Article (Périodiques scientifiques)
CAM: a novel aid system to analyse the coloration quality of thick blood smears using image processing and machine learning techniques.
Fong Amaris, W M; Suárez, Daniel R; Cortés-Cortés, Liliana J et al.
2024In Malaria Journal, 23 (1), p. 299
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s12936-024-05025-7.pdf
Postprint Éditeur (2.6 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Coloration quality; Image processing; Machine learning; Malaria diagnosis; Thick blood smears; Humans; Malaria; Color; Machine Learning; Image Processing, Computer-Assisted/methods; Image Processing, Computer-Assisted; Parasitology; Infectious Diseases
Résumé :
[en] [en] BACKGROUND: Battling malaria's morbidity and mortality rates demands innovative methods related to malaria diagnosis. Thick blood smears (TBS) are the gold standard for diagnosing malaria, but their coloration quality is dependent on supplies and adherence to standard protocols. Machine learning has been proposed to automate diagnosis, but the impact of smear coloration on parasite detection has not yet been fully explored. METHODS: To develop Coloration Analysis in Malaria (CAM), an image database containing 600 images was created. The database was randomly divided into training (70%), validation (15%), and test (15%) sets. Nineteen feature vectors were studied based on variances, correlation coefficients, and histograms (specific variables from histograms, full histograms, and principal components from the histograms). The Machine Learning Matlab Toolbox was used to select the best candidate feature vectors and machine learning classifiers. The candidate classifiers were then tuned for validation and tested to ultimately select the best one. RESULTS: This work introduces CAM, a machine learning system designed for automatic TBS image quality analysis. The results demonstrated that the cubic SVM classifier outperformed others in classifying coloration quality in TBS, achieving a true negative rate of 95% and a true positive rate of 97%. CONCLUSIONS: An image-based approach was developed to automatically evaluate the coloration quality of TBS. This finding highlights the potential of image-based analysis to assess TBS coloration quality. CAM is intended to function as a supportive tool for analyzing the coloration quality of thick blood smears.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Fong Amaris, W M;  Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, Colombia. we_fong@javeriana.edu.co ; Universidade Federal do Pará, Institute of Biological Sciences, Belém, Brazil. we_fong@javeriana.edu.co
Suárez, Daniel R;  Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá, Colombia
Cortés-Cortés, Liliana J;  Laboratory of Parasitology, National Health Institute of Colombia, Bogotá, Colombia
MARTINEZ LUNA, Carol  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
CAM: a novel aid system to analyse the coloration quality of thick blood smears using image processing and machine learning techniques.
Date de publication/diffusion :
07 octobre 2024
Titre du périodique :
Malaria Journal
eISSN :
1475-2875
Maison d'édition :
BioMed Central Ltd, England
Volume/Tome :
23
Fascicule/Saison :
1
Pagination :
299
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Facebook Inc., CV4GC 2019 RFP Research Award
Pontificia Universidad Javeriana
M.Sc. program in Bioengineering at Pontificia Universidad Javeriana
Subventionnement (détails) :
The authors thank the Colombia National Institute of Health for supplying the thick blood smear samples used in this research, Martha Ayala for her invaluable assistance as a Malaria expert advisor, and the field laboratory staff responsible for malaria diagnosis who participated in the interviews. Lastly, we thank Professor Martha Manrique from Pontificia Universidad Javeriana for her indispensable support throughout the image acquisition process.
Disponible sur ORBilu :
depuis le 06 janvier 2025

Statistiques


Nombre de vues
93 (dont 0 Unilu)
Nombre de téléchargements
28 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu