minett et al. Microglial immunophenotype in dementia with Alzheimer’s pathology J. Neuroinflammation 2016 13 27256292 4890505 10.1186/s12974-016-0601-z 135
B.D.C. Boon et al. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer’s disease Acta Neuropathol. 2020 140 811 830 1:CAS:528:DC%2BB3cXhvVCltLrM 32926214 7666300 10.1007/s00401-020-02198-8
L. Jakel D. Boche J.A.R. Nicoll M.M. Verbeek Aβ43 in human Alzheimer’s disease: effects of active Aβ42 immunization Acta Neuropathol. Commun. 2019 7 141 31477180 6717966 10.1186/s40478-019-0791-6
M.L. Moro et al. Pyroglutamate and isoaspartate modified amyloid-beta in ageing and Alzheimer’s disease Acta Neuropathol. Commun. 2018 6 3 29298722 5753481 10.1186/s40478-017-0505-x
J.A. Nicoll et al. Aβ species removal after aβ42 immunization J. Neuropathol. Exp. Neurol. 2006 65 1040 1048 1:CAS:528:DC%2BD28XhtlWmsL3N 17086100 10.1097/01.jnen.0000240466.10758.ce
G. Tondo et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease Alzheimers Res. Ther. 2020 12 50 1:CAS:528:DC%2BB3cXosVWmu7w%3D 32354345 7193377 10.1186/s13195-020-00619-0
T. Pirttila P.D. Mehta H. Frey H.M. Wisniewski α1-Antichymotrypsin and IL-1β are not increased in CSF or serum in Alzheimer’s disease Neurobiol. Aging 1994 15 313 317 1:CAS:528:DyaK2cXlsFCktbc%3D 7936055 10.1016/0197-4580(94)90026-4
K.S.P. Lai et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies J. Neurol. Neurosurg. Psychiatry 2017 88 876 882 28794151 10.1136/jnnp-2017-316201
W. Swardfager et al. A meta-analysis of cytokines in Alzheimer’s disease Biol. Psychiatry 2010 68 930 941 1:CAS:528:DC%2BC3cXhtlKmt77E 20692646 10.1016/j.biopsych.2010.06.012
F. Brosseron et al. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease Alzheimers Res. Ther. 2018 10 25 29482610 5828084 10.1186/s13195-018-0353-3
M. Chatterjee et al. C1q is increased in cerebrospinal fluid-derived extracellular vesicles in Alzheimer’s disease: a multi-cohort proteomics and immuno-assay validation study Alzheimers Dement. 2023 19 4828 4840 1:CAS:528:DC%2BB3sXnt1CrtL0%3D 37023079 10.1002/alz.13066
W. Feng et al. NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing Nat. Commun. 2023 14 1:CAS:528:DC%2BB3sXitlCgtb%2FE 37945559 10636041 10.1038/s41467-023-42834-x 7238
C.E. Teunissen et al. Methods to discover and validate biofluid-based biomarkers in neurodegenerative dementias Mol. Cell Proteom. 2023 22 100629 1:CAS:528:DC%2BB3sXitFWmu7bO 10.1016/j.mcpro.2023.100629
R. Craig-Schapiro et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease Biol. Psychiatry 2010 68 903 912 1:CAS:528:DC%2BC3cXhtlKmt77J 21035623 3011944 10.1016/j.biopsych.2010.08.025
A. Heslegrave et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease Mol. Neurodegener. 2016 11 3 26754172 4709982 10.1186/s13024-016-0071-x
R. Crols J. Saerens M. Noppe A. Lowenthal Increased GFAp levels in CSF as a marker of organicity in patients with Alzheimer’s disease and other types of irreversible chronic organic brain syndrome J. Neurol. 1986 233 157 160 1:STN:280:DyaL283ltlalug%3D%3D 3522811 10.1007/BF00314423
K.Y. Kim K.Y. Shin K.A. Chang GFAP as a potential biomarker for Alzheimer’s disease: a systematic review and meta-analysis Cells 2023 12 1309 1:CAS:528:DC%2BB3sXhtVeltr%2FE 37174709 10177296 10.3390/cells12091309
K. Chiotis et al. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer’s disease with multi-modal PET and plasma GFAP Mol. Neurodegener. 2023 18 60 1:CAS:528:DC%2BB3sXhvFams7rK 37697307 10496408 10.1186/s13024-023-00647-y
E.C.B. Johnson et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation Nat. Med. 2020 26 769 780 1:CAS:528:DC%2BB3cXmvFymt70%3D 32284590 7405761 10.1038/s41591-020-0815-6
F.L. Anderson et al. Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients NPJ Parkinsons Dis. 2021 7 2 1:CAS:528:DC%2BB3MXks12rurc%3D 33398042 7782812 10.1038/s41531-020-00147-6
X.O. Scott et al. The inflammasome adaptor protein ASC in mild cognitive impairment and Alzheimer’s disease Int. J. Mol. Sci. 2020 21 4674 1:CAS:528:DC%2BB3cXhvFymtrjN 32630059 7370034 10.3390/ijms21134674
A.H. Jacobs B. Tavitian INMiND Consortium. Noninvasive molecular imaging of neuroinflammation J. Cereb. Blood Flow Metab. 2012 32 1393 1415 1:CAS:528:DC%2BC38XpvVSjs7Y%3D 22549622 3390799 10.1038/jcbfm.2012.53
F. Corica et al. PET imaging of neuro-inflammation with tracers targeting the translocator protein (TSPO), a systematic review: from bench to bedside. Diagnostics 2023 13 1029 1:CAS:528:DC%2BB3sXnsVSls7g%3D 36980337 10047854 10.3390/diagnostics13061029
A. Villa et al. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state Theranostics 2018 8 5400 5418 1:CAS:528:DC%2BC1MXpsl2ju7o%3D 30555554 6276082 10.7150/thno.25572
E.S. Wohleb Neuron-microglia interactions in mental health disorders: “For Better, and For Worse” Front. Immunol. 2016 7 544 27965671 5126117 10.3389/fimmu.2016.00544
F. Chauveau et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation J. Nucl. Med. 2009 50 468 476 1:CAS:528:DC%2BD1MXktVyns7s%3D 19223401 10.2967/jnumed.108.058669
W.C. Kreisl et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease Brain 2013 136 2228 2238 23775979 3692038 10.1093/brain/awt145
M. Dani et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease Brain 2018 141 2740 2754 30052812
W.C. Kreisl Discerning the relationship between microglial activation and Alzheimer’s disease Brain 2017 140 1825 1828 29177498 10.1093/brain/awx151
L. Hamelin et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging Brain 2016 139 1252 1264 26984188 10.1093/brain/aww017
G.D. Femminella et al. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume Neurology 2019 92 e1331 e1343 1:CAS:528:DC%2BC1MXltVehsLg%3D 30796139 6511099 10.1212/WNL.0000000000007133
L. Hamelin et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease Brain 2018 141 1855 1870 29608645 10.1093/brain/awy079
Z. Fan D.J. Brooks A. Okello P. Edison An early and late peak in microglial activation in Alzheimer’s disease trajectory Brain 2017 140 792 803 28122877 5837520
M. Gatz et al. Role of genes and environments for explaining Alzheimer disease Arch. Gen. Psychiatry 2006 63 168 174 16461860 10.1001/archpsyc.63.2.168
P.G. Ridge et al. Assessment of the genetic variance of late-onset Alzheimer’s disease Neurobiol. Aging 2016 41 200.e13 200.e20 1:CAS:528:DC%2BC28XksFKjtr0%3D 27036079 10.1016/j.neurobiolaging.2016.02.024
J.C. Lambert A. Ramirez B. Grenier-Boley C. Bellenguez Step by step: towards a better understanding of the genetic architecture of Alzheimer’s disease Mol. Psychiatry 2023 28 2716 2727 37131074 10615767 10.1038/s41380-023-02076-1
I. de Rojas et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores Nat. Commun. 2021 12 34099642 8184987 10.1038/s41467-021-22491-8 3417
H. Holstege et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease Nat. Genet. 2022 54 1786 1794 1:CAS:528:DC%2BB38XivFalu7jF 36411364 9729101 10.1038/s41588-022-01208-7
J.C. Lambert et al. Implication of the immune system in Alzheimer’s disease: evidence from genome-wide pathway analysis J. Alzheimers Dis. 2010 20 1107 1118 1:CAS:528:DC%2BC3cXovFKgtrY%3D 20413860 10.3233/JAD-2010-100018
C. Bellenguez et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias Nat. Genet. 2022 54 412 436 1:CAS:528:DC%2BB38XptVShtrg%3D 35379992 9005347 10.1038/s41588-022-01024-z
G. Novikova et al. Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes Nat. Commun. 2021 12 1:CAS:528:DC%2BB3MXmslKju7w%3D 33712570 7955030 10.1038/s41467-021-21823-y 1610
A.K. Hodges T.M. Piers D. Collier O. Cousins J.M. Pocock Pathways linking Alzheimer’s disease risk genes expressed highly in microglia Neuroimmunol. Neuroinflamm. 2021 8 245 1:CAS:528:DC%2BB38XhtVShsLzP
L. Wang et al. Proteo-genomics of soluble TREM2 in cerebrospinal fluid provides novel insights and identifies novel modulators for Alzheimer’s disease Mol. Neurodegener. 2024 19 1 38172904 10763080 10.1186/s13024-023-00687-4
R.A. Black et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells Nature 1997 385 729 733 1:CAS:528:DyaK2sXhsVGktLs%3D 9034190 10.1038/385729a0
L. Verstrepen I. Carpentier K. Verhelst R. Beyaert ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling Biochem. Pharmacol. 2009 78 105 114 1:CAS:528:DC%2BD1MXmsVCjtrY%3D 19464428 10.1016/j.bcp.2009.02.009
C. Spitz et al. Non-canonical shedding of TNFα by SPPL2a is determined by the conformational flexibility of its transmembrane helix iScience 2020 23 101775 1:CAS:528:DC%2BB3MXhtVGqs7nN 33294784 7689174 10.1016/j.isci.2020.101775
W. Tang et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice Science 2011 332 478 484 1:CAS:528:DC%2BC3MXkvValsrY%3D 21393509 3104397 10.1126/science.1199214
Y. Le Guen et al. Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes Proc. Natl Acad. Sci. USA 2023 120 37643212 10483635 10.1073/pnas.2302720120 e2302720120
H. Trzeciakiewicz et al. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXit1Ojtb3F 33139698 7606452 10.1038/s41467-020-19317-4 5522
C. Ising et al. NLRP3 inflammasome activation drives tau pathology Nature 2019 575 669 673 1:CAS:528:DC%2BC1MXitF2qt7nE 31748742 7324015 10.1038/s41586-019-1769-z
L. Kleineidam et al. PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment Acta Neuropathol. 2020 139 1025 1044 32166339 7244617 10.1007/s00401-020-02138-6
A. Sierksma et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology EMBO Mol. Med. 2020 12 1:CAS:528:DC%2BB3cXhtVKmsro%3D 31951107 7059012 10.15252/emmm.201910606 e10606
E. Gjoneska et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease Nature 2015 518 365 369 1:CAS:528:DC%2BC2MXjtVSktbk%3D 25693568 4530583 10.1038/nature14252
B. Hu et al. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders Nat. Commun. 2021 12 1:CAS:528:DC%2BB3MXhsFOgtLnM 34172755 8233376 10.1038/s41467-021-24243-0 3968
R. Kosoy et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci Nat. Genet. 2022 54 1145 1154 1:CAS:528:DC%2BB38XitV2lt7bI 35931864 9388367 10.1038/s41588-022-01149-1
A. Nott et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association Science 2019 366 1134 1139 1:CAS:528:DC%2BC1MXitlWisrjM 31727856 7028213 10.1126/science.aay0793
T.D. Troutman E. Kofman C.K. Glass Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease Mol. Cell 2021 81 3888 3903 1:CAS:528:DC%2BB3MXhvFWhs7bM 34464593 8500948 10.1016/j.molcel.2021.08.004
A. Shemer et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge Nat. Commun. 2018 9 1:CAS:528:DC%2BC1cXisVKisb%2FM 30523248 6284018 10.1038/s41467-018-07548-5 5206
A.C. Wendeln et al. Innate immune memory in the brain shapes neurological disease hallmarks Nature 2018 556 332 338 1:CAS:528:DC%2BC1cXosVCgt7k%3D 29643512 6038912 10.1038/s41586-018-0023-4
M. Montalbano L. Majmundar U. Sengupta L. Fung R. Kayed Pathological tau signatures and nuclear alterations in neurons, astrocytes and microglia in Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies Brain Pathol. 2023 33 1:CAS:528:DC%2BB38XisVGrtrjE 36054524 10.1111/bpa.13112 e13112
S.M. Matt M.A. Lawson R.W. Johnson Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL-1β promoter DNA methylation in microglia Neurobiol. Aging 2016 47 1 9 1:CAS:528:DC%2BC28Xht12jtb%2FF 27500965 5075520 10.1016/j.neurobiolaging.2016.07.006
B.A. McGregor et al. Alpha-synuclein-induced DNA methylation and gene expression in microglia Neuroscience 2021 468 186 198 1:CAS:528:DC%2BB3MXhtlyiu7vK 34082066 10.1016/j.neuroscience.2021.05.027
A.M. Xavier et al. Systematic delineation of signaling and epigenomic mechanisms underlying microglia inflammatory activity in acute and chronic brain pathologies. Preprint at bioRxiv 2022 10.1101/2022.08.04.502805
P. Ayata et al. Epigenetic regulation of brain region-specific microglia clearance activity Nat. Neurosci. 2018 21 1049 1060 1:CAS:528:DC%2BC1cXhtlOis7rF 30038282 6090564 10.1038/s41593-018-0192-3
Y. Tang et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease Cell Death Differ. 2014 21 369 380 1:CAS:528:DC%2BC3sXhslCnt7fF 24212761 10.1038/cdd.2013.159
G. Rigillo et al. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response Brain Behav. Immun. 2018 74 277 290 1:CAS:528:DC%2BC1cXhslOqur7F 30244035 10.1016/j.bbi.2018.09.019
R.Y. Pan et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease Cell Metab. 2022 34 634 648.e6 1:CAS:528:DC%2BB38Xntlyns7k%3D 35303422 10.1016/j.cmet.2022.02.013
A. Ansari et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease Neurobiol. Aging 2019 82 102 109 1:CAS:528:DC%2BC1MXhtlCiu7bK 31437718 10.1016/j.neurobiolaging.2019.06.005
M.R. Islam et al. A microRNA signature that correlates with cognition and is a target against cognitive decline EMBO Mol. Med. 2021 13 1:CAS:528:DC%2BB3MXit1WqtbnI 34633146 8573587 10.15252/emmm.202013659 e13659
A. Nagy et al. Reassessing domain architecture evolution of metazoan proteins: major impact of gene prediction errors Genes 2011 2 449 501 1:CAS:528:DC%2BC3MXpslOjsLo%3D 24710207 3927609 10.3390/genes2030449
S.M. Matt et al. Inhibition of DNA methylation with zebularine alters lipopolysaccharide-induced sickness behavior and neuroinflammation in mice Front. Neurosci. 2018 12 636 30279646 6153314 10.3389/fnins.2018.00636
H. Walgrave L. Zhou B. De Strooper E. Salta The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives Mol. Neurodegener. 2021 16 76 1:CAS:528:DC%2BB38Xjs1yls7s%3D 34742333 8572071 10.1186/s13024-021-00496-7
