[en] Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
MUWANIGWA, Mudiwa Nathasia ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
Modamio-Chamarro, Jennifer; Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
ANTONY, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Imaging Platform
Gomez-Giro, Gemma; Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
Krüger, Rejko; Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
Medical Research and Materiel Command Fonds National de la Recherche US Army Medical Research and Materiel Command U.S. Army
Funding text :
The work leading to this manuscript was supported through funding to JCS's lab: Fonds National de la Recherche Luxembourg ( PRIDE17/12244779/PARK-QC ; CORE C21/DM/15839823 ; BRIDGES18/BM/12719664_MOTASYN ; INTER/FWF/19/14117540/PDage ). The U.S. Army Medical Research and Materiel Command endorsed by the U.S. Army through the Parkinson's Research Program Investigator-Initiated Research Award under Award No. W81XWH-17-PRP-IIRA . Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army. SB received funding from the Fonds National de la Recherche Luxembourg ( Core C21/DM/15839823 ).
Aguado, J., Amarilla, A.A., Taherian, Fard A., et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging., 3, 2023, 10.1038/s43587-023-00519-6.
Ahfeldt T, Ordureau A, Bell C, et al. Pathogenic pathways in early-onset autosomal recessive Parkinson's disease discovered using isogenic human dopaminergic neurons. Stem Cell Reports. Jan 14 2020;14(1):75–90. doi: https://doi.org/10.1016/j.stemcr.2019.12.005.
Anderson, J.P., Walker, D.E., Goldstein, J.M., et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281:40 (2006), 29739–29752, 10.1074/jbc.M600933200 (Oct 6).
Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Mov. Disord. 28:6 (2013), 811–813, 10.1002/mds.25421 (Jun).
Baker, D.J., Jin, F., van Deursen, J.M., The yin and yang of the Cdkn2a locus in senescence and aging. Cell Cycle 7:18 (2008), 2795–2802, 10.4161/cc.7.18.6687 (Sep 15).
Bobela, W., Aebischer, P., Schneider, B.L., Αlpha-synuclein as a mediator in the interplay between aging and Parkinson's disease. Biomolecules 5:4 (2015), 2675–2700.
Bolognin, S., Fossépré, M., Qing, X., et al. 3D cultures of Parkinson's disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv Sci (Weinh)., 6(1), 2019, 1800927, 10.1002/advs.201800927 (Jan 9).
Burré, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., Südhof, T.C., Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:5999 (2010), 1663–1667, 10.1126/science.1195227 (Sept 24).
Bussian, T.J., Aziz, A., Meyer, C.F., Swenson, B.L., van Deursen, J.M., Baker, D.J., Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:7728 (2018), 578–582, 10.1038/s41586-018-0543-y (Oct).
Butin-Israeli, V., Adam, S.A., Jain, N., et al. Role of lamin B1 in chromatin instability. Mol. Cell. Biol. 35:5 (2015), 884–898, 10.1128/MCB.01145-14.
Camps J, Erdos MR, Ried T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus 2015/01/02 2015;6(1):8–14. doi: https://doi.org/10.1080/19491034.2014.1003510.
Chen, V., Moncalvo, M., Tringali, D., et al. The mechanistic role of alpha-synuclein in the nucleus: impaired nuclear function caused by familial Parkinson's disease SNCA mutations. Hum. Mol. Genet. 29:18 (2020), 3107–3121, 10.1093/hmg/ddaa183 (Nov 4).
Chinta, S.J., Woods, G., Demaria, M., et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease. Cell Rep. 22:4 (2018), 930–940, 10.1016/j.celrep.2017.12.092 (Jan 23).
Choi, M.G., Kim, M.J., Kim, D.G., Yu, R., Jang, Y.N., Oh, W.J., Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS One, 13(4), 2018, e0195339, 10.1371/journal.pone.0195339.
Di Marco, Vieira B., et al. Extracellular alpha-synuclein promotes a neuroinhibitory secretory phenotype in astrocytes. Life, 10(9), 2020, 183, 10.3390/life100901.
Eliezer, D., Kutluay, E., Bussell, R. Jr., Browne, G., Conformational properties of alpha-synuclein in its free and lipid-associated states. J. Mol. Biol. 307:4 (2001), 1061–1073, 10.1006/jmbi.2001.4538 (Apr 6).
Fortin, D.L., Nemani, V.M., Voglmaier, S.M., Anthony, M.D., Ryan, T.A., Edwards, R.H., Neural activity controls the synaptic accumulation of alpha-synuclein. J. Neurosci. 25:47 (2005), 10913–10921, 10.1523/jneurosci.2922-05.2005 (Nov 23).
Freund, A., Laberge, R.M., Demaria, M., Campisi, J., Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23:11 (2012), 2066–2075, 10.1091/mbc.E11-10-0884 (Jun).
Fujioka, S., Ogaki, K., Tacik, P.M., Uitti, R.J., Ross, O.A., Wszolek, Z.K., Update on novel familial forms of Parkinson's disease and multiple system atrophy. Parkinsonism Relat. Disord. 20:Suppl. 1 (2014), S29–S34, 10.1016/s1353-8020(13)70010-5 (Jan).
Galet B, Cheval H, Ravassard P. Patient-derived midbrain organoids to explore the molecular basis of Parkinson's disease. Review. Frontiers in Neurology. 2020-September-04 2020;11doi: https://doi.org/10.3389/fneur.2020.01005.
Geertsma, H.M., Suk, T.R., Ricke, K.M., et al. Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Hum. Mol. Genet. 31:21 (2022), 3613–3628, 10.1093/hmg/ddac035.
Goers, J., Manning-Bog, A.B., McCormack, A.L., et al. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42:28 (2003), 8465–8471, 10.1021/bi0341152 (Jul 22).
Gomez-Giro, G., Arias-Fuenzalida, J., Jarazo, J., et al. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol. Commun., 7(1), 2019, 222, 10.1186/s40478-019-0871-7 (Dec 30).
He, S., Sharpless, N.E., Senescence in health and disease. Cell 169:6 (2017), 1000–1011, 10.1016/j.cell.2017.05.015 (Jun 1).
Hernandez-Segura, A., Nehme, J., Demaria, M., Hallmarks of cellular senescence. Trends Cell Biol. 28:6 (2018), 436–453, 10.1016/j.tcb.2018.02.001 (Jun).
Hoffman-Zacharska, D., Koziorowski, D., Ross, O.A., et al. Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson's disease. Parkinsonism Relat. Disord. 19:11 (2013), 1057–1060, 10.1016/j.parkreldis.2013.07.011 (Nov).
Jarazo, J., Barmpa, K., Modamio, J., et al. Parkinson's disease phenotypes in patient neuronal cultures and brain organoids improved by 2-hydroxypropyl-β-cyclodextrin treatment. Mov. Disord. 37:1 (2022), 80–94, 10.1002/mds.28810 (Jan).
Jin, H., Kanthasamy, A., Ghosh, A., Yang, Y., Anantharam, V., Kanthasamy, A.G., α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J. Neurosci. 31:6 (2011), 2035–2051, 10.1523/jneurosci.5634-10.2011 (Feb 9).
Jo, J., Xiao, Y., Sun, A.X., et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:2 (2016), 248–257, 10.1016/j.stem.2016.07.005 (Aug 4).
Jo, J., Yang, L., Tran, H.D., et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann. Neurol. 90:3 (2021), 490–505, 10.1002/ana.26166 (Sep).
Kiely, A.P., Asi, Y.T., Kara, E., et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathol. 125:5 (2013), 753–769, 10.1007/s00401-013-1096-7 (May).
Kim, H., Park, H.J., Choi, H., et al. Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports 12:3 (2019), 518–531, 10.1016/j.stemcr.2019.01.020 (Mar 5).
Koss, D.J., Erskine, D., Porter, A., et al. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathologica Communications, 10(1), 2022, 98, 10.1186/s40478-022-01403-x (2022/07/06).
Kritsilis, M., S, V.R., Koutsoudaki, P.N., Evangelou, K., Gorgoulis, V.G., Papadopoulos, D., Ageing, cellular senescence and neurodegenerative disease. Int. J. Mol. Sci., 19(10), 2018, 10.3390/ijms19102937 (Sep 27).
Krüger, R., Kuhn, W., Müller, T., et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18:2 (1998), 106–108, 10.1038/ng0298-106 (Feb).
Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Review. Frontiers in Cell and Developmental Biology. 2021-March-29 2021;9doi: https://doi.org/10.3389/fcell.2021.645593.
Lashuel, H.A., Petre, B.M., Wall, J., et al. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322:5 (2002), 1089–1102, 10.1016/s0022-2836(02)00735-0 (Oct 4).
Lazic, A., Balint, V., Stanisavljevic Ninkovic, D., Peric, M., Stevanovic, M., Reactive and senescent astroglial phenotypes as hallmarks of brain pathologies. Int. J. Mol. Sci., 23(9), 2022, 10.3390/ijms23094995 (Apr 30).
Li, W., Lee, M.K., Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity. J. Neurochem. