[en] [en] BACKGROUND: Battling malaria's morbidity and mortality rates demands innovative methods related to malaria diagnosis. Thick blood smears (TBS) are the gold standard for diagnosing malaria, but their coloration quality is dependent on supplies and adherence to standard protocols. Machine learning has been proposed to automate diagnosis, but the impact of smear coloration on parasite detection has not yet been fully explored.
METHODS: To develop Coloration Analysis in Malaria (CAM), an image database containing 600 images was created. The database was randomly divided into training (70%), validation (15%), and test (15%) sets. Nineteen feature vectors were studied based on variances, correlation coefficients, and histograms (specific variables from histograms, full histograms, and principal components from the histograms). The Machine Learning Matlab Toolbox was used to select the best candidate feature vectors and machine learning classifiers. The candidate classifiers were then tuned for validation and tested to ultimately select the best one.
RESULTS: This work introduces CAM, a machine learning system designed for automatic TBS image quality analysis. The results demonstrated that the cubic SVM classifier outperformed others in classifying coloration quality in TBS, achieving a true negative rate of 95% and a true positive rate of 97%.
CONCLUSIONS: An image-based approach was developed to automatically evaluate the coloration quality of TBS. This finding highlights the potential of image-based analysis to assess TBS coloration quality. CAM is intended to function as a supportive tool for analyzing the coloration quality of thick blood smears.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Fong Amaris, W M; Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, Colombia. we_fong@javeriana.edu.co ; Universidade Federal do Pará, Institute of Biological Sciences, Belém, Brazil. we_fong@javeriana.edu.co
Suárez, Daniel R; Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá, Colombia
Cortés-Cortés, Liliana J; Laboratory of Parasitology, National Health Institute of Colombia, Bogotá, Colombia
MARTINEZ LUNA, Carol ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
External co-authors :
yes
Language :
English
Title :
CAM: a novel aid system to analyse the coloration quality of thick blood smears using image processing and machine learning techniques.
Facebook Inc., CV4GC 2019 RFP Research Award Pontificia Universidad Javeriana M.Sc. program in Bioengineering at Pontificia Universidad Javeriana
Funding text :
The authors thank the Colombia National Institute of Health for supplying the thick blood smear samples used in this research, Martha Ayala for her invaluable assistance as a Malaria expert advisor, and the field laboratory staff responsible for malaria diagnosis who participated in the interviews. Lastly, we thank Professor Martha Manrique from Pontificia Universidad Javeriana for her indispensable support throughout the image acquisition process.
WHO World malaria report 2023 2023 Geneva World Health Organization 356
O.L. Ospina L.J. Cortés Z.M. Cucunubá N.M. Mendoza P. Chaparro Characterization of the national malaria diagnostic network, Colombia, 2006–2010 Biomedica 2016 32 46 10.7705/biomedica.v32i0.584
J.A. Cardona-Arias W. Salas-Zapata J. Carmona-Fonseca A systematic review of mixed studies on malaria in Colombia 1980–2022: what the “bifocal vision” discovers BMC Public Health 2023 23 1169 10.1186/s12889-023-16098-5 10276438
WHO Basic malaria microscopy, learner’s guide 2010 2 Geneva World Health Organization 80
Ministerio de Salud y Protección Social. Guía de Práctica Clínica Diagnóstico y tratamiento de la malaria. Ministerio de Salud y Protección Social Colombia. 2022. p. 1–167. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia-atencion-clinica-malaria.pdf.
L. Jazmín C. Cortés A. Patricia G. Vega Recomendación tecnica sobre el diagnóstico y seguimiento al tratamiento de malaria por gota gruesa y pruebas rápidas y uso de pruebas diagnósticas moleculares en la detección de Plasmodium spp. en Colombia 2020 Bogotá Instituto Nacional de Salud de Colombia 1 10
WHO. Guidelines for malaria. Geneva: World Health Organization; 2023. p. 1–451. http://apps.who.int/bookorders.
C.R. Maturana A.D. de Oliveira S. Nadal B. Bilalli F.Z. Serrat M.E. Soley et al. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: a review Front Microbiol 2022 13 1006659 10.3389/fmicb.2022.1006659 9705958
INS & OMS/OPS. Guía de atención clínica integral del Paciente con malaria. 2010.
A.S. Abdul-Nasir M.Y. Mashor Z. Mohamed Modified global and modified linear contrast stretching algorithms: new colour contrast enhancement techniques for microscopic analysis of malaria slide images Comput Math Methods Med 2012 2012 1 16 10.1155/2012/637360
V.K. Bairagi K.C. Charpe Comparison of texture features used for classification of life stages of malaria parasite Int J Biomed Imaging 2016 2016 7214156 10.1155/2016/7214156 4876235
Zou LH, Chen J, Zhang J, García N. Malaria cell counting diagnosis within large field of view. In: Proceedings—2010 digital image computing: techniques and applications, DICTA; 2010. p. 172–7.
K. Chakrabortya A. Chattopadhyayb A. Chakrabarti T. Acharyad D.A. Kr A combined algorithm for malaria detection from thick smear blood slides J Health Med Inform 2015 6 179 10.4172/2157-7420.1000179
Elter M, Haßlmeyer E, Zerfaß T. Detection of malaria parasites in thick blood films. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. 2011.
N.A. Khan H. Pervaz A. Latif A. Musharaff Unsupervised identification of malaria parasites using computer vision Pak J Pharm Sci 2017 30 223 228
M. Poostchi K. Silamut R.J. Maude S. Jaeger G. Thoma Image analysis and machine learning for detecting malaria Transl Res 2018 194 36 55 10.1016/j.trsl.2017.12.004 5840030
K. Prasad J. Winter U.M. Bhat R.V. Acharya G.K. Prabhu Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images J Digit Imaging 2012 25 542 549 10.1007/s10278-011-9442-6
Rahman A, Zunair H, Sohel Rahman M, Quader Yuki J, Biswas S, Ashraful Alam M, et al. Improving malaria parasite detection from red blood cell using deep convolutional neural networks. arXiv:190710418. 2019. p. 1–33.
F.B. Tek A.G. Dempster I. Kale Parasite detection and identification for automated thin blood film malaria diagnosis Comput Vis Image Underst 2010 114 21 32 10.1016/j.cviu.2009.08.003
F. Yang M. Poostchi H. Yu Z. Zhou K. Silamut J. Yu et al. Deep learning for smartphone-based malaria parasite detection in thick blood smears IEEE J Biomed Health Inform 2020 24 1427 1438 10.1109/JBHI.2019.2939121
L. Yunda A. Alarcón J. Millán Automated image analysis method for P. vivax malaria parasite detection in thick film blood images Sistemas y Telemática 2011 10 9 10.18046/syt.v10i20.1151
D.L. Omucheni K. Kaduki W. Bulimo H.K. Angeyo Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics Malar J 2014 13 485 10.1186/1475-2875-13-485 4364660
Hanif NSMM, Mashor MY, Mohamed Z. Image enhancement and segmentation using dark stretching technique for Plasmodium falciparum for thick blood smear. In: IEEE 7th international colloquium on signal processing and its applications, CSPA. 2011. p. 257–60.
Salamah U, Sarno R, Arifin AZ, Nugroho AS, Gunawan M, Pragesjvara V, et al. Enhancement of low quality thick blood smear microscopic images of malaria patients using contrast and edge corrections. In: International conference on knowledge creation and intelligent computing (KCIC). 2016. p. 219–25.
INS & MinSalud. Manual para el diagnóstico de malaria no complicada en puestos de diagnóstico y tratamiento. 2015. p. 1–74. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/manual-diagnostico-malaria-no-complicada.pdf.
N. Linder R. Turkki M. Walliander A. Mårtensson V. Diwan E. Rahtu et al. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears PLoS ONE 2014 9 10.1371/journal.pone.0104855 4140733
Fong Amarís WM. Estudio de la calidad de láminas de gota gruesa, para el diagnóstico de malaria por Plasmodium vivax, provenientes de pacientes del Departamento de Bolívar. [Tesis de pregrado]. Universidad del Atlántico; 2017.
Fong Amaris WM. Image processing for quality analysis of thick blood smears employed in malaria diagnosis [Tesis de Maestría]. Pontificia Universidad Javeriana; 2020. https://repository.javeriana.edu.co/handle/10554/386.
W.M. Fong Amaris C. Martinez L.J. Cortés-Cortés D.R. Suárez Image features for quality analysis of thick blood smears employed in malaria diagnosis Malar J 2022 21 74 1:CAS:528:DC%2BB38Xht1GqsrrI 10.1186/s12936-022-04064-2 8900337
OMS. Bases del diagnostico de paludismo. Organización Mundial de la Salud. 2014;25(1):345–400. http://apps.who.int/iris/bitstream/handle/10665/164468/9789243547824_spa.pdf?sequence=1.
WHO Malaria microscopy quality assurance manual—2nd version 2016 Geneva World Health Organization 140
S. Kaewkamnerd C. Uthaipibull A. Intarapanich M. Pannarut S. Chaotheing S. Tongsima An automatic device for detection and classification of malaria parasite species in thick blood film BMC Bioinform 2012 13 Suppl 17 S18 10.1186/1471-2105-13-S17-S18
C.R. Maturana A.D. de Oliveira S. Nadal F.Z. Serrat E. Sulleiro E. Ruiz et al. iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope Front Microbiol 2023 14 1240936 10.3389/fmicb.2023.1240936 10704928
WHO. World malaria report 2019. Geneva: World Health Organization; 2019. https://www.who.int/publications-detail/world-malaria-report-2019.
Labelbox Online. 2023. Labelbox: the leading training data platform for data labeling. https://labelbox.com. Accessed 6 Dec 2023.
J.W. Field A.F. Sandosham A morphological study of the erythrocytic parasites in thick blood films The microscopical diagnosis of human malaria 1963 2 Kuala Lumpur Institute for Medical Research, Federation of Malaya 30
F. López-Antuñano G. Schmuniz Diagnóstico de malaria 1988 Washington, DC Publicacio 143
W.M. Fong Amaris C. Martinez L.J. Cortés-Cortés D.R. Suárez Database that contains all images (plus 180 more) employed in the article: “image features for quality analysis of thick blood smears employed in malaria diagnosis” 2022 10.5281/zenodo.7191424 Zenodo
Kalkan SC, Sahingoz OK. Deep learning based classification of malaria from slide images. In: IEEE J Biomed Health Inform. 2019. p. 1–4.
Mushabe MC, Dendere R, Douglas TS. Automated detection of malaria in Giemsa-stained thin blood smears. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. 2013. p. 3698–701.
R.B. Hegde K. Prasad H. Hebbar B.M.K. Singh Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images J Med Syst 2018 42 110 10.1007/s10916-018-0962-1
OMS. Estrategia Técnica Mundial Contra la Malaria 2016–2030. 2016.
The MathWorks. Matlab student. EEUU: Mathworks; 2018. https://www.mathworks.com.
A. Loddo C. Di Ruberto M. Kocher Recent advances of malaria parasites detection systems based on mathematical morphology Sensors 2018 18 513 10.3390/s18020513 5856187