guidance, navigation, and control (GNC); hardware-in-the-loop (HIL); proximity operations; rendezvous; robot manipulation; software-in-the-loop (SIL); vision-based navigation (VBN); Guidance navigation and controls; Guidance, navigation, and control; Hardware in the loops; Hardware-in-the-loop; Proximity operations; Rendezvous; Robot manipulation; Software in the loops; Software-in-the-loop; Vision based navigation; Vision-based navigation; Aerospace Engineering; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] CubeSats have become versatile platforms for various space missions (e.g., on-orbit servicing and debris removal) owing to their low cost and flexibility. Many space tasks involve proximity operations that require precise guidance, navigation, and control (GNC) algorithms. Vision-based navigation is attracting interest for such operations. However, extreme lighting conditions in space challenge optical techniques. The on-ground validation of such navigation systems for orbital GNC becomes crucial to ensure their reliability during space operations. These systems undergo rigorous testing within their anticipated operational parameters, including the exploration of potential edge cases. The ability of GNC algorithms to function effectively under extreme space conditions that exceed anticipated scenarios is crucial, particularly in space missions where the scope of errors is negligible. This paper presents the ground validation of a GNC algorithm designed for autonomous satellite rendezvous by leveraging hardware-in-the-loop experiments. This study focuses on two key areas. First, the rationale underlying the augmentation of the robot workspace (six-degree-of-freedom UR10e robot + linear rail) is investigated to emulate relatively longer trajectories with complete position and orientation states. Second, the control algorithm is assessed in response to uncertain pose observations from a vision-based navigation system. The results indicate increased control costs with uncertain navigation and exemplify the importance of on-ground testing for system validation before launch, particularly in extreme cases that are typically difficult to assess using software-based testing. (Figure presented.)
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Muralidharan, Vivek; Space Robotics Research Group (SpaceR), Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Esch-sur-Alzette, Luxembourg
MAKHDOOMI, Mohatashem Reyaz ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Žinys, Augustinas; Blackswan Space, Vilnius, Lithuania
Razgus, Bronislovas; Blackswan Space, Vilnius, Lithuania
Klimavičius, Marius; Blackswan Space, Vilnius, Lithuania
Olivares-Mendez, Miguel; Space Robotics Research Group (SpaceR), Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Esch-sur-Alzette, Luxembourg
Martinez, Carol; Space Robotics Research Group (SpaceR), Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Esch-sur-Alzette, Luxembourg
External co-authors :
yes
Language :
English
Title :
On-ground validation of orbital GNC: Visual navigation assessment in robotic testbed facility
This work is supported by the Luxembourg National Research Fund: INTER20/EUROSTARS/15254521/VBN/Olivares Mendez. The project, E115088 - VBN, has received funding from the Eurostars-2 Joint Programme with cofunding from the European Union’s Horizon 2020 Research and Innovation Programme.
Fehse, W. Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, 2003.
Y.Z. Luo J. Zhang G.J. Tang Survey of orbital dynamics and control of space rendezvous Chinese Journal of Aeronautics 2014 27 1 1 11 10.1016/j.cja.2013.07.042
Zimpfer, D., Kachmar, P., Tuohy, S. Autonomous rendezvous, capture and in-space assembly: Past, present and future. In: Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005: AIAA 2005–2523.
G. Napolano C. Vela A. Nocerino R. Opromolla M. Grassi A multi-sensor optical relative navigation system for small satellite servicing Acta Astronautica 2023 207 167 192 10.1016/j.actaastro.2023.03.008
P.C. Lai D.C. Sternberg R.J. Haw E.D. Gustafson P.C. Adell J.D. Baker Lunar Flashlight CubeSat GNC system development Acta Astronautica 2020 173 425 441 10.1016/j.actaastro.2020.01.022
C. Pirat M. Richard-Noca C. Paccolat F. Belloni R. Wiesendanger D. Courtney R. Walker V. Gass Mission design and GNC for in-orbit demonstration of active debris removal technologies with CubeSats Acta Astronautica 2017 130 114 127 10.1016/j.actaastro.2016.08.038
C.W.T. Roscoe J.J. Westphal E. Mosleh Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission Acta Astronautica 2018 153 410 421 10.1016/j.actaastro.2018.03.033
Benninghoff, H., Boge, T., Tzschichholz, T. Hardware-in-the-loop rendezvous simulation involving an autonomous guidance, navigation and control system. In: Proceedings of the IAA Conference on Dynamics and Control of Space Systems, 2012: IAA-AAS-DyCoSS1-09-04.
Gao, X. H., Liang, B., Xu, W. F. Attitude determination of large non-cooperative spacecrafts in final approach. In: Proceedings of the 11th International Conference on Control Automation Robotics & Vision, 2010: 1571–1576.
C. Vela G. Fasano R. Opromolla Pose determination of passively cooperative spacecraft in close proximity using a monocular camera and AruCo markers Acta Astronautica 2022 201 22 38 10.1016/j.actaastro.2022.08.024
T. Yoshimitsu J. Kawaguchi T. Hashimoto T. Kubota M. Uo H. Morita K. Shirakawa Hayabusa-final autonomous descent and landing based on target marker tracking Acta Astronautica 2009 65 5 657 665 10.1016/j.actaastro.2009.01.074
Kramer, E. L., Parker, W. E., Masterson, R. A. Vision-based spacecraft relative pose estimation in variable lighting conditions. In: Proceedings of the IEEE Aerospace Conference, 2022: 1–12.
V. Muralidharan M.R. Makhdoomi K.R. Barad L.M. Amaya-Mejia K.C. Howell C. Martinez M. Olivares-Mendez Rendezvous in cislunar halo orbits: Hardware-in-the-loop simulation with coupled orbit and attitude dynamics Acta Astronautica 2023 211 556 573 1:CAS:528:DC%2BB3sXhsVOku7rF 10.1016/j.actaastro.2023.06.028
H. Benninghoff F. Rems E.A. Risse C. Mietner European proximity operations simulator 2.0 (EPOS) - A robotic-based rendezvous and docking simulator Journal of Large-Scale Research Facilities JLSRF 2017 3 A107 10.17815/jlsrf-3-155
Cassinis, L. P., Menicucci, A., Gill, E., Ahrns, I., Sanchez-Gestido, M. On-ground validation of a CNN-based monocular pose estimation system for uncooperative spacecraft. In: Proceedings of the 8th European Conference on Space Debris, 2021.
Park, T. H., Bosse, J., D’Amico, S. Robotic testbed for rendezvous and optical navigation: Multi-source calibration and machine learning use cases. arXiv preprint, 2021, arXiv:2108.05529.
Blackswan Space. Mission design simulator: Digital twin for your space mission. 2022. Available at https://www.blackswan.ltd/mission-design-simulator/
Muralidharan, V., Martinez, C., Zinys, A., Klimavicius, M., Olivares-Mendez, M. Autonomous control for satellite rendezvous in near-Earth orbits. In: Proceedings of the International Conference on Control, Automation and Diagnosis, 2022: 1–6.
W.H. Clohessy R.S. Wiltshire Terminal guidance system for satellite rendezvous Journal of the Aerospace Sciences 1960 27 9 653 658 10.2514/8.8704
D.J. Jezewski J.D. Donaldson An analytic approach to optimal rendezvous using Clohessy–Wiltshire equations Journal of the Astronautical Sciences 1979 27 293 310 549573
P. Palmer Optimal relocation of satellites flying in near-circular-orbit formations Journal of Guidance, Control, and Dynamics 2006 29 3 519 526 10.2514/1.14310
J.E. Prussing Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit AIAA Journal 1970 8 7 1221 1228 10.2514/3.5876
P. Singla K. Subbarao J.L. Junkins Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty Journal of Guidance, Control, and Dynamics 2006 29 4 892 902 10.2514/1.17498
S.S. Vaddi K.T. Alfriend S.R. Vadali P. Sengupta Formation establishment and reconfiguration using impulsive control Journal of Guidance Control Dynamics 2005 28 2 262 268 10.2514/1.6687
Pagone, M., Boggio, M., Novara, C., Vidano, S. A Pontryagin-based NMPC approach for autonomous rendezvous proximity operations. In: Proceedings of the IEEE Aerospace Conference, 2021: 1–9.
A.C. Boley M. Byers Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth Scientific Reports 2021 11 10642 1:CAS:528:DC%2BB3MXhtFCmsL%2FI 10.1038/s41598-021-89909-7 34017017 8137964
He, K., Gkioxari, G., Dollár, P., Girshick, R. B. Mask R-CNN. arXiv preprint, 2017, arXiv:1703.06870.
J. Wang K. Sun T. Cheng B. Jiang C. Deng Y. Zhao D. Liu Y. Mu M. Tan X. Wang et al. Deep high-resolution representation learning for visual recognition IEEE Transactions on Pattern Analysis and Machine Intelligence 2021 43 10 3349 3364 10.1109/TPAMI.2020.2983686 32248092
Stengel, R. F. Optimal Control and Estimation. Courier Corporation, 1994.
V. Muralidharan A. Weiss U.V. Kalabic Tracking neighboring quasi-satellite orbits around Phobos IFAC-PapersOnLine 2020 53 2 14906 14911 10.1016/j.ifacol.2020.12.1952
M. Olivares-Méndez M.R. Makhdoomi B. Yakçın Z. Bokal V. Muralidharan M.O. Del Castillo V. Gaudillière L. Pauly O. Borgue M. Alandihallaj et al. Zero-G Lab: A multi-purpose facility for emulating space operations Journal of Space Safety Engineering 2023 10 509 521 10.1016/j.jsse.2023.09.003
Nanoavionics. 6U Nanosatellite Bus M6P. Available at https://nanoavionics.com/small-satellite-buses/%206u-nanosatellite-bus-m6p/
OptiTrack. PrimeX-13 camera. Available at https://optitrack.com/cameras/primex-13/
Pauly, L., Jamrozik, M. L., Del Castillo, M. O., Borgue, O., Singh, I. P., Makhdoomi, M. R., Christidi-Loumpasefski, O. O., Gaudilliere, V., Martinez, C., Rathinam, A., et al. Lessons from a space lab–An image acquisition perspective. arXiv preprint, 2022, arXiv:2208.08865.
Scherzinger, S., Roennau, A., Dillmann, R. Virtual forward dynamics models for Cartesian robot control. arXiv preprint, 2020, arXiv:2009.11888.
MoveIt. Tutorials - Realtime Arm Servoing. Available at https://ros-planning.github.io/moveit_tutorials/doc/realtime_servo/realtime_servo_tutorial.html
ROS. Wiki: tf2. Available at http://wiki.ros.org/tf2
Makhal, A., Goins, A. K. Reuleaux: Robot base placement by reachability analysis. In: Proceedings of the 2nd IEEE International Conference on Robotic Computing, 2018: 137–142.
T. Yoshikawa Manipulability of robotic mechanisms The International Journal of Robotics Research 1985 4 2 3 9 1294226 10.1177/027836498500400201
Muralidharan, V., Makhdoomi, M. R., Barad, K. R., Amaya Mejia, L. M., Howell, K. C., Martinez Luna, C., Olivares Mendez, M. A. Hardware-in-the-loop proximity operations in cislunar space. In: Proceedings of the International Astronautical Congress, 2022: IAC-22-C1,4,8,x69397.