P. Periyasamy et al. Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 tat-mediated microglial activation via MECP2-STAT3 axis J. Neurosci. 2018 38 5367 5383 1:CAS:528:DC%2BC1cXhvVCnu7rP 29760177 5990983 10.1523/JNEUROSCI.3474-17.2018
A. Carrillo-Jimenez et al. TET2 regulates the neuroinflammatory response in microglia Cell Rep. 2019 29 697 713.e8 1:CAS:528:DC%2BC1MXhvF2gsLfJ 31618637 10.1016/j.celrep.2019.09.013
M. Datta et al. Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner Immunity 2018 48 514 529.e6 1:CAS:528:DC%2BC1cXksVelsbY%3D 29548672 10.1016/j.immuni.2018.02.016
S.H. Cho et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β J. Neurosci. 2015 35 807 818 25589773 4293425 10.1523/JNEUROSCI.2939-14.2015
K. Schlepckow et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region EMBO Mol. Med. 2020 12 1:CAS:528:DC%2BB3cXksFGqurw%3D 32154671 7136959 10.15252/emmm.201911227 e11227
M. Cheray B. Joseph Epigenetics control microglia plasticity Front. Cell Neurosci. 2018 12 243 30123114 6085560 10.3389/fncel.2018.00243
R.C. Paolicelli et al. Microglia states and nomenclature: a field at its crossroads Neuron 2022 110 3458 3483 1:CAS:528:DC%2BB38Xisl2gsrjE 36327895 9999291 10.1016/j.neuron.2022.10.020
F. Denk M. Crow A. Didangelos D.M. Lopes S.B. McMahon Persistent alterations in microglial enhancers in a model of chronic pain Cell Rep. 2016 15 1771 1781 1:CAS:528:DC%2BC28XnvV2kurk%3D 27184839 10.1016/j.celrep.2016.04.063
W. Schaafsma et al. Long-lasting pro-inflammatory suppression of microglia by LPS-preconditioning is mediated by RelB-dependent epigenetic silencing Brain Behav. Immun. 2015 48 205 221 1:CAS:528:DC%2BC2MXlvFCgtL8%3D 25843371 10.1016/j.bbi.2015.03.013
J.M. Schwarz M.R. Hutchinson S.D. Bilbo Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression J. Neurosci. 2011 31 17835 17847 1:CAS:528:DC%2BC3MXhs1antr%2FJ 22159099 3259856 10.1523/JNEUROSCI.3297-11.2011
D.E. Barnes et al. Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans JAMA Neurol. 2018 75 1055 1061 29801145 6143113 10.1001/jamaneurol.2018.0815
A. Graham G. Livingston L. Purnell J. Huntley Mild traumatic brain injuries and future risk of developing alzheimer’s disease: systematic review and meta-analysis J. Alzheimers Dis. 2022 87 969 979 1:CAS:528:DC%2BB38Xhtl2lurrP 35491789 10.3233/JAD-220069
K.K. Leung F.M. Carr M.J. Russell S. Bremault-Phillips J.A.C. Triscott Traumatic brain injuries among veterans and the risk of incident dementia: a systematic review & meta-analysis Age Ageing 2022 51 afab194 34651165 10.1093/ageing/afab194
P.K. Crane et al. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings JAMA Neurol. 2016 73 1062 1069 27400367 5319642 10.1001/jamaneurol.2016.1948
M.A. Sugarman et al. Failure to detect an association between self-reported traumatic brain injury and Alzheimer’s disease neuropathology and dementia Alzheimers Dement. 2019 15 686 698 30852157 10.1016/j.jalz.2018.12.015
E.L. Abner et al. Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort Dement. Geriatr. Cogn. Disord. 2014 37 294 306 24401791 10.1159/000355478
S. Agrawal et al. Association of traumatic brain injury with and without loss of consciousness with neuropathologic outcomes in community-dwelling older persons JAMA Netw. Open 2022 5 35476062 9047640 10.1001/jamanetworkopen.2022.9311 e229311
A.C. McKee et al. The spectrum of disease in chronic traumatic encephalopathy Brain 2013 136 43 64 23208308 10.1093/brain/aws307
J. Mez et al. Duration of American football play and chronic traumatic encephalopathy Ann. Neurol. 2020 87 116 131 31589352 10.1002/ana.25611
J.R. Hay V.E. Johnson A.M. Young D.H. Smith W. Stewart Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans J. Neuropathol. Exp. Neurol. 2015 74 1147 1157 1:CAS:528:DC%2BC2MXhvVyktLnI 26574669
D. Kirsch et al. Vascular injury is associated with repetitive head impacts and tau pathology in chronic traumatic encephalopathy J. Neuropathol. Exp. Neurol. 2023 82 127 139 1:CAS:528:DC%2BB3sXhslKisLjL 36617181 9852946 10.1093/jnen/nlac122
J.D. Cherry et al. CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy J. Neuroinflammation 2020 17 1:CAS:528:DC%2BB3cXis1WhsL7O 33278887 7718711 10.1186/s12974-020-02036-4 370
J.D. Cherry et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy Acta Neuropathol. Commun. 2016 4 112 27793189 5084333 10.1186/s40478-016-0382-8
D.H. Smith X.H. Chen A. Iwata D.I. Graham Amyloid β accumulation in axons after traumatic brain injury in humans J. Neurosurg. 2003 98 1072 1077 1:CAS:528:DC%2BD3sXjs1emsrc%3D 12744368 10.3171/jns.2003.98.5.1072
A. Drieu et al. Persistent neuroinflammation and behavioural deficits after single mild traumatic brain injury J. Cereb. Blood Flow. Metab. 2022 42 2216 2229 1:CAS:528:DC%2BB38XivV2gs7rN 35945692 9670002 10.1177/0271678X221119288
O. Kokiko-Cochran et al. Altered neuroinflammation and behavior after traumatic brain injury in a mouse model of Alzheimer’s disease J. Neurotrauma 2016 33 625 640 26414955 4971425 10.1089/neu.2015.3970
Y. Nadler et al. Increased expression of the γ-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury Glia 2008 56 552 567 18240300 10.1002/glia.20638
E. Gabande-Rodriguez L. Keane M. Capasso Microglial phagocytosis in aging and Alzheimer’s disease J. Neurosci. Res. 2020 98 284 298 1:CAS:528:DC%2BC1MXmsFChsr0%3D 30942936 10.1002/jnr.24419
M.K. Shin et al. Reducing acetylated tau is neuroprotective in brain injury Cell 2021 184 2715 2732.e23 1:CAS:528:DC%2BB3MXovV2nsbs%3D 33852912 8491234 10.1016/j.cell.2021.03.032
O.N. Kokiko-Cochran J.P. Godbout The inflammatory continuum of traumatic brain injury and Alzheimer’s disease Front. Immunol. 2018 9 672 29686672 5900037 10.3389/fimmu.2018.00672
J.W. Adams et al. Lewy body pathology and chronic traumatic encephalopathy associated with contact sports J. Neuropathol. Exp. Neurol. 2018 77 757 768 1:CAS:528:DC%2BC1MXhslCrsbfF 30053297 6097837 10.1093/jnen/nly065
R. Nicks et al. Repetitive head impacts and chronic traumatic encephalopathy are associated with TDP-43 inclusions and hippocampal sclerosis Acta Neuropathol. 2023 145 395 408 1:CAS:528:DC%2BB3sXitFSmsrw%3D 36681782 11360224 10.1007/s00401-023-02539-3
G. Grande C. Qiu L. Fratiglioni Prevention of dementia in an ageing world: evidence and biological rationale Ageing Res. Rev. 2020 64 101045 32171784 10.1016/j.arr.2020.101045
G. Livingston et al. Dementia prevention, intervention, and care Lancet 2017 390 2673 2734 28735855 10.1016/S0140-6736(17)31363-6
A. Santos-Lozano et al. Physical activity and Alzheimer disease: a protective association Mayo Clin. Proc. 2016 91 999 1020 27492909 10.1016/j.mayocp.2016.04.024
T. Yoneda et al. The importance of engaging in physical activity in older adulthood for transitions between cognitive status categories and death: a coordinated analysis of 14 longitudinal studies J. Gerontol. A Biol. Sci. Med. Sci. 2021 76 1661 1667 33099603 10.1093/gerona/glaa268
S. Ayari A. Abellard M. Carayol E. Guedj O. Gavarry A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals’ models with mild cognitive impairment or dementia Exp. Gerontol. 2023 175 112141 1:CAS:528:DC%2BB3sXlslyqtrg%3D 36898593 10.1016/j.exger.2023.112141
M.V. Fedewa E.D. Hathaway C.L. Ward-Ritacco Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials Br. J. Sports Med. 2017 51 670 676 27445361 10.1136/bjsports-2016-095999
K.B. Casaletto et al. Microglial correlates of late life physical activity: relationship with synaptic and cognitive aging in older adults J. Neurosci. 2022 42 288 298 1:CAS:528:DC%2BB38XisFSgurw%3D 34810231 8802938 10.1523/JNEUROSCI.1483-21.2021
M. Cao et al. Enriched physical environment reverses spatial cognitive impairment of socially isolated APPswe/PS1dE9 transgenic mice before amyloidosis onset CNS Neurosci. Ther. 2018 24 202 211 1:CAS:528:DC%2BC1cXitVyqt70%3D 29274291 10.1111/cns.12790
C. Grinan-Ferre et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model Front. Cell Neurosci. 2018 12 224 30158856 6104164 10.3389/fncel.2018.00224
O. Mee-Inta Z.W. Zhao Y.M. Kuo Physical exercise inhibits inflammation and microglial activation Cells 2019 8 691 1:CAS:528:DC%2BB3cXjsFantbo%3D 31324021 6678635 10.3390/cells8070691
M. Nakano et al. An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus Brain Behav. Immun. Health 2020 9 100149 34589894 8474441 10.1016/j.bbih.2020.100149
H. Xu et al. Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid β-protein oligomers J. Neurosci. 2016 36 9041 9056 1:CAS:528:DC%2BC28XhvF2jtLnN 27581448 5005718 10.1523/JNEUROSCI.1023-16.2016
K.E. Stuart et al. Late-life environmental enrichment preserves short-term memory and may attenuate microglia in male APP/PS1 mice Neuroscience 2019 408 282 292 1:CAS:528:DC%2BC1MXot1emsrw%3D 30999032 10.1016/j.neuroscience.2019.04.015
S. Ziegler-Waldkirch et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer’s disease EMBO J. 2018 37 167 182 1:CAS:528:DC%2BC2sXhvFCrur7E 29229786 10.15252/embj.201797021
A. Alhazmi E. Stojanovski M. McEvoy M.L. Garg The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies J. Hum. Nutr. Diet. 2014 27 251 260 1:STN:280:DC%2BC2c%2FjsFarsw%3D%3D 24102939 10.1111/jhn.12139
C.D. Patnode N. Redmond M.O. Iacocca M. Henninger Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults without known cardiovascular disease risk factors: updated evidence report and systematic review for the US Preventive Services Task Force JAMA 2022 328 375 388 35881116 10.1001/jama.2022.7408
A. Christ M. Lauterbach E. Latz Western diet and the immune system: an inflammatory connection Immunity 2019 51 794 811 1:CAS:528:DC%2BC1MXitFyqsbbO 31747581 10.1016/j.immuni.2019.09.020
D. Furman et al. Chronic inflammation in the etiology of disease across the life span Nat. Med. 2019 25 1822 1832 1:CAS:528:DC%2BC1MXitlajtLjI 31806905 7147972 10.1038/s41591-019-0675-0
D. Tejera et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome EMBO J. 2019 38 31359456 6717897 10.15252/embj.2018101064 e101064
Y. Yang et al. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer’s disease Brain Behav. Immun. 2023 113 228 247 1:CAS:528:DC%2BB3sXhs1GitrzI 37437821 10.1016/j.bbi.2023.07.006
M.R. Duggan et al. Plasma proteins related to inflammatory diet predict future cognitive impairment Mol. Psychiatry 2023 28 1599 1609 1:CAS:528:DC%2BB3sXivVGrsbk%3D 36737481 10208977 10.1038/s41380-023-01975-7
Y. Shi et al. Association of pro-inflammatory diet with increased risk of all-cause dementia and Alzheimer’s dementia: a prospective study of 166,377 UK Biobank participants BMC Med. 2023 21 1:CAS:528:DC%2BB3sXhsFGms7fP 37480061 10362711 10.1186/s12916-023-02940-5 266
D. Melo Van Lent et al. Higher dietary inflammatory index scores are associated with brain MRI markers of brain aging: results from the Framingham Heart Study offspring cohort Alzheimers Dement. 2023 19 621 631 35522830 10.1002/alz.12685
T. Ballarini et al. Mediterranean diet, Alzheimer disease biomarkers and brain atrophy in old age Neurology 2021 96 e2920 e2932 1:CAS:528:DC%2BB3MXhvVWjt7fN 33952652 8253566 10.1212/WNL.0000000000012067
N. Garcia-Casares et al. Alzheimer’s disease, mild cognitive impairment and Mediterranean diet. A systematic review and dose-response meta-analysis J. Clin. Med. 2021 10 4642 1:CAS:528:DC%2BB3MXisVarur%2FN 34682764 8537524 10.3390/jcm10204642
N. Scarmeas C.A. Anastasiou M. Yannakoulia Nutrition and prevention of cognitive impairment Lancet Neurol. 2018 17 1006 1015 30244829 10.1016/S1474-4422(18)30338-7
L. Schwingshackl G. Hoffmann Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials Nutr. Metab. Cardiovasc. Dis. 2014 24 929 939 1:CAS:528:DC%2BC2cXnsVWlt74%3D 24787907 10.1016/j.numecd.2014.03.003
P.Y. Wu K.M. Chen W.C. Tsai The Mediterranean dietary pattern and inflammation in older adults: a systematic review and meta-analysis Adv. Nutr. 2021 12 363 373 33002104 10.1093/advances/nmaa116
T. Ngandu et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial Lancet 2015 385 2255 2263 25771249 10.1016/S0140-6736(15)60461-5
B.M. Bettcher M.G. Tansey G. Dorothee M.T. Heneka Publisher correction: peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus Nat. Rev. Neurol. 2021 17 724 34625724 8895102 10.1038/s41582-021-00579-5
P.N. Sipila et al. Hospital-treated infectious diseases and the risk of dementia: a large, multicohort, observational study with a replication cohort Lancet Infect. Dis. 2021 21 1557 1567 34166620 8592915 10.1016/S1473-3099(21)00144-4
K. Bhaskar et al. Regulation of tau pathology by the microglial fractalkine receptor Neuron 2010 68 19 31 1:CAS:528:DC%2BC3cXht1Cgu7zP 20920788 2950825 10.1016/j.neuron.2010.08.023
M. Kitazawa S. Oddo T.R. Yamasaki K.N. Green F.M. LaFerla Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease J. Neurosci. 2005 25 8843 8853 1:CAS:528:DC%2BD2MXhtVOqs7rP 16192374 6725603 10.1523/JNEUROSCI.2868-05.2005
H. Sarlus et al. Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation J. Cell Mol. Med. 2012 16 2401 2412 1:CAS:528:DC%2BC38XhvVOis7bO 22356650 3823434 10.1111/j.1582-4934.2012.01556.x
C. Holmes et al. Systemic inflammation and disease progression in Alzheimer disease Neurology 2009 73 768 774 1:STN:280:DC%2BD1MnhtFSjug%3D%3D 19738171 2848584 10.1212/WNL.0b013e3181b6bb95
J.J. Neher C. Cunningham Priming microglia for innate immune memory in the brain Trends Immunol. 2019 40 358 374 1:CAS:528:DC%2BC1MXjtVGqtbg%3D 30833177 10.1016/j.it.2019.02.001
K.A. Walker et al. Midlife systemic inflammation, late-life white matter integrity, and cerebral small vessel disease: the atherosclerosis risk in communities study Stroke 2017 48 3196 3202 29101255 5705320 10.1161/STROKEAHA.117.018675
M.G. Netea et al. Defining trained immunity and its role in health and disease Nat. Rev. Immunol. 2020 20 375 388 1:CAS:528:DC%2BB3cXksFequ78%3D 32132681 7186935 10.1038/s41577-020-0285-6
A.B. Lopez-Rodriguez et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction Alzheimers Dement. 2021 17 1735 1755 1:CAS:528:DC%2BB3MXhvVKhtb7P 34080771 10.1002/alz.12341
M.A. Beydoun et al. Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer’s disease dementia in a large national survey J. Alzheimers Dis. 2020 75 157 172 1:CAS:528:DC%2BB3cXosF2htrg%3D 32280099 11008556 10.3233/JAD-200064
P.S. Stein M. Desrosiers S.J. Donegan J.F. Yepes R.J. Kryscio Tooth loss, dementia and neuropathology in the Nun study J. Am. Dent. Assoc. 2007 138 1314 1322 17908844 10.14219/jada.archive.2007.0046
B. Beutler Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity Curr. Opin. Microbiol. 2000 3 23 28 1:CAS:528:DC%2BD3cXhsF2rs7Y%3D 10679425 10.1016/S1369-5274(99)00046-6
G. Hajishengallis R.P. Darveau M.A. Curtis The keystone-pathogen hypothesis Nat. Rev. Microbiol. 2012 10 717 725 1:CAS:528:DC%2BC38Xht12jsbjF 22941505 3498498 10.1038/nrmicro2873
J.G. Caton et al. A new classification scheme for periodontal and peri-implant diseases and conditions — introduction and key changes from the 1999 classification J. Clin. Periodontol. 2018 45 Suppl. 20 S1 S8 29926489
S.S. Dominy et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors Sci. Adv. 2019 5 eaau3333 30746447 6357742 10.1126/sciadv.aau3333
S. Poole S.K. Singhrao L. Kesavalu M.A. Curtis S. Crean Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue J. Alzheimers Dis. 2013 36 665 677 1:CAS:528:DC%2BC3sXht1Srt7%2FI 23666172 10.3233/JAD-121918
S.K. Singhrao I. Olsen Are Porphyromonas gingivalis outer membrane vesicles microbullets for sporadic Alzheimer’s disease manifestation? J. Alzheimers Dis. Rep. 2018 2 219 228 30599043 6311351 10.3233/ADR-180080
F. Rokad et al. Cerebral oxidative stress and microvasculature defects in TNF-α expressing transgenic and Porphyromonas gingivalis-infected ApoE-/- mice J. Alzheimers Dis. 2017 60 359 369 1:CAS:528:DC%2BC2sXhsFClt7rF 28800332 10.3233/JAD-170304
Y. Hu et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in Sprague-Dawley rats Front. Neurosci. 2020 14 658 32714134 7344110 10.3389/fnins.2020.00658
V. Ilievski et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice PLoS One 2018 13 30281647 6169940 10.1371/journal.pone.0204941 e0204941
S. Poole et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains J. Alzheimers Dis. 2015 43 67 80 1:CAS:528:DC%2BC2cXhvVGjtbvE 25061055 10.3233/JAD-140315
J. Zhang et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice J. Neuroinflammation 2018 15 29426327 5810193 10.1186/s12974-017-1052-x 37
Z. Memedovski et al. Classical and alternative activation of rat microglia treated with ultrapure Porphyromonas gingivalis lipopolysaccharide in vitro Toxins 2020 12 333 1:CAS:528:DC%2BB3cXhvFyrs7fJ 32438602 7290770 10.3390/toxins12050333
U.K. Hanisch Microglia as a source and target of cytokines Glia 2002 40 140 155 12379902 10.1002/glia.10161
S. Grabrucker et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis Brain 2023 69 4916 4934 10.1093/brain/awad303
M.S. Kim et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model Gut 2020 69 283 294 1:CAS:528:DC%2BB3cXhvVagt7bE 31471351 10.1136/gutjnl-2018-317431
F. Valeri et al. Impact of the age of cecal material transfer donors on Alzheimer’s disease pathology in 5xFAD mice Microorganisms 2021 9 2548 1:CAS:528:DC%2BB38XltFOgu7c%3D 34946148 8708188 10.3390/microorganisms9122548
P. Upadhyay S. Gupta Dual mode of Triphala in the reversal of cognition through gut restoration in antibiotic mediated prolonged dysbiosis condition in 5XFAD mice Exp. Neurol. 2023 367 114473 37385519 10.1016/j.expneurol.2023.114473
K. Kasarello A. Cudnoch-Jedrzejewska K. Czarzasta Communication of gut microbiota and brain via immune and neuroendocrine signaling Front. Microbiol. 2023 14 1118529 36760508 9907780 10.3389/fmicb.2023.1118529
P. Strandwitz Neurotransmitter modulation by the gut microbiota Brain Res. 2018 1693 128 133 1:CAS:528:DC%2BC1cXhtFWht7%2FL 29903615 6005194 10.1016/j.brainres.2018.03.015
W.A. Banks et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit J. Neuroinflammation 2015 12 26608623 4660627 10.1186/s12974-015-0434-1 223
W.A. Banks S.M. Robinson Minimal penetration of lipopolysaccharide across the murine blood-brain barrier Brain Behav. Immun. 2010 24 102 109 1:CAS:528:DC%2BD1MXhsVyntrnO 19735725 10.1016/j.bbi.2009.09.001
V. Braniste et al. The gut microbiota influences blood-brain barrier permeability in mice Sci. Transl. Med. 2014 6 263ra158 25411471 4396848 10.1126/scitranslmed.3009759
D. Erny et al. Host microbiota constantly control maturation and function of microglia in the CNS Nat. Neurosci. 2015 18 965 977 1:CAS:528:DC%2BC2MXhtFeisrjL 26030851 5528863 10.1038/nn.4030
J.K. Olson S.D. Miller Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs J. Immunol. 2004 173 3916 3924 1:CAS:528:DC%2BD2cXnsVWksb4%3D 15356140 10.4049/jimmunol.173.6.3916
A.F. Lloyd et al. Deep proteomic analysis of microglia reveals fundamental biological differences between model systems Cell Rep. 2024 43 114908 1:CAS:528:DC%2BB2cXitleksLbN 39460937 10.1016/j.celrep.2024.114908
C. Mezo et al. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease Acta Neuropathol. Commun. 2020 8 119 32727612 7389451 10.1186/s40478-020-00988-5
D.O. Seo et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy Science 2023 379 eadd1236 1:CAS:528:DC%2BB3sXht1erur4%3D 36634180 9901565 10.1126/science.add1236
N. Sun et al. Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation Brain Behav. Immun. 2021 92 102 114 1:CAS:528:DC%2BB3MXhtlKqurw%3D 33242652 10.1016/j.bbi.2020.11.032
E.E. Frohlich et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication Brain Behav. Immun. 2016 56 140 155 26923630 5014122 10.1016/j.bbi.2016.02.020
X. Yang D. Yu L. Xue H. Li J. Du Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice Acta Pharm. Sin. B 2020 10 475 487 1:CAS:528:DC%2BB3MXnslSruw%3D%3D 32140393 10.1016/j.apsb.2019.07.001
T. Zelante et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22 Immunity 2013 39 372 385 1:CAS:528:DC%2BC3sXhtlCntLrE 23973224 10.1016/j.immuni.2013.08.003
V. Rothhammer et al. Microglial control of astrocytes in response to microbial metabolites Nature 2018 557 724 728 1:CAS:528:DC%2BC1cXpvVSjtrw%3D 29769726 6422159 10.1038/s41586-018-0119-x
V. Rothhammer et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor Nat. Med. 2016 22 586 597 1:CAS:528:DC%2BC28XnsV2ksLg%3D 27158906 4899206 10.1038/nm.4106
L.W. Yu G. Agirman E.Y. Hsiao The gut microbiome as a regulator of the neuroimmune landscape Annu. Rev. Immunol. 2022 40 143 167 1:CAS:528:DC%2BB38XksFGhsQ%3D%3D 34990209 10.1146/annurev-immunol-101320-014237
M. McMillin et al. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy J. Neurochem. 2015 135 565 576 1:CAS:528:DC%2BC2MXhsVOlsrzP 26179031 5031412 10.1111/jnc.13243
N. Yanguas-Casas M.A. Barreda-Manso M. Nieto-Sampedro L. Romero-Ramirez Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation J. Neuroinflammation 2014 11 24645669 4000131 10.1186/1742-2094-11-50 50
N. Yanguas-Casas M.A. Barreda-Manso M. Nieto-Sampedro L. Romero-Ramirez TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells J. Cell Physiol. 2017 232 2231 2245 1:CAS:528:DC%2BC2sXjs1Oisb0%3D 27987324 10.1002/jcp.25742
C. Guo et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome Immunity 2016 45 944 1:CAS:528:DC%2BC28XhslSgsbjF 27760343 10.1016/j.immuni.2016.10.009
A.F. Nunes et al. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice Mol. Neurobiol. 2012 45 440 454 1:CAS:528:DC%2BC38XptVWlsrc%3D 22438081 10.1007/s12035-012-8256-y
T. Goldmann et al. Origin, fate and dynamics of macrophages at central nervous system interfaces Nat. Immunol. 2016 17 797 805 1:CAS:528:DC%2BC28XmvFOqsbk%3D 27135602 4968048 10.1038/ni.3423
D. Mrdjen et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease Immunity 2018 48 380 395.e6 1:CAS:528:DC%2BC1cXit12qs70%3D 29426702 10.1016/j.immuni.2018.01.011
H. Van Hove et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment Nat. Neurosci. 2019 22 1021 1035 31061494 10.1038/s41593-019-0393-4
K. Kierdorf T. Masuda M.J.C. Jordao M. Prinz Macrophages at CNS interfaces: ontogeny and function in health and disease Nat. Rev. Neurosci. 2019 20 547 562 1:CAS:528:DC%2BC1MXhsVGqtbvO 31358892 10.1038/s41583-019-0201-x
T. Masuda et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution Nature 2019 566 388 392 1:CAS:528:DC%2BC1MXmt1ymtbg%3D 30760929 10.1038/s41586-019-0924-x
M. Prinz T. Masuda M.A. Wheeler F.J. Quintana Microglia and central nervous system-associated macrophages-from origin to disease modulation Annu. Rev. Immunol. 2021 39 251 277 1:CAS:528:DC%2BB3MXjsVGktbY%3D 33556248 8085109 10.1146/annurev-immunol-093019-110159
S. Krasemann et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases Immunity 2017 47 566 581.e9 1:CAS:528:DC%2BC2sXhsFemtrbI 28930663 5719893 10.1016/j.immuni.2017.08.008
H. Keren-Shaul et al. A unique microglia type associated with restricting development of Alzheimer’s disease Cell 2017 169 1276 1290.e17 1:CAS:528:DC%2BC2sXpslCqtbY%3D 28602351 10.1016/j.cell.2017.05.018
T.F. Galatro et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes Nat. Neurosci. 2017 20 1162 1171 1:CAS:528:DC%2BC2sXhtFSmtrjI 28671693 10.1038/nn.4597
D. Gosselin et al. An environment-dependent transcriptional network specifies human microglia identity Science 2017 356 eaal3222 28546318 5858585 10.1126/science.aal3222
M. Olah et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXisFWlu7vP 33257666 7704703 10.1038/s41467-020-19737-2 6129
R. Sankowski et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques Nat. Neurosci. 2019 22 2098 2110 1:CAS:528:DC%2BC1MXitFOqsrzK 31740814 10.1038/s41593-019-0532-y
A.M. Smith et al. Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology Acta Neuropathol. 2022 143 75 91 1:CAS:528:DC%2BB38XlvVKrtL4%3D 34767070 10.1007/s00401-021-02372-6
K. Srinivasan et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation Cell Rep. 2020 31 107843 1:CAS:528:DC%2BB3cXhtlegt7zN 32610143 7422733 10.1016/j.celrep.2020.107843
A. Rongvaux et al. Development and function of human innate immune cells in a humanized mouse model Nat. Biotechnol. 2014 32 364 372 1:CAS:528:DC%2BC2cXktlGmur4%3D 24633240 4017589 10.1038/nbt.2858
J. Hasselmann et al. Development of a chimeric model to study and manipulate human microglia in vivo Neuron 2019 103 1016 1033.e10 1:CAS:528:DC%2BC1MXhsVOgtbbO 31375314 7138101 10.1016/j.neuron.2019.07.002
R. Mancuso et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease Nat. Neurosci. 2019 22 2111 2116 1:CAS:528:DC%2BC1MXitVCksLrF 31659342 7616913 10.1038/s41593-019-0525-x
A. McQuade et al. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXitFyqur%2FE 33097708 7584603 10.1038/s41467-020-19227-5 5370
C. Claes et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease Mol. Neurodegener. 2021 16 50 1:CAS:528:DC%2BB3MXitVKjtb3I 34301296 8305935 10.1186/s13024-021-00473-0
S.J. Andrews et al. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions EBioMedicine 2023 90 104511 1:CAS:528:DC%2BB3sXls1OlsLw%3D 36907103 10024184 10.1016/j.ebiom.2023.104511
A. Grubman et al. Transcriptional signature in microglia associated with Aβ plaque phagocytosis Nat. Commun. 2021 12 34021136 8140091 10.1038/s41467-021-23111-1 3015
S. Parhizkar et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE Nat. Neurosci. 2019 22 191 204 1:CAS:528:DC%2BC1MXlvFSitLc%3D 30617257 6417433 10.1038/s41593-018-0296-9
Y. Huang et al. Microglia use TAM receptors to detect and engulf amyloid β plaques Nat. Immunol. 2021 22 586 594 1:CAS:528:DC%2BB3MXovVOru7k%3D 33859405 8102389 10.1038/s41590-021-00913-5
F. Bard et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease Nat. Med. 2000 6 916 919 1:CAS:528:DC%2BD3cXlsFamtL4%3D 10932230 10.1038/78682
B. Dejanovic et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models Nat. Aging 2022 2 837 850 1:CAS:528:DC%2BB3sXmtFSksLo%3D 37118504 10154216 10.1038/s43587-022-00281-1
M. Gratuze et al. Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration J. Clin. Invest. 2020 130 4954 4968 1:CAS:528:DC%2BB3cXhvVejsbfE 32544086 7456230 10.1172/JCI138179
A.S. Popescu et al. Alzheimer’s disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss Glia 2023 71 974 990 1:CAS:528:DC%2BB38XjtVOqs77L 36480007 10.1002/glia.24318
Y. Huang G. Lemke Early death in a mouse model of Alzheimer’s disease exacerbated by microglial loss of TAM receptor signaling Proc. Natl Acad. Sci. USA 2022 119 1:CAS:528:DC%2BB38XivVSlsrjE 36191221 9564325 10.1073/pnas.2204306119 e2204306119
J. Brelstaff A.M. Tolkovsky B. Ghetti M. Goedert M.G. Spillantini Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia Cell Rep. 2018 24 1939 1948.e4 1:CAS:528:DC%2BC1cXhsFGqtL%2FL 30134156 6161320 10.1016/j.celrep.2018.07.072
K. Pampuscenko et al. Extracellular tau induces microglial phagocytosis of living neurons in cell cultures J. Neurochem. 2020 154 316 329 1:CAS:528:DC%2BC1MXisVyqurvL 31834946 10.1111/jnc.14940
M. Puigdellivol et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration Cell Rep. 2021 37 110148 1:CAS:528:DC%2BB38XpvVal 34965424 8733854 10.1016/j.celrep.2021.110148
C. Condello P. Yuan J. Grutzendler Microglia-mediated neuroprotection, TREM2, and Alzheimer’s disease: evidence from optical imaging Biol. Psychiatry 2018 83 377 387 1:CAS:528:DC%2BC2sXhvFahsbnP 29169609 10.1016/j.biopsych.2017.10.007
C. Condello P. Yuan A. Schain J. Grutzendler Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques Nat. Commun. 2015 6 1:CAS:528:DC%2BC2MXhtF2ksrzE 25630253 10.1038/ncomms7176 6176
O. Fischer Miliare Nekrosen mit drusigen Wucherungen der Neuro-fibrillen, eine regelmässige Veränderung der Hirnrinde bei Monatsschr. Psychiatr. Neurol. 1907 22 361 10.1159/000211873
P. Yuan et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease Nature 2022 612 328 337 1:CAS:528:DC%2BB38XjtVWhtLvO 36450991 9729106 10.1038/s41586-022-05491-6
P. Yuan et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy Neuron 2016 90 724 739 1:CAS:528:DC%2BC28Xotlehsbk%3D 27196974 4898967 10.1016/j.neuron.2016.05.003
Y. Wang et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques J. Exp. Med. 2016 213 667 675 1:CAS:528:DC%2BC28XhsV2nsL7F 27091843 4854736 10.1084/jem.20151948
H. Ennerfelt et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease Cell 2022 185 4135 4152.e22 1:CAS:528:DC%2BB38Xis1KrsL7E 36257314 9617784 10.1016/j.cell.2022.09.030
S. Wang et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways Cell 2022 185 4153 4169.e19 1:CAS:528:DC%2BB38XislCju7jE 36306735 9625082 10.1016/j.cell.2022.09.033
J. Hu et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease Neuron 2023 111 15 29.e8 1:CAS:528:DC%2BB38XivVGjurvI 36368316 10.1016/j.neuron.2022.10.021
S.H. Lee et al. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology Neuron 2021 109 1283 1301.e6 1:CAS:528:DC%2BB3MXmtFWnurw%3D 33675684 10.1016/j.neuron.2021.02.010
N. Zhao et al. Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia J. Exp. Med. 2022 219 1:CAS:528:DC%2BB38XisFOqs73P 36107206 9481739 10.1084/jem.20212479 e20212479
S. Wang et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model J. Exp. Med. 2020 217 32579671 7478730 10.1084/jem.20200785 e20200785
E.C. Damisah et al. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo Sci. Adv. 2020 6 eaba3239 1:CAS:528:DC%2BB3cXitlWitrnJ 32637606 7319765 10.1126/sciadv.aba3239
J.D. Ulrich et al. ApoE facilitates the microglial response to amyloid plaque pathology J. Exp. Med. 2018 215 1047 1058 1:CAS:528:DC%2BC1cXhslCks7zL 29483128 5881464 10.1084/jem.20171265
M. Malpetti et al. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease Brain 2020 143 1588 1602 32380523 7241955 10.1093/brain/awaa088
H. Akiyama et al. Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis Brain Res. 1994 639 171 174 1:CAS:528:DyaK2cXitFCgtbY%3D 7514086 10.1016/0006-8993(94)91779-5
D. Gomez-Nicola N.L. Fransen S. Suzzi V.H. Perry Regulation of microglial proliferation during chronic neurodegeneration J. Neurosci. 2013 33 2481 2493 1:CAS:528:DC%2BC3sXhtlOjsrjJ 23392676 6619184 10.1523/JNEUROSCI.4440-12.2013
A. Olmos-Alonso et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology Brain 2016 139 891 907 26747862 4766375 10.1093/brain/awv379
C. Sassi et al. Mendelian adult-onset leukodystrophy genes in Alzheimer’s disease: critical influence of CSF1R and NOTCH3 Neurobiol. Aging 2018 66 179.e17 179.e29 1:CAS:528:DC%2BC1cXivVCktLc%3D 29544907 10.1016/j.neurobiolaging.2018.01.015
N.N. Dagher et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice J. Neuroinflammation 2015 12 26232154 4522109 10.1186/s12974-015-0366-9 139
J. Sosna et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease Mol. Neurodegener. 2018 13 11 29490706 5831225 10.1186/s13024-018-0244-x
E.E. Spangenberg et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology Brain 2016 139 1265 1281 26921617 5006229 10.1093/brain/aww016
M.S.J. Kater et al. Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer’s disease Brain Behav. Immun. 2023 107 225 241 1:CAS:528:DC%2BB38XislGhtrrJ 36270437 10.1016/j.bbi.2022.10.009
R. Mancuso et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice Brain 2019 142 3243 3264 31504240 6794948 10.1093/brain/awz241
Y. Hu et al. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology Cell Rep. 2021 35 109228 1:CAS:528:DC%2BB3MXhtlals7bL 34107254 8206957 10.1016/j.celrep.2021.109228
M. Martin-Estebane D. Gomez-Nicola Targeting microglial population dynamics in Alzheimer’s disease: are we ready for a potential impact on immune function? Front. Cell Neurosci. 2020 14 149 1:CAS:528:DC%2BB3cXitlOltLjL 32581720 7289918 10.3389/fncel.2020.00149
S.H. Baik et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease Cell Metab. 2019 30 493 507.e6 1:CAS:528:DC%2BC1MXht1OjsrjE 31257151 10.1016/j.cmet.2019.06.005
A. McIntosh et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice Brain Pathol. 2019 29 606 621 1:CAS:528:DC%2BC1MXhs1CgurbM 30661261 8028264 10.1111/bpa.12704
M.V. Guillot-Sestier et al. Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer’s disease Commun. Biol. 2021 4 711 34112929 8192523 10.1038/s42003-021-02259-y
L.P. Bernier et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXlvFGnurg%3D 32214088 7096448 10.1038/s41467-020-15267-z 1559
P.S. Minhas et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation Nat. Immunol. 2019 20 50 63 1:CAS:528:DC%2BC1cXitlSqsbnM 30478397 10.1038/s41590-018-0255-3
P.S. Minhas et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing Nature 2021 590 122 128 1:CAS:528:DC%2BB3MXhs1yqsLY%3D 33473210 8274816 10.1038/s41586-020-03160-0
J.S. O’Brien E.L. Sampson Lipid composition of the normal human brain: gray matter, white matter, and myelin J. Lipid Res. 1965 6 537 544 5865382 10.1016/S0022-2275(20)39619-X
I. Bjorkhem S. Meaney Brain cholesterol: long secret life behind a barrier Arterioscler. Thromb. Vasc. Biol. 2004 24 806 815 14764421 10.1161/01.ATV.0000120374.59826.1b
G. Saher Cholesterol metabolism in aging and age-related disorders Annu. Rev. Neurosci. 2023 46 59 78 1:CAS:528:DC%2BB3sXhsVent7bE 37428605 10.1146/annurev-neuro-091922-034237
N.S. Tobeh K.D. Bruce Emerging Alzheimer’s disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions Front. Aging Neurosci. 2023 15 1259012 1:CAS:528:DC%2BB2cXntVymtb0%3D 38020773 10630922 10.3389/fnagi.2023.1259012
M.A. Lovell W.D. Ehmann M.P. Mattson W.R. Markesbery Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease Neurobiol. Aging 1997 18 457 461 1:CAS:528:DyaK2sXns1OqsLY%3D 9390770 10.1016/S0197-4580(97)00108-5
M. Singh T.N. Dang M. Arseneault C. Ramassamy Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein J. Alzheimers Dis. 2010 21 741 756 1:CAS:528:DC%2BC3cXhtFKmurnO 20634576 10.3233/JAD-2010-100405
M.J. Moulton et al. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes Proc. Natl Acad. Sci. USA 2021 118 1:CAS:528:DC%2BB38XhvFSitbg%3D 34949639 8719885 10.1073/pnas.2112095118 e2112095118
G. Ates J. Goldberg A. Currais P. Maher CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease Redox Biol. 2020 36 101648 1:CAS:528:DC%2BB3cXhsFSiurbL 32863221 7394765 10.1016/j.redox.2020.101648
J. Marschallinger et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain Nat. Neurosci. 2020 23 194 208 1:CAS:528:DC%2BB3cXislensb0%3D 31959936 7595134 10.1038/s41593-019-0566-1
M.S. Haney et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia Nature 2024 628 154 161 1:CAS:528:DC%2BB2cXlvVSitL4%3D 38480892 10990924 10.1038/s41586-024-07185-7
A. Kozlova et al. Alzheimer’s disease risk allele of PICALM causes detrimental lipid droplets in microglia. Preprint at Res. Sq. 2024 10.21203/rs.3.rs-4407146/v1 38826437 11142308
C.F. Sing J. Davignon Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation Am. J. Hum. Genet. 1985 37 268 285 1:CAS:528:DyaL2MXktVChtLw%3D 3985008 1684560
J.E. Young S. Jayadev Neighborhood matters: altered lipid metabolism in APOE4 microglia causes problems for neurons Cell Stem Cell 2022 29 1159 1160 1:CAS:528:DC%2BB38XitVGnsLzI 35931027 10.1016/j.stem.2022.07.001
Y. Li et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK Cell Metab. 2024 36 1351 1370.e8 1:CAS:528:DC%2BB2cXovVOks7k%3D 38657612 10.1016/j.cmet.2024.03.014
N. Bresgen M. Kovacs A. Lahnsteiner T.K. Felder M. Rinnerthaler The janus-faced role of lipid droplets in aging: insights from the cellular perspective Biomolecules 2023 13 912 1:CAS:528:DC%2BB3sXhtlOjurnF 37371492 10301655 10.3390/biom13060912
X. Hu Y.N. Ma Y. Xia Association between abnormal lipid metabolism and Alzheimer’s disease: new research has revealed significant findings on the APOE4 genotype in microglia Biosci. Trends 2024 18 195 197 1:CAS:528:DC%2BB2cXhsl2qu7vI 38631884 10.5582/bst.2024.01092
F. Filipello et al. Defects in lysosomal function and lipid metabolism in human microglia harboring a TREM2 loss of function mutation Acta Neuropathol. 2023 145 749 772 1:CAS:528:DC%2BB3sXovFKlsrY%3D 37115208 10175346 10.1007/s00401-023-02568-y
L. Mirdha Aggregation behavior of amyloid beta peptide depends upon the membrane lipid composition J. Membr. Biol. 2024 257 151 164 1:CAS:528:DC%2BB2cXhtlGqu7fE 38888760 10.1007/s00232-024-00314-3
C.Y. Lee W. Tse J.D. Smith G.E. Landreth Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels J. Biol. Chem. 2012 287 2032 2044 1:CAS:528:DC%2BC38XmtlGrug%3D%3D 22130662 10.1074/jbc.M111.295451
Z. Liang et al. Long-term high-fat diet consumption aggravates β-amyloid deposition and tau pathology accompanied by microglial activation in an Alzheimer’s disease model Mol. Nutr. Food Res. 2024 68 38491393 10.1002/mnfr.202300669 e2300669
D. Toral-Rios et al. Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy J. Exp. Med. 2024 221 1:CAS:528:DC%2BB2cXmvFygsro%3D 38442267 10908359 10.1084/jem.20232000 e20232000
P.B. Lin et al. INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer’s disease Alzheimers Dement. 2023 19 2528 2537 1:CAS:528:DC%2BB38XjtFeksrrO 36524682 10.1002/alz.12849
A. Podlesny-Drabiniok et al. BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer’s disease and other disorders of lipid-rich tissues Nat. Commun. 2024 15 1:CAS:528:DC%2BB2cXlsFGlsrY%3D 38448474 10917780 10.1038/s41467-024-46315-7 2058
S.-F. You et al. MS4A4A modifies the risk of Alzheimer disease by regulating lipid metabolism and immune response in a unique microglia state. Preprint at medRxiv 2023 10.1101/2023.02.06.23285545 37873281 10593014
C. Wang et al. TRPV1 regulates ApoE4-disrupted intracellular lipid homeostasis and decreases synaptic phagocytosis by microglia Exp. Mol. Med. 2023 55 347 363 1:CAS:528:DC%2BB3sXitlyiurg%3D 36720919 9981624 10.1038/s12276-023-00935-z
L. Leng et al. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance Nat. Metab. 2022 4 1287 1305 1:CAS:528:DC%2BB38Xis1WgsrfJ 36203054 10.1038/s42255-022-00643-4
A. Hernandez-Segura J. Nehme M. Demaria Hallmarks of cellular senescence Trends Cell Biol. 2018 28 436 453 1:CAS:528:DC%2BC1cXivVCku78%3D 29477613 10.1016/j.tcb.2018.02.001
D. Blum-Degen et al. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients Neurosci. Lett. 1995 202 17 20 1:CAS:528:DyaK28XkslOluw%3D%3D 8787820 10.1016/0304-3940(95)12192-7
D. Gezen-Ak et al. BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment J. Alzheimers Dis. 2013 37 185 195 1:CAS:528:DC%2BC3sXht12jtL7J 23948885 10.3233/JAD-130497
W.J. Streit Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 2006 29 506 510 1:CAS:528:DC%2BD28XptVGntL0%3D 16859761 10.1016/j.tins.2006.07.001
J.A. Wood et al. Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1β or IL-1RA but increases in the associated acute phase proteins IL-6, α2-macroglobulin and C-reactive protein Brain Res. 1993 629 245 252 1:CAS:528:DyaK2cXivVKlsQ%3D%3D 7509248 10.1016/0006-8993(93)91327-O
A. Sierra A.C. Gottfried-Blackmore B.S. McEwen K. Bulloch Microglia derived from aging mice exhibit an altered inflammatory profile Glia 2007 55 412 424 17203473 10.1002/glia.20468
N. Maphis et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain Brain 2015 138 1738 1755 25833819 4542622 10.1093/brain/awv081
I.C. Stancu et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo Acta Neuropathol. 2019 137 599 617 1:CAS:528:DC%2BC1MXmslGrtbg%3D 30721409 6426830 10.1007/s00401-018-01957-y
T.J. Bussian et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline Nature 2018 562 578 582 1:CAS:528:DC%2BC1cXhslKjsLzJ 30232451 6206507 10.1038/s41586-018-0543-y
B.E. Flanary N.W. Sammons C. Nguyen D. Walker W.J. Streit Evidence that aging and amyloid promote microglial cell senescence Rejuvenation Res. 2007 10 61 74 1:CAS:528:DC%2BD2sXjtlWntrk%3D 17378753 10.1089/rej.2006.9096
P.Y. Ng C. Zhang H. Li D.J. Baker Senescent microglia represent a subset of disease-associated microglia in P301S mice J. Alzheimers Dis. 2023 95 493 507 1:CAS:528:DC%2BB3sXhvFaktb7K 37545233 10848894 10.3233/JAD-230109
J.H. Brelstaff et al. Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates Sci. Adv. 2021 7 eabg4980 1:CAS:528:DC%2BB3MXisFCrs7bL 34669475 8528424 10.1126/sciadv.abg4980
D. Karabag et al. Characterizing microglial senescence: Tau as a key player J. Neurochem. 2023 166 517 533 1:CAS:528:DC%2BB3sXhtFGku7%2FP 37278117 10.1111/jnc.15866
R.T. Han R.D. Kim A.V. Molofsky S.A. Liddelow Astrocyte-immune cell interactions in physiology and pathology Immunity 2021 54 211 224 1:CAS:528:DC%2BB3MXjsF2mu7Y%3D 33567261 10.1016/j.immuni.2021.01.013
A. Verkhratsky M. Nedergaard Physiology of astroglia Physiol. Rev. 2018 98 239 389 1:CAS:528:DC%2BC1MXisFeksbk%3D 29351512 10.1152/physrev.00042.2016
P. Hasel I.V.L. Rose J.S. Sadick R.D. Kim S.A. Liddelow Neuroinflammatory astrocyte subtypes in the mouse brain Nat. Neurosci. 2021 24 1475 1487 1:CAS:528:DC%2BB3MXhvVClsrjM 34413515 10.1038/s41593-021-00905-6
C. Escartin et al. Reactive astrocyte nomenclature, definitions, and future directions Nat. Neurosci. 2021 24 312 325 1:CAS:528:DC%2BB3MXktF2iu7o%3D 33589835 8007081 10.1038/s41593-020-00783-4
Y. Zhou et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease Nat. Med. 2020 26 131 142 1:CAS:528:DC%2BB3cXotFOitA%3D%3D 31932797 6980793 10.1038/s41591-019-0695-9
A. Verkhratsky et al. Astrocytes in human central nervous system diseases: a frontier for new therapies Signal. Transduct. Target. Ther. 2023 8 396 37828019 10570367 10.1038/s41392-023-01628-9
S.A. Liddelow et al. Neurotoxic reactive astrocytes are induced by activated microglia Nature 2017 541 481 487 1:CAS:528:DC%2BC2sXht1Olt74%3D 28099414 5404890 10.1038/nature21029
H. Chun et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2- production Nat. Neurosci. 2020 23 1555 1566 1:CAS:528:DC%2BB3cXitlGjsLrE 33199896 10.1038/s41593-020-00735-y
Y.H. Ju et al. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer’s disease Cell Metab. 2022 34 1104 1120.e8 1:CAS:528:DC%2BB38XhsFyjtbjF 35738259 10.1016/j.cmet.2022.05.011
F. Giovannoni F.J. Quintana The role of astrocytes in CNS inflammation Trends Immunol. 2020 41 805 819 1:CAS:528:DC%2BB3cXhsVGrsrvI 32800705 8284746 10.1016/j.it.2020.07.007
S. Sekar et al. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes Neurobiol. Aging 2015 36 583 591 1:CAS:528:DC%2BC2cXhvVOku7nL 25448601 10.1016/j.neurobiolaging.2014.09.027
A. Verkhratsky J.J. Rodrigues A. Pivoriunas R. Zorec A. Semyanov Astroglial atrophy in Alzheimer’s disease Pflug. Arch. 2019 471 1247 1261 1:CAS:528:DC%2BC1MXhslOgu7bE 10.1007/s00424-019-02310-2
N.A. Oberheim et al. Uniquely hominid features of adult human astrocytes J. Neurosci. 2009 29 3276 3287 1:CAS:528:DC%2BD1MXjsVamtL0%3D 19279265 2819812 10.1523/JNEUROSCI.4707-08.2009
K.A. Guttenplan et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids Nature 2021 599 102 107 1:CAS:528:DC%2BB3MXit1WqsLbE 34616039 10.1038/s41586-021-03960-y
I. Molina-Gonzalez et al. Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration Nat. Commun. 2023 14 1:CAS:528:DC%2BB3sXht1Wns7zP 37291151 10250470 10.1038/s41467-023-39046-8 3372
J. Tcw et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia Cell 2022 185 2213 2233 1:CAS:528:DC%2BB38XitVehtb%2FF 35750033 9340815 10.1016/j.cell.2022.05.017
H. Mathys et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology Cell 2023 186 4365 4385.e27 1:CAS:528:DC%2BB3sXitVaqtrbM 37774677 10601493 10.1016/j.cell.2023.08.039
M. Kenigsbuch et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies Nat. Neurosci. 2022 25 876 886 1:CAS:528:DC%2BB38Xhs1Srt7zO 35760863 9724210 10.1038/s41593-022-01104-7
T. Kaya et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging Nat. Neurosci. 2022 25 1446 1457 1:CAS:528:DC%2BB38XislSlur%2FI 36280798 9630119 10.1038/s41593-022-01183-6
S. Pandey et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases Cell Rep. 2022 40 111189 1:CAS:528:DC%2BB38Xit1WisrbM 36001972 10.1016/j.celrep.2022.111189
W.T. Chen et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease Cell 2020 182 976 991.e19 1:CAS:528:DC%2BB3cXhsVCltL3L 32702314 10.1016/j.cell.2020.06.038
K.A. Nave H.B. Werner Myelination of the nervous system: mechanisms and functions Annu. Rev. Cell Dev. Biol. 2014 30 503 533 1:CAS:528:DC%2BC2cXitVeit7nI 25288117 10.1146/annurev-cellbio-100913-013101
M. Dubey et al. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition eLife 2022 11 1:CAS:528:DC%2BB38XhsV2ntbzO 35001871 8887893 10.7554/eLife.73827 e73827
G. Bartzokis Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease Neurobiol. Aging 2004 25 5 18 1:CAS:528:DC%2BD3sXpvVait7w%3D 14675724 10.1016/j.neurobiolaging.2003.03.001
H. Braak K. Del Tredici Poor and protracted myelination as a contributory factor to neurodegenerative disorders Neurobiol. Aging 2004 25 19 23 1:CAS:528:DC%2BD3sXpvVait70%3D 14675725 10.1016/j.neurobiolaging.2003.04.001
A. Peters C. Sethares Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey J. Comp. Neurol. 2002 442 277 291 11774342 10.1002/cne.10099
J.M. Edgar et al. Rio-Hortega’s drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin J. Anat. 2021 239 1241 1255 1:CAS:528:DC%2BB38XitVyqs7c%3D 34713444 8602028 10.1111/joa.13577
N. Snaidero et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin Cell Rep. 2017 18 314 323 1:CAS:528:DC%2BC2sXhtVCju7g%3D 28076777 5263235 10.1016/j.celrep.2016.12.053
U. Funfschilling et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity Nature 2012 485 517 521 22622581 3613737 10.1038/nature11007
J.H. Sandell A. Peters Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey J. Comp. Neurol. 2003 466 14 30 14515238 10.1002/cne.10859
S. Kedia et al. T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis Nat. Neurosci. 2024 27 1468 1474 1:CAS:528:DC%2BB2cXhsVCru7vI 38937583 11303250 10.1038/s41593-024-01682-8
S. Safaiyan et al. White matter aging drives microglial diversity Neuron 2021 109 1100 1117.e10 1:CAS:528:DC%2BB3MXks1Gqt74%3D 33606969 10.1016/j.neuron.2021.01.027
S. Safaiyan et al. Age-related myelin degradation burdens the clearance function of microglia during aging Nat. Neurosci. 2016 19 995 998 1:CAS:528:DC%2BC28XpvVantrc%3D 27294511 7116794 10.1038/nn.4325
C. Depp et al. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease Nature 2023 618 349 357 1:CAS:528:DC%2BB3sXhtFaqtrzP 37258678 10247380 10.1038/s41586-023-06120-6
B.V. Zlokovic The blood-brain barrier in health and chronic neurodegenerative disorders Neuron 2008 57 178 201 1:CAS:528:DC%2BD1cXhvVSrtrc%3D 18215617 10.1016/j.neuron.2008.01.003
K. Kim et al. Therapeutic B-cell depletion reverses progression of Alzheimer’s disease Nat. Commun. 2021 12 1:CAS:528:DC%2BB3MXptFOlu7w%3D 33846335 8042032 10.1038/s41467-021-22479-4 2185
Y. Elyahu et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes Sci. Adv. 2019 5 eaaw8330 1:CAS:528:DC%2BB3cXhtlaku7bE 31457092 6703865 10.1126/sciadv.aaw8330
J.J. Goronzy C.M. Weyand Successful and maladaptive T cell aging Immunity 2017 46 364 378 1:CAS:528:DC%2BC2sXkvVOitLs%3D 28329703 5433436 10.1016/j.immuni.2017.03.010
J. Nikolich-Zugich The twilight of immunity: emerging concepts in aging of the immune system Nat. Immunol. 2018 19 10 19 1:CAS:528:DC%2BC1cXmtVCkt7c%3D 29242543 10.1038/s41590-017-0006-x
C. Franceschi P. Garagnani P. Parini C. Giuliani A. Santoro Inflammaging: a new immune-metabolic viewpoint for age-related diseases Nat. Rev. Endocrinol. 2018 14 576 590 1:CAS:528:DC%2BC1cXhtl2gtL7N 30046148 10.1038/s41574-018-0059-4
G. Desdin-Mico et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence Science 2020 368 1371 1376 1:CAS:528:DC%2BB3cXht1alsr3L 32439659 10.1126/science.aax0860
D. Gate et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease Nature 2020 577 399 404 1:CAS:528:DC%2BB3cXlsleisQ%3D%3D 31915375 7445078 10.1038/s41586-019-1895-7
X. Chen et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy Nature 2023 615 668 677 1:CAS:528:DC%2BB3sXkslymsLc%3D 36890231 10258627 10.1038/s41586-023-05788-0
C. Laurent et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy Brain 2017 140 184 200 27818384 10.1093/brain/aww270
M. Pellicano et al. Immune profiling of Alzheimer patients J. Neuroimmunol. 2012 242 52 59 1:CAS:528:DC%2BC38XitlKmsrw%3D 22153977 10.1016/j.jneuroim.2011.11.005
C. Joshi et al. CSF-derived CD4+ T-cell diversity is reduced in patients with Alzheimer clinical syndrome Neurol. Neuroimmunol. Neuroinflamm. 2022 9 34848502 10.1212/NXI.0000000000001106 e1106
A. Monsonego et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease J. Clin. Invest. 2003 112 415 422 1:CAS:528:DC%2BD3sXmtFemtrs%3D 12897209 166296 10.1172/JCI200318104
B. Altendorfer et al. Transcriptomic profiling identifies CD8+ T cells in the brain of aged and Alzheimer’s disease transgenic mice as tissue-resident memory T cells J. Immunol. 2022 209 1272 1285 1:CAS:528:DC%2BB38XisFOrt7nL 36165202 9515311 10.4049/jimmunol.2100737
M.S. Unger et al. Doublecortin expression in CD8+ T-cells and microglia at sites of amyloid-β plaques: a potential role in shaping plaque pathology? Alzheimers Dement. 2018 14 1022 1037 29630865 10.1016/j.jalz.2018.02.017
W. Su et al. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology Nat. Immunol. 2023 24 1735 1747 1:CAS:528:DC%2BB3sXhvVOnsLvN 37679549 11102766 10.1038/s41590-023-01604-z
M. Jorfi et al. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model Nat. Neurosci. 2023 26 1489 1504 1:CAS:528:DC%2BB3sXhslKnt7jI 37620442 11184920 10.1038/s41593-023-01415-3
N. Rosenzweig et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model Nat. Commun. 2019 10 1:CAS:528:DC%2BC1MXntFOiu70%3D 30692527 6349941 10.1038/s41467-019-08352-5 465
F. Ciccocioppo et al. The characterization of regulatory T-cell profiles in Alzheimer’s disease and multiple sclerosis Sci. Rep. 2019 9 31217537 6584558 10.1038/s41598-019-45433-3 8788
A. Faridar et al. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion Brain Commun. 2020 2 fcaa112 32954348 7472911 10.1093/braincomms/fcaa112
C. Toly-Ndour et al. MHC-independent genetic factors control the magnitude of CD4+ T cell responses to amyloid-β peptide in mice through regulatory T cell-mediated inhibition J. Immunol. 2011 187 4492 4500 1:CAS:528:DC%2BC3MXhtlChsbbL 21949026 10.4049/jimmunol.1003953
C. Dansokho et al. Regulatory T cells delay disease progression in Alzheimer-like pathology Brain 2016 139 1237 1251 26912648 10.1093/brain/awv408
G. Stym-Popper et al. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology J. Neuroinflammation 2023 20 1:CAS:528:DC%2BB3sXlsFSgs7g%3D 36890536 9996941 10.1186/s12974-023-02702-3 64
K. Mittal et al. CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology iScience 2019 16 298 311 1:CAS:528:DC%2BC1MXhs1SrsL7L 31203186 6581663 10.1016/j.isci.2019.05.039
E. Eremenko et al. BDNF-producing, amyloid β-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer’s disease EBioMedicine 2019 43 424 434 31085101 6557914 10.1016/j.ebiom.2019.04.019
E. Zenaro et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin Nat. Med. 2015 21 880 886 1:CAS:528:DC%2BC2MXht1WltLjJ 26214837 10.1038/nm.3913
J.C. Cruz Hernandez et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models Nat. Neurosci. 2019 22 413 420 1:CAS:528:DC%2BC1MXmsVymt74%3D 30742116 6508667 10.1038/s41593-018-0329-4
S.H. Baik et al. Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model Neurobiol. Aging 2014 35 1286 1292 1:CAS:528:DC%2BC2cXhs1Kmt7g%3D 24485508 4248665 10.1016/j.neurobiolaging.2014.01.003
S. Gellhaar D. Sunnemark H. Eriksson L. Olson D. Galter Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson’s and Alzheimer’s disease Cell Tissue Res. 2017 369 445 454 1:CAS:528:DC%2BC2sXmvFGjtrw%3D 28466093 5579172 10.1007/s00441-017-2626-8
L.C.D. Smyth et al. Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer’s disease Acta Neuropathol. Commun. 2022 10 38 1:CAS:528:DC%2BB38XhsVKitLjL 35331340 8944147 10.1186/s40478-022-01347-2
Y. Dong et al. Neutrophil hyperactivation correlates with Alzheimer’s disease progression Ann. Neurol. 2018 83 387 405 1:CAS:528:DC%2BC1cXjtlWlsr8%3D 29369398 10.1002/ana.25159
M. Fiala et al. Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer’s disease patients J. Alzheimers Dis. 2005 7 221 232 1:CAS:528:DC%2BD2MXlslOmurg%3D 16006665 10.3233/JAD-2005-7304
A. Le Page et al. Polymorphonuclear neutrophil functions are differentially altered in amnestic mild cognitive impairment and mild Alzheimer’s disease patients J. Alzheimers Dis. 2017 60 23 42 28777750 10.3233/JAD-170124
C. Scali et al. Neutrophils CD11b and fibroblasts PGE(2) are elevated in Alzheimer’s disease Neurobiol. Aging 2002 23 523 530 1:CAS:528:DC%2BD38XjsFOju7g%3D 12009501 10.1016/S0197-4580(01)00346-3
J. El Khoury et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease Nat. Med. 2007 13 432 438 1:CAS:528:DC%2BD2sXjvVaqtbc%3D 17351623 10.1038/nm1555
G. Naert S. Rivest CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease J. Neurosci. 2011 31 6208 6220 1:CAS:528:DC%2BC3MXlsFSqtr4%3D 21508244 6632958 10.1523/JNEUROSCI.0299-11.2011
S. Prokop et al. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease-like mice J. Exp. Med. 2015 212 1811 1818 1:CAS:528:DC%2BC2MXhslKqsrzO 26458768 4612091 10.1084/jem.20150479
N.H. Varvel et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease J. Exp. Med. 2015 212 1803 1809 1:CAS:528:DC%2BC2MXhslKqsr3K 26458770 4612086 10.1084/jem.20150478
A.D. Thome et al. Functional alterations of myeloid cells during the course of Alzheimer’s disease Mol. Neurodegener. 2018 13 61 1:CAS:528:DC%2BC1MXhtFehsLbJ 30424785 6233576 10.1186/s13024-018-0293-1
E. Farkas P.G. Luiten Cerebral microvascular pathology in aging and Alzheimer’s disease Prog. Neurobiol. 2001 64 575 611 1:CAS:528:DC%2BD3MXislGgt7k%3D 11311463 10.1016/S0301-0082(00)00068-X
B.V. Zlokovic Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders Nat. Rev. Neurosci. 2011 12 723 738 1:CAS:528:DC%2BC3MXhsVSktbzP 22048062 4036520 10.1038/nrn3114
P. Carmeliet Angiogenesis in health and disease Nat. Med. 2003 9 653 660 1:CAS:528:DC%2BD3sXktFOntbY%3D 12778163 10.1038/nm0603-653
P. Grammas Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease J. Neuroinflammation 2011 8 1:CAS:528:DC%2BC3MXltV2hu7w%3D 21439035 3072921 10.1186/1742-2094-8-26 26
D. Paris et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis Neurosci. Lett. 2004 366 80 85 1:CAS:528:DC%2BD2cXlsl2gs7k%3D 15265595 10.1016/j.neulet.2004.05.017
D. Paris et al. Inhibition of angiogenesis by Abeta peptides Angiogenesis 2004 7 75 85 1:CAS:528:DC%2BD2cXmsVaisbg%3D 15302999 10.1023/B:AGEN.0000037335.17717.bf
M.D. Sweeney A.P. Sagare B.V. Zlokovic Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders Nat. Rev. Neurol. 2018 14 133 150 1:CAS:528:DC%2BC1cXhvVeqtbk%3D 29377008 5829048 10.1038/nrneurol.2017.188
M.I. Alvarez-Vergara et al. Non-productive angiogenesis disassembles Ass plaque-associated blood vessels Nat. Commun. 2021 12 1:CAS:528:DC%2BB3MXhtF2nt7zO 34035282 8149638 10.1038/s41467-021-23337-z 3098
R.N. Kalaria et al. Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia Brain Res. Mol. Brain Res. 1998 62 101 105 1:CAS:528:DyaK1cXmslOmtrk%3D 9795165 10.1016/S0169-328X(98)00190-9
R. March-Diaz et al. Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1 Nat. Aging 2021 1 385 399 37117599 10.1038/s43587-021-00054-2
H. Tang X. Mao L. Xie D.A. Greenberg K. Jin Expression level of vascular endothelial growth factor in hippocampus is associated with cognitive impairment in patients with Alzheimer’s disease Neurobiol. Aging 2013 34 1412 1415 23182805 10.1016/j.neurobiolaging.2012.10.029
T. Thomas S. Miners S. Love Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia Brain 2015 138 1059 1069 25688080 10.1093/brain/awv025
S.P. Yang et al. Co-accumulation of vascular endothelial growth factor with β-amyloid in the brain of patients with Alzheimer’s disease Neurobiol. Aging 2004 25 283 290 15123332 10.1016/S0197-4580(03)00111-8
R.N. Kalaria Cerebrovascular degeneration is related to amyloid-β protein deposition in Alzheimer’s disease Ann. N. Y. Acad. Sci. 1997 826 263 271 1:STN:280:DyaK2svntVarsw%3D%3D 9329698 10.1111/j.1749-6632.1997.tb48478.x
M. Kawai P. Cras G. Perry Serial reconstruction of β-protein amyloid plaques: relationship to microvessels and size distribution Brain Res. 1992 592 278 282 1:CAS:528:DyaK38XmtlWmtrk%3D 1280517 10.1016/0006-8993(92)91686-9
M. Kawai R.N. Kalaria S.I. Harik G. Perry The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease Am. J. Pathol. 1990 137 1435 1446 1:STN:280:DyaK3M%2Fot12hsQ%3D%3D 2260630 1877722
J.D. Sengillo et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease Brain Pathol. 2013 23 303 310 23126372 10.1111/bpa.12004
E. Kouznetsova et al. Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice Int. J. Dev. Neurosci. 2006 24 187 193 1:CAS:528:DC%2BD28XhvVWns78%3D 16423498 10.1016/j.ijdevneu.2005.11.011
G.D. Lee et al. Stereological analysis of microvascular parameters in a double transgenic model of Alzheimer’s disease Brain Res. Bull. 2005 65 317 322 1:CAS:528:DC%2BD2MXjtlSrtrY%3D 15811597 10.1016/j.brainresbull.2004.11.024
E.P. Meyer A. Ulmann-Schuler M. Staufenbiel T. Krucker Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease Proc. Natl Acad. Sci. USA 2008 105 3587 3592 1:CAS:528:DC%2BD1cXjtlarsL0%3D 18305170 2265182 10.1073/pnas.0709788105
E. Sugawara H. Nikaido Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli Antimicrob. Agents Chemother. 2014 58 7250 7257 25246403 4249520 10.1128/AAC.03728-14
A.C. Yang et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk Nature 2022 603 885 892 1:CAS:528:DC%2BB38Xjs12kurY%3D 35165441 9635042 10.1038/s41586-021-04369-3
K. Kisler A.R. Nelson A. Montagne B.V. Zlokovic Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease Nat. Rev. Neurosci. 2017 18 419 434 1:CAS:528:DC%2BC2sXnvFGqu7Y%3D 28515434 5759779 10.1038/nrn.2017.48
R. Nortley et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes Science 2019 365 eaav9518 1:CAS:528:DC%2BC1MXhsVSqtrnP 31221773 6658218 10.1126/science.aav9518
W. Cao H. Zheng Peripheral immune system in aging and Alzheimer’s disease Mol. Neurodegener. 2018 13 51 1:CAS:528:DC%2BC1MXhtFehsLfJ 30285785 6169078 10.1186/s13024-018-0284-2
M.T. Heneka D.T. Golenbock E. Latz Innate immunity in Alzheimer’s disease Nat. Immunol. 2015 16 229 236 1:CAS:528:DC%2BC2MXivVSktr0%3D 25689443 10.1038/ni.3102
L.I. Labzin M.T. Heneka E. Latz Innate immunity and neurodegeneration Annu. Rev. Med. 2018 69 437 449 1:CAS:528:DC%2BC2sXhslOntb3K 29106805 10.1146/annurev-med-050715-104343
W. Huang et al. Microglia-mediated neurovascular unit dysfunction in Alzheimer’s disease J. Alzheimers Dis. 2023 94 S335 S354 1:CAS:528:DC%2BB3sXhsFOmtbvK 36683511 10473143 10.3233/JAD-221064
A. Montagne et al. Blood-brain barrier breakdown in the aging human hippocampus Neuron 2015 85 296 302 1:CAS:528:DC%2BC2MXhsFSjsLw%3D 25611508 4350773 10.1016/j.neuron.2014.12.032
A.S. Mendiola et al. Defining blood-induced microglia functions in neurodegeneration through multiomic profiling Nat. Immunol. 2023 24 1173 1187 1:CAS:528:DC%2BB3sXhtFyitLvO 37291385 10307624 10.1038/s41590-023-01522-0
C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer’s disease Nat. Rev. Neurosci. 2004 5 347 360 1:CAS:528:DC%2BD2cXjt1ClsLY%3D 15100718 10.1038/nrn1387
L. Park et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides Circ. Res. 2017 121 258 269 1:CAS:528:DC%2BC2sXhtF2it7nF 28515043 5522360 10.1161/CIRCRESAHA.117.311054
L. Park et al. Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration Nat. Neurosci. 2020 23 1079 1089 1:CAS:528:DC%2BB3cXhsFKlurnL 32778793 7896353 10.1038/s41593-020-0686-7
A. Montagne Z. Zhao B.V. Zlokovic Alzheimer’s disease: a matter of blood-brain barrier dysfunction? J. Exp. Med. 2017 214 3151 3169 1:CAS:528:DC%2BC1cXhtlWmt7zJ 29061693 5679168 10.1084/jem.20171406
A. Louveau et al. Structural and functional features of central nervous system lymphatic vessels Nature 2015 523 337 341 1:CAS:528:DC%2BC2MXhtFaitrrE 26030524 4506234 10.1038/nature14432
A. Louveau et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature Nat. Neurosci. 2018 21 1380 1391 1:CAS:528:DC%2BC1cXhslCjtrfJ 30224810 6214619 10.1038/s41593-018-0227-9
A. Louveau et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics J. Clin. Invest. 2017 127 3210 3219 28862640 5669566 10.1172/JCI90603
L.M. Hablitz M. Nedergaard The glymphatic system: a novel component of fundamental neurobiology J. Neurosci. 2021 41 7698 7711 1:CAS:528:DC%2BB3MXitFCntbzK 34526407 8603752 10.1523/JNEUROSCI.0619-21.2021
M. Nedergaard S.A. Goldman Glymphatic failure as a final common pathway to dementia Science 2020 370 50 56 1:CAS:528:DC%2BB3cXhvF2itLfP 33004510 8186542 10.1126/science.abb8739
J. Rustenhoven et al. Functional characterization of the dural sinuses as a neuroimmune interface Cell 2021 184 1000 1016.e27 1:CAS:528:DC%2BB3MXitlGgsLY%3D 33508229 8487654 10.1016/j.cell.2020.12.040
G. Ringstad P.K. Eide Cerebrospinal fluid tracer efflux to parasagittal dura in humans Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXivFOgt70%3D 31953399 6969040 10.1038/s41467-019-14195-x 354
J. Rustenhoven J. Kipnis Brain borders at the central stage of neuroimmunology Nature 2022 612 417 429 1:CAS:528:DC%2BB38XjtFSqurfE 36517712 10205171 10.1038/s41586-022-05474-7
S. Da Mesquita et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease Nature 2018 560 185 191 30046111 6085146 10.1038/s41586-018-0368-8
S. Kwon et al. Impaired peripheral lymphatic function and cerebrospinal fluid outflow in a mouse model of Alzheimer’s disease J. Alzheimers Dis. 2019 69 585 593 1:CAS:528:DC%2BC1MXhtVGiurrJ 31104026 7891904 10.3233/JAD-190013
M. Pappolla et al. Evidence for lymphatic Aβ clearance in Alzheimer’s transgenic mice Neurobiol. Dis. 2014 71 215 219 1:CAS:528:DC%2BC2cXhtlCjt77O 25102344 5589075 10.1016/j.nbd.2014.07.012
L. Wang et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice Brain Pathol. 2019 29 176 192 1:CAS:528:DC%2BC1MXjvFOisbg%3D 30192999 10.1111/bpa.12656
Y.R. Wen J.H. Yang X. Wang Z.B. Yao Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease Neural Regen. Res. 2018 13 709 716 29722325 5950683 10.4103/1673-5374.230299
S. Da Mesquita et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy Nature 2021 593 255 260 33911285 8817786 10.1038/s41586-021-03489-0
M.T. Heneka et al. Neuroinflammation in Alzheimer’s disease Lancet Neurol. 2015 14 388 405 1:CAS:528:DC%2BC2MXkvVSksrw%3D 25792098 5909703 10.1016/S1474-4422(15)70016-5
C.R. Stewart et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer Nat. Immunol. 2010 11 155 161 1:CAS:528:DC%2BD1MXhs1SktbvE 20037584 10.1038/ni.1836
K. Fassbender et al. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease FASEB J. 2004 18 203 205 1:CAS:528:DC%2BD2cXlvFymsg%3D%3D 14597556 10.1096/fj.03-0364fje
S. Liu et al. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation J. Immunol. 2012 188 1098 1107 1:CAS:528:DC%2BC38XpslKitg%3D%3D 22198949 10.4049/jimmunol.1101121
S. Walter et al. Role of the Toll-like receptor 4 in neuroinflammation in Alzheimer’s disease Cell Physiol. Biochem. 2007 20 947 956 1:CAS:528:DC%2BD2sXht1Cku7zP 17982277 10.1159/000110455
M.T. Heneka et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice Nature 2013 493 674 678 1:CAS:528:DC%2BC38XhvV2ntLfM 23254930 10.1038/nature11729
C. Venegas M.T. Heneka Inflammasome-mediated innate immunity in Alzheimer’s disease FASEB J. 2019 33 13075 13084 1:CAS:528:DC%2BB3cXis1eksLc%3D 31702392 10.1096/fj.201900439
Y. Atagi et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2) J. Biol. Chem. 2015 290 26043 26050 1:CAS:528:DC%2BC2MXhvF2qtLvF 26374899 4646257 10.1074/jbc.M115.679043
C.C. Bailey L.B. DeVaux M. Farzan The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E J. Biol. Chem. 2015 290 26033 26042 1:CAS:528:DC%2BC2MXhvF2qtbzP 26374897 4646256 10.1074/jbc.M115.677286
W. Song et al. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation Alzheimers Dement. 2017 13 381 387 27520774 10.1016/j.jalz.2016.07.004
Y. Wang et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model Cell 2015 160 1061 1071 1:CAS:528:DC%2BC2MXjs1OmsbY%3D 25728668 4477963 10.1016/j.cell.2015.01.049
C. Sala Frigerio et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques Cell Rep. 2019 27 1293 1306.e6 1:CAS:528:DC%2BC1MXotFamurY%3D 31018141 10.1016/j.celrep.2019.03.099
H. Mathys et al. Single-cell transcriptomic analysis of Alzheimer’s disease Nature 2019 570 332 337 1:CAS:528:DC%2BC1MXhtVajsrjI 31042697 6865822 10.1038/s41586-019-1195-2
W.M. Song et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism J. Exp. Med. 2018 215 745 760 1:CAS:528:DC%2BC1cXhslaktbfL 29321225 5839761 10.1084/jem.20171529
A. Afagh B.J. Cummings D.H. Cribbs C.W. Cotman A.J. Tenner Localization and cell association of C1q in Alzheimer’s disease brain Exp. Neurol. 1996 138 22 32 1:STN:280:DyaK287ntlajtQ%3D%3D 8593893 10.1006/exnr.1996.0043
S.E. Stoltzner et al. Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease Am. J. Pathol. 2000 156 489 499 1:CAS:528:DC%2BD3cXhtlGgurc%3D 10666378 1850044 10.1016/S0002-9440(10)64753-0
D. Boche M.N. Gordon Diversity of transcriptomic microglial phenotypes in aging and Alzheimer’s disease Alzheimers Dement. 2022 18 360 376 34223696 10.1002/alz.12389
A. Litvinchuk et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease Neuron 2018 100 1337 1353.e5 1:CAS:528:DC%2BC1cXitFCgsbfO 30415998 6309202 10.1016/j.neuron.2018.10.031
T. Wu et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy Cell Rep. 2019 28 2111 2123.e6 1:CAS:528:DC%2BC1MXhs1entLnM 31433986 10.1016/j.celrep.2019.07.060
J. Yang L. Wise K.I. Fukuchi TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease Front. Immunol. 2020 11 724 1:CAS:528:DC%2BB3cXitVWnsrbK 32391019 7190872 10.3389/fimmu.2020.00724
X. Zhang et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo Blood 2007 110 228 236 1:CAS:528:DC%2BD2sXnsVaisbw%3D 17363730 1896115 10.1182/blood-2006-12-063636
A. Alawieh et al. Complement drives synaptic degeneration and progressive cognitive decline in the chronic phase after traumatic brain injury J. Neurosci. 2021 41 1830 1843 1:CAS:528:DC%2BB3MXmslSqt7k%3D 33446516 8115878 10.1523/JNEUROSCI.1734-20.2020
C.R. Jack Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease Alzheimers Dement. 2018 14 535 562 29653606 10.1016/j.jalz.2018.02.018
D. Pavlovski et al. Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis FASEB J. 2012 26 3680 3690 1:CAS:528:DC%2BC38XhtlGrsr7L 22651932 10.1096/fj.11-202382
M.M. Carrasquillo et al. Replication of CLU, CR1, and PICALM associations with Alzheimer disease Arch. Neurol. 2010 67 961 964 20554627 2919638 10.1001/archneurol.2010.147
J.C. Lambert et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease Nat. Genet. 2009 41 1094 1099 1:CAS:528:DC%2BD1MXhtV2gsb%2FK 19734903 10.1038/ng.439
T.J. Petrisko A. Gomez-Arboledas A.J. Tenner Complement as a powerful “influencer” in the brain during development, adulthood and neurological disorders Adv. Immunol. 2021 152 157 222 1:CAS:528:DC%2BB38XhsFeiu7nK 34844709 10.1016/bs.ai.2021.09.003
Q. Shi et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice Sci. Transl. Med. 2017 9 eaaf6295 28566429 6936623 10.1126/scitranslmed.aaf6295
F. El Gaamouch et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice Mol. Neurodegener. 2020 15 4 1:CAS:528:DC%2BB3cXhsFaltrc%3D 31924226 6954537 10.1186/s13024-020-0357-x
R.R. Ager et al. Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease J. Neurochem. 2010 113 389 401 1:CAS:528:DC%2BC3cXksVChtbo%3D 20132482 2921960 10.1111/j.1471-4159.2010.06595.x
K. Carvalho et al. Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression J. Neuroinflammation 2022 19 1:CAS:528:DC%2BB38XhvFyitbnL 35820938 9277945 10.1186/s12974-022-02539-2 178
A. Gomez-Arboledas et al. C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer’s disease Acta Neuropathol. Commun. 2022 10 116 1:CAS:528:DC%2BB38XitFOlu7bF 35978440 9386996 10.1186/s40478-022-01416-6
M.X. Hernandez et al. Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss Mol. Neurodegener. 2017 12 66 28923083 5604420 10.1186/s13024-017-0210-z
C. Landlinger et al. Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer’s disease J. Neuroinflammation 2015 12 26275910 4537556 10.1186/s12974-015-0369-6 150
S.M. Carpanini et al. Terminal complement pathway activation drives synaptic loss in Alzheimer’s disease models Acta Neuropathol. Commun. 2022 10 99 1:CAS:528:DC%2BB38XitFOlsrjN 35794654 9258209 10.1186/s40478-022-01404-w
S. Hong et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models Science 2016 352 712 716 1:CAS:528:DC%2BC28XntVeqt74%3D 27033548 5094372 10.1126/science.aad8373
A. Gomez-Arboledas M.M. Acharya A.J. Tenner The role of complement in synaptic pruning and neurodegeneration Immunotargets Ther. 2021 10 373 386 34595138 8478425 10.2147/ITT.S305420
N.M. Thielens F. Tedesco S.S. Bohlson C. Gaboriaud A.J. Tenner C1q: a fresh look upon an old molecule Mol. Immunol. 2017 89 73 83 1:CAS:528:DC%2BC2sXpslWksr8%3D 28601358 5582005 10.1016/j.molimm.2017.05.025
J. Spurrier et al. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q Sci. Transl. Med. 2022 14 eabi8593 1:CAS:528:DC%2BB38XhsFGntL7M 35648810 9554345 10.1126/scitranslmed.abi8593
C.A. Murray M.A. Lynch Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common trigger for age- and stress-induced impairments in long-term potentiation J. Neurosci. 1998 18 2974 2981 1:CAS:528:DyaK1cXis1ejtb4%3D 9526014 6792583 10.1523/JNEUROSCI.18-08-02974.1998
A.J. Cunningham C.A. Murray L.A. O’Neill M.A. Lynch J.J. O’Connor Interleukin-1β (IL-1β) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro Neurosci. Lett. 1996 203 17 20 1:CAS:528:DyaK28XnslWkuw%3D%3D 8742036 10.1016/0304-3940(95)12252-4
V. Tancredi et al. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK J. Neurochem. 2000 75 634 643 1:CAS:528:DC%2BD3cXltFClt7c%3D 10899938 10.1046/j.1471-4159.2000.0750634.x
V. Tancredi et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices Neurosci. Lett. 1992 146 176 178 1:CAS:528:DyaK3sXhtVSjtb8%3D 1337194 10.1016/0304-3940(92)90071-E
V. Tancredi C. Zona F. Velotti F. Eusebi A. Santoni Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus Brain Res. 1990 525 149 151 1:CAS:528:DyaK3cXmtV2lsbY%3D 2173960 10.1016/0006-8993(90)91331-A
C. Venegas et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease Nature 2017 552 355 361 1:CAS:528:DC%2BC1cXhvVOrug%3D%3D 29293211 10.1038/nature25158
M.F. Gulen et al. cGAS-STING drives ageing-related inflammation and neurodegeneration Nature 2023 620 374 380 1:CAS:528:DC%2BB3sXhs1SltLnI 37532932 10412454 10.1038/s41586-023-06373-1
M. Jin et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation Nat. Commun. 2021 12 1:CAS:528:DC%2BB3MXisVykurvM 34782623 8592984 10.1038/s41467-021-26851-2 6565
X. Xie et al. Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5xFAD mice Nat. Aging 2023 3 202 212 1:CAS:528:DC%2BB3sXmtFSks7c%3D 37118112 10.1038/s43587-022-00337-2
S.A.I. Sanford W.A. McEwan Type-I interferons in Alzheimer’s disease and other tauopathies Front. Cell Neurosci. 2022 16 949340 1:CAS:528:DC%2BB38XitlyjtbvO 35910253 9334774 10.3389/fncel.2022.949340
Y.L. Chai et al. Inflammatory panel cytokines are elevated in the neocortex of late-stage Alzheimer’s disease but not Lewy body dementias J. Neuroinflammation 2023 20 1:CAS:528:DC%2BB3sXps1Kksro%3D 37158957 10169342 10.1186/s12974-023-02789-8 111
O. Kann F. Almouhanna B. Chausse Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration Trends Neurosci. 2022 45 913 927 1:CAS:528:DC%2BB38Xis1ChurnF 36283867 10.1016/j.tins.2022.10.007
J. Vom Berg et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline Nat. Med. 2012 18 1812 1819 1:CAS:528:DC%2BC38XhslahurnJ 23178247 10.1038/nm.2965
C. Carlock et al. Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice Transl. Psychiatry 2017 7 1:CAS:528:DC%2BC2sXhtFSmur%2FI 28675392 5538122 10.1038/tp.2017.142 e1164
A.K. Fu et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline Proc. Natl Acad. Sci. USA 2016 113 E2705 E2713 1:CAS:528:DC%2BC28Xmt1Shurw%3D 27091974 4868478 10.1073/pnas.1604032113
P.L. McGeer E.G. McGeer NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies Neurobiol. Aging 2007 28 639 647 1:CAS:528:DC%2BD2sXislSrt74%3D 16697488 10.1016/j.neurobiolaging.2006.03.013
S.C. Vlad D.R. Miller N.W. Kowall D.T. Felson Protective effects of NSAIDs on the development of Alzheimer disease Neurology 2008 70 1672 1677 1:CAS:528:DC%2BD1cXnsFGgtr8%3D 18458226 10.1212/01.wnl.0000311269.57716.63
F. Jordan et al. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia Cochrane Database Syst. Rev. 2020 4 CD011459 32352165
A.V. Yermakova J. Rollins L.M. Callahan J. Rogers M.K. O’Banion Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons J. Neuropathol. Exp. Neurol. 1999 58 1135 1146 1:CAS:528:DyaK1MXnvVartrY%3D 10560656 10.1097/00005072-199911000-00003
E.W. Griffin D.T. Skelly C.L. Murray C. Cunningham Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction J. Neurosci. 2013 33 15248 15258 1:CAS:528:DC%2BC3sXhsFeltLbI 24048854 3776067 10.1523/JNEUROSCI.6361-11.2013
S.B. Matousek et al. Cyclooxygenase-1 mediates prostaglandin E(2) elevation and contextual memory impairment in a model of sustained hippocampal interleukin-1β expression J. Neurochem. 2010 114 247 258 1:CAS:528:DC%2BC3cXotl2qsL4%3D 20412387 2897946 10.1111/j.1471-4159.2010.06759.x
S.H. Choi et al. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease J. Neurochem. 2013 124 59 68 1:CAS:528:DC%2BC38Xhslyns7fI 23083210 10.1111/jnc.12059
A. Eskilsson et al. Immune-induced fever is dependent on local but not generalized prostaglandin E(2) synthesis in the brain J. Neurosci. 2017 37 5035 5044 1:CAS:528:DC%2BC2sXhtFOqtb7P 28438967 6596481 10.1523/JNEUROSCI.3846-16.2017
K.A. Walker et al. The role of peripheral inflammatory insults in Alzheimer’s disease: a review and research roadmap Mol. Neurodegener. 2023 18 37 1:CAS:528:DC%2BB3sXht1SitLbK 37277738 10240487 10.1186/s13024-023-00627-2
J.U. Johansson et al. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models J. Clin. Invest. 2015 125 350 364 25485684 10.1172/JCI77487
X. Li et al. Prostaglandin E2 receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial Aβ42 phagocytosis Am. J. Pathol. 2015 185 230 239 1:CAS:528:DC%2BC2cXhvFegs7%2FF 25452117 4278245 10.1016/j.ajpath.2014.09.016
T. Kawano et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity Nat. Med. 2006 12 225 229 1:CAS:528:DC%2BD28XhtFajsro%3D 16432513 10.1038/nm1362
G. Zhen et al. PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer’s disease Neurobiol. Aging 2012 33 2215 2219 1:CAS:528:DC%2BC38XhtVSgt7zF 22015313 10.1016/j.neurobiolaging.2011.09.017
A. Bal-Price A. Matthias G.C. Brown Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production J. Neurochem. 2002 80 73 80 1:CAS:528:DC%2BD38Xjt1ajsw%3D%3D 11796745 10.1046/j.0022-3042.2001.00675.x
T. Nakamura et al. Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer’s disease Science 2021 371 eaaw0843 1:CAS:528:DC%2BB3MXhsVaitbc%3D 33273062 10.1126/science.aaw0843
T. Nakamura C.K. Oh X. Zhang S.A. Lipton Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration Free Radic. Biol. Med. 2021 172 562 577 1:CAS:528:DC%2BB3MXhsFegu7rE 34224817 8579830 10.1016/j.freeradbiomed.2021.07.002
T. Uehara et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration Nature 2006 441 513 517 1:CAS:528:DC%2BD28XkvVyku7o%3D 16724068 10.1038/nature04782
T.S. Wijasa et al. Quantitative proteomics of synaptosome S-nitrosylation in Alzheimer’s disease J. Neurochem. 2020 152 710 726 1:CAS:528:DC%2BC1MXhvF2ns77O 31520481 10.1111/jnc.14870
B. Guivernau et al. Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity J. Neurosci. 2016 36 11693 11703 1:CAS:528:DC%2BC2sXhvVCrt7c%3D 27852777 6705640 10.1523/JNEUROSCI.1081-16.2016
F.X. Guix et al. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation Brain 2009 132 1335 1345 19251756 10.1093/brain/awp023
F.X. Guix et al. Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer’s disease EMBO Mol. Med. 2012 4 660 673 1:CAS:528:DC%2BC38XpsFKls7w%3D 22488900 3402223 10.1002/emmm.201200243
M.P. Kummer et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation Neuron 2011 71 833 844 1:CAS:528:DC%2BC3MXhtFKjtLvL 21903077 10.1016/j.neuron.2011.07.001
M.R. Reynolds et al. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer’s disease and other tauopathies J. Neurosci. 2006 26 10636 10645 1:CAS:528:DC%2BD28XhtFygu7nK 17050703 6674733 10.1523/JNEUROSCI.2143-06.2006
C.F. Lourenco A. Ledo R.M. Barbosa J. Laranjinha Neurovascular uncoupling in the triple transgenic model of Alzheimer’s disease: impaired cerebral blood flow response to neuronal-derived nitric oxide signaling Exp. Neurol. 2017 291 36 43 1:CAS:528:DC%2BC2sXit1Wgsrc%3D 28161255 10.1016/j.expneurol.2017.01.013
Y. Zhang et al. nNOS-CAPON interaction mediates amyloid-β-induced neurotoxicity, especially in the early stages Aging Cell 2018 17 29577585 5946066 10.1111/acel.12754 e12754
S. Hashimoto et al. Tau binding protein CAPON induces tau aggregation and neurodegeneration Nat. Commun. 2019 10 31160584 6546774 10.1038/s41467-019-10278-x 2394
S.A. Lipton Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond Nat. Rev. Drug Discov. 2006 5 160 170 1:CAS:528:DC%2BD28Xhslaquro%3D 16424917 10.1038/nrd1958
G.C. Brown Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase Biochem. Soc. Trans. 2007 35 1119 1121 1:CAS:528:DC%2BD2sXht1eru7rI 17956292 10.1042/BST0351119
X. Geng et al. Effects of docosahexaenoic acid and its peroxidation product on amyloid-β peptide-stimulated microglia Mol. Neurobiol. 2020 57 1085 1098 1:CAS:528:DC%2BC1MXitV2gsLzE 31677009 10.1007/s12035-019-01805-4
D.T. Weldon J.E. Maggio P.W. Mantyh New insights into the neuropathology and cell biology of Alzheimer’s disease Geriatrics 1997 52 Suppl. 2 S13 S16 9307579
J.M. Bourgognon et al. Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease Proc. Natl Acad. Sci. USA 2021 118 1:CAS:528:DC%2BB3MXmt1ehurc%3D 33653950 7958397 10.1073/pnas.2009579118 e2009579118
C. Nathan et al. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase J. Exp. Med. 2005 202 1163 1169 1:CAS:528:DC%2BD2MXht1Sntr7E 16260491 2213235 10.1084/jem.20051529
M.P. Mattson S. Camandola NF-κB in neuronal plasticity and neurodegenerative disorders J. Clin. Invest. 2001 107 247 254 1:CAS:528:DC%2BD3MXhtVGitrk%3D 11160145 199201 10.1172/JCI11916
H.B. Nygaard et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease Alzheimers Res. Ther. 2015 7 35 25874001 4396171 10.1186/s13195-015-0119-0
C.H. van Dyck et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial JAMA Neurol. 2019 76 1219 1229 31329216 6646979 10.1001/jamaneurol.2019.2050
M.C. Gage T. Thippeswamy Inhibitors of src family kinases, inducible nitric oxide synthase, and NADPH oxidase as potential CNS drug targets for neurological diseases CNS Drugs 2021 35 1 20 1:CAS:528:DC%2BB3MXmtlCjsLo%3D 33515429 7893831 10.1007/s40263-020-00787-5
S. Thakur R. Dhapola P. Sarma B. Medhi D.H. Reddy Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics Inflammation 2023 46 1 17 1:CAS:528:DC%2BB38Xitl2ns77O 35986874 10.1007/s10753-022-01721-1
M.R. Brown S.E. Radford E.W. Hewitt Modulation of β-amyloid fibril formation in Alzheimer’s 33ion Front. Mol. Neurosci. 2020 13 609073 1:CAS:528:DC%2BB3MXnsVKntL8%3D 33324164 7725705 10.3389/fnmol.2020.609073
M. Sastre T. Klockgether M.T. Heneka Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms Int. J. Dev. Neurosci. 2006 24 167 176 1:CAS:528:DC%2BD28XhvVWnsrc%3D 16472958 10.1016/j.ijdevneu.2005.11.014
M. Sastre J. Walter S.M. Gentleman Interactions between APP secretases and inflammatory mediators J. Neuroinflammation 2008 5 18564425 2442055 10.1186/1742-2094-5-25 25
T. Burton B. Liang A. Dibrov F. Amara Transforming growth factor-β-induced transcription of the Alzheimer β-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads Biochem. Biophys. Res. Commun. 2002 295 713 723 1:CAS:528:DC%2BD38XltVKqurw%3D 12099698 10.1016/S0006-291X(02)00725-8
M. Sastre et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase J. Neurosci. 2003 23 9796 9804 1:CAS:528:DC%2BD3sXovVKis7w%3D 14586007 6740896 10.1523/JNEUROSCI.23-30-09796.2003
G. Sommer et al. Amyloid precursor protein expression is induced by tumor necrosis factor α in 3T3-L1 adipocytes J. Cell Biochem. 2009 108 1418 1422 1:CAS:528:DC%2BD1MXhsV2gsrrP 19862700 10.1002/jcb.22382
E. Tamagno et al. Oxidative stress increases expression and activity of BACE in NT2 neurons Neurobiol. Dis. 2002 10 279 288 1:CAS:528:DC%2BD38XmvFais7Y%3D 12270690 10.1006/nbdi.2002.0515
I. Blasko et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer’s disease β-secretase (BACE-1) J. Neural Transm. 2004 111 523 536 1:CAS:528:DC%2BD2cXis1Ggs7Y%3D 15057522 10.1007/s00702-003-0095-6
M. Hartlage-Rubsamen et al. Astrocytic expression of the Alzheimer’s disease β-secretase (BACE1) is stimulus-dependent Glia 2003 41 169 179 12509807 10.1002/glia.10178
S. Naseer et al. Traumatic brain injury leads to alterations in contusional cortical miRNAs involved in dementia Biomolecules 2022 12 1457 1:CAS:528:DC%2BB38XislGkurbI 36291666 9599474 10.3390/biom12101457
C. Pottier et al. Amyloid-β protein precursor gene expression in Alzheimer’s disease and other conditions J. Alzheimers Dis. 2012 28 561 566 1:CAS:528:DC%2BC38XitlGnsbk%3D 22045488 10.3233/JAD-2011-111148
J.Y. Hur et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease Nature 2020 586 735 740 1:CAS:528:DC%2BB3cXhslelu7vM 32879487 7919141 10.1038/s41586-020-2681-2
L.B. Jaeger et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer’s disease Brain Behav. Immun. 2009 23 507 517 1:CAS:528:DC%2BD1MXktFelurw%3D 19486646 2783557 10.1016/j.bbi.2009.01.017
J. Xie et al. Low-grade peripheral inflammation affects brain pathology in the App(NL-G-F)mouse model of Alzheimer’s disease Acta Neuropathol. Commun. 2021 9 163 1:CAS:528:DC%2BB38XivFWltbc%3D 34620254 8499584 10.1186/s40478-021-01253-z
B. Brugg et al. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain Proc. Natl Acad. Sci. USA 1995 92 3032 3035 1:CAS:528:DyaK2MXksl2ru74%3D 7708769 42353 10.1073/pnas.92.7.3032
J.W. Lee et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation J. Neuroinflammation 2008 5 18759972 2556656 10.1186/1742-2094-5-37 37
D.L. Herber et al. Microglial activation is required for Aβ clearance after intracranial injection of lipopolysaccharide in APP transgenic mice J. Neuroimmune Pharmacol. 2007 2 222 231 18040847 10.1007/s11481-007-9069-z
D.L. Herber et al. Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice Exp. Neurol. 2004 190 245 253 1:CAS:528:DC%2BD2cXotlClsb4%3D 15473997 10.1016/j.expneurol.2004.07.007
K.Z. Bourne et al. Differential regulation of BACE1 promoter activity by nuclear factor-κB in neurons and glia upon exposure to β-amyloid peptides J. Neurosci. Res. 2007 85 1194 1204 1:CAS:528:DC%2BD2sXlsV2rs7s%3D 17385716 10.1002/jnr.21252
S. Rossner M. Sastre K. Bourne S.F. Lichtenthaler Transcriptional and translational regulation of BACE1 expression — implications for Alzheimer’s disease Prog. Neurobiol. 2006 79 95 111 1:CAS:528:DC%2BD28XoslOhsLo%3D 16904810 10.1016/j.pneurobio.2006.06.001
M. Sastre et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ Proc. Natl Acad. Sci. USA 2006 103 443 448 1:CAS:528:DC%2BD28XpsVSluw%3D%3D 16407166 1326151 10.1073/pnas.0503839103
K. Placek J.L. Schultze A.C. Aschenbrenner Epigenetic reprogramming of immune cells in injury, repair, and resolution J. Clin. Invest. 2019 129 2994 3005 31329166 6668667 10.1172/JCI124619
A. de Calignon et al. Propagation of tau pathology in a model of early Alzheimer’s disease Neuron 2012 73 685 697 22365544 3292759 10.1016/j.neuron.2011.11.033
B. Frost R.L. Jacks M.I. Diamond Propagation of tau misfolding from the outside to the inside of a cell J. Biol. Chem. 2009 284 12845 12852 1:CAS:528:DC%2BD1MXltlemsro%3D 19282288 2676015 10.1074/jbc.M808759200
K. Yamada et al. Neuronal activity regulates extracellular tau in vivo J. Exp. Med. 2014 211 387 393 1:CAS:528:DC%2BC2cXktlOmsbY%3D 24534188 3949564 10.1084/jem.20131685
H. Asai et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation Nat. Neurosci. 2015 18 1584 1593 1:CAS:528:DC%2BC2MXhs1Wls7bJ 26436904 4694577 10.1038/nn.4132
S. Jiang et al. Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway Cell Rep. 2021 36 109720 1:CAS:528:DC%2BB3MXitVOks7bE 34551296 8491766 10.1016/j.celrep.2021.109720
D.P. Schafer E.K. Lehrman B. Stevens The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS Glia 2013 61 24 36 22829357 10.1002/glia.22389
H. Kettenmann F. Kirchhoff A. Verkhratsky Microglia: new roles for the synaptic stripper Neuron 2013 77 10 18 1:CAS:528:DC%2BC3sXnvFWnsQ%3D%3D 23312512 10.1016/j.neuron.2012.12.023
S. De Schepper G. Crowley S. Hong Understanding microglial diversity and implications for neuronal function in health and disease Dev. Neurobiol. 2021 81 507 523 32757416 10.1002/dneu.22777
D.P. Schafer et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner Neuron 2012 74 691 705 1:CAS:528:DC%2BC38Xns1WnsL0%3D 22632727 3528177 10.1016/j.neuron.2012.03.026
B. Stevens et al. The classical complement cascade mediates CNS synapse elimination Cell 2007 131 1164 1178 1:CAS:528:DC%2BD1cXksFGnsw%3D%3D 18083105 10.1016/j.cell.2007.10.036
B. Dejanovic et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies Neuron 2018 100 1322 1336.e7 1:CAS:528:DC%2BC1cXitVyhsbbJ 30392797 10.1016/j.neuron.2018.10.014
H. Lui et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation Cell 2016 165 921 935 1:CAS:528:DC%2BC28XmslSjsLc%3D 27114033 4860138 10.1016/j.cell.2016.04.001
M.J. Vasek et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment Nature 2016 534 538 543 1:CAS:528:DC%2BC28XhtVCksr%2FF 27337340 5452615 10.1038/nature18283
A. Vukojicic et al. The classical complement pathway mediates microglia-dependent remodeling of spinal motor circuits during development and in SMA Cell Rep. 2019 29 3087 3100.e7 1:CAS:528:DC%2BC1MXitlejtLnL 31801075 6937140 10.1016/j.celrep.2019.11.013
D.K. Wilton et al. Microglia and complement mediated early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease Nat. Med. 2023 29 2866 2884 1:CAS:528:DC%2BB3sXitV2gtb7F 37814059 10667107 10.1038/s41591-023-02566-3
D.K. Wilton et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease Nat. Med. 2023 29 2866 2884 1:CAS:528:DC%2BB3sXitV2gtb7F 37814059 10667107 10.1038/s41591-023-02566-3
A.H. Stephan et al. A dramatic increase of C1q protein in the CNS during normal aging J. Neurosci. 2013 33 13460 13474 1:CAS:528:DC%2BC3sXhtlOjsLrN 23946404 3742932 10.1523/JNEUROSCI.1333-13.2013
D. Datta et al. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex J. Neuroinflammation 2020 17 1:CAS:528:DC%2BB3cXhtVOhsLs%3D 31906973 6945481 10.1186/s12974-019-1683-1 8
S. De Schepper et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease Nat. Neurosci. 2023 26 406 415 36747024 9991912 10.1038/s41593-023-01257-z
A. Fracassi et al. TREM2-induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer’s neuropathology Brain Pathol. 2023 33 1:CAS:528:DC%2BB38XitVelsrrO 35816404 10.1111/bpa.13108 e13108
J. Zhou et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration Sci. Transl. Med. 2023 15 eadf0141 1:CAS:528:DC%2BB3sXntVWks7o%3D 36989373 10467038 10.1126/scitranslmed.adf0141
D. Sokolova T. Childs S. Hong Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer’s disease Fac. Rev. 2021 10 19 1:CAS:528:DC%2BB38XitVWqsLrJ 33718936 7946395 10.12703/r/10-19
J. Rueda-Carrasco et al. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models EMBO J. 2023 42 1:CAS:528:DC%2BB3sXhslShu77L 37575021 10548173 10.15252/embj.2022113246 e113246
M. Das et al. Alzheimer risk-increasing TREM2 variant causes aberrant cortical synapse density and promotes network hyperexcitability in mouse models Neurobiol. Dis. 2023 186 106263 1:CAS:528:DC%2BB3sXhvVWrt7vE 37591465 10681293 10.1016/j.nbd.2023.106263
J. Hardy D. Allsop Amyloid deposition as the central event in the aetiology of Alzheimer’s disease Trends Pharmacol. Sci. 1991 12 383 388 1:CAS:528:DyaK3MXmslKktr8%3D 1763432 10.1016/0165-6147(91)90609-V
ADAPT Research Group C.L. Meinert L.D. McCaffrey J.C. Breitner Alzheimer’s disease anti-inflammatory prevention trial: design, methods, and baseline results Alzheimers Dement. 2009 5 93 104 10.1016/j.jalz.2008.09.004
P.F. Meyer et al. INTREPAD: a randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease Neurology 2019 92 e2070 e2080 1:CAS:528:DC%2BC1MXotl2ntbk%3D 30952794 6512884 10.1212/WNL.0000000000007232
S. Karima et al. Boswellic acids improve clinical cognitive scores and reduce systemic inflammation in patients with mild to moderate Alzheimer’s disease J. Alzheimers Dis. 2023 94 359 370 1:CAS:528:DC%2BB3sXhtlCgsbvK 37248896 10.3233/JAD-221026
F. Rahmani et al. Twelve weeks of intermittent caloric restriction diet mitigates neuroinflammation in midlife individuals with multiple sclerosis: a pilot study with implications for prevention of Alzheimer’s disease J. Alzheimers Dis. 2023 93 263 273 37005885 10460547 10.3233/JAD-221007
L. Chen et al. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer’s disease: a randomized controlled trial Geriatr. Nurs. 2022 48 103 110 36155316 10.1016/j.gerinurse.2022.09.005
M. Brody et al. Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer’s disease Alzheimers Dement. 2023 19 261 273 1:CAS:528:DC%2BB38XhtVGksLvF 35357079 10.1002/alz.12651
R.G.J. Goncalves J.F. Vasques A.J. da Silva-Junior F. Gubert R. Mendez-Otero Mesenchymal stem cell- and extracellular vesicle-based therapies for Alzheimer’s disease: progress, advantages, and challenges Neural Regen. Res. 2023 18 1645 1651 1:CAS:528:DC%2BB2cXhvFGhsb4%3D 36751774
A.I. Caplan Mesenchymal stem cells: time to change the name! Stem Cell Transl. Med. 2017 6 1445 1451 10.1002/sctm.17-0051
Hansen, L. Denali Therapeutics Reports Second Quarter 2023 Financial Results and Business Highlights https://investors.denalitherapeutics.com/news-releases/news-release-details/denali-therapeutics-reports-second-quarter-2023-financial (2023).
A. Cain et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease Nat. Neurosci. 2023 26 1267 1280 1:CAS:528:DC%2BB3sXht1GkurvK 37336975 10789499 10.1038/s41593-023-01356-x
S. Lomoio et al. 3D bioengineered neural tissue generated from patient-derived iPSCs mimics time-dependent phenotypes and transcriptional features of Alzheimer’s disease. Mol. Psychiatry 2023 28 5390 5401 1:CAS:528:DC%2BB3sXhtlWksr3M 37365240 11164539 10.1038/s41380-023-02147-3
L. Yu et al. Association of AK4 protein from stem cell-derived neurons with cognitive reserve: an autopsy study Neurology 2022 99 e2264 e2274 1:CAS:528:DC%2BB38XivVGmtbnO 35948448 9694839 10.1212/WNL.0000000000201120
M.J. Dolan et al. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro Nat. Immunol. 2023 24 1382 1390 1:CAS:528:DC%2BB3sXhsFGmu7vK 37500887 10382323 10.1038/s41590-023-01558-2
N. Fattorelli et al. Stem-cell-derived human microglia transplanted into mouse brain to study human disease Nat. Protoc. 2021 16 1013 1033 1:CAS:528:DC%2BB3MXpsVWhtQ%3D%3D 33424025 10.1038/s41596-020-00447-4
R. Mancuso et al. A multi-pronged human microglia response to Alzheimer’s disease Aβ pathology. Preprint at bioRxiv 2022 10.1101/2022.07.07.499139
R. Mancuso et al. Xenografted human microglia display diverse transcriptomic states in response to Alzheimer’s disease-related amyloid-β pathology Nat. Neurosci. 2024 27 886 900 1:CAS:528:DC%2BB2cXmvFeqs7g%3D 38539015 11089003 10.1038/s41593-024-01600-y
M. Prinz D. Erny N. Hagemeyer Ontogeny and homeostasis of CNS myeloid cells Nat. Immunol. 2017 18 385 392 1:CAS:528:DC%2BC2sXkvFagurc%3D 28323268 10.1038/ni.3703
F. Ginhoux et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages Science 2010 330 841 845 1:CAS:528:DC%2BC3cXhtlKht7vP 20966214 3719181 10.1126/science.1194637
K. Kierdorf et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Nat. Neurosci. 2013 16 273 280 1:CAS:528:DC%2BC3sXhtFSitbw%3D 23334579 10.1038/nn.3318
P. Fuger et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging Nat. Neurosci. 2017 20 1371 1376 28846081 10.1038/nn.4631
P. Reu et al. The lifespan and turnover of microglia in the human brain Cell Rep. 2017 20 779 784 1:CAS:528:DC%2BC2sXht1Gis7fF 28746864 5540680 10.1016/j.celrep.2017.07.004
T.L. Tay et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia Nat. Neurosci. 2017 20 793 803 1:CAS:528:DC%2BC2sXmtVCqtbw%3D 28414331 10.1038/nn.4547
B. Ajami J.L. Bennett C. Krieger W. Tetzlaff F.M. Rossi Local self-renewal can sustain CNS microglia maintenance and function throughout adult life Nat. Neurosci. 2007 10 1538 1543 1:CAS:528:DC%2BD2sXhtlKltLbP 18026097 10.1038/nn2014
A. Mildner et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions Nat. Neurosci. 2007 10 1544 1553 1:CAS:528:DC%2BD2sXhtlKltLbI 18026096 10.1038/nn2015
T. Masuda R. Sankowski O. Staszewski M. Prinz Microglia heterogeneity in the single-cell era Cell Rep. 2020 30 1271 1281 1:CAS:528:DC%2BB3cXls1Crsb8%3D 32023447 10.1016/j.celrep.2020.01.010
T.R. Hammond et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes Immunity 2019 50 253 271.e6 1:CAS:528:DC%2BC1cXit1KjsbbJ 30471926 10.1016/j.immuni.2018.11.004
M.J.C. Jordao et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation Science 2019 363 eaat7554 1:CAS:528:DC%2BC1MXhs1amsrs%3D 30679343 10.1126/science.aat7554
Q. Li et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing Neuron 2019 101 207 223.e10 1:CAS:528:DC%2BC1MXosFSq 30606613 10.1016/j.neuron.2018.12.006
M. Schwabenland et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions Immunity 2021 54 1594 1610.e11 1:CAS:528:DC%2BB3MXhsVWgt7vK 34174183 8188302 10.1016/j.immuni.2021.06.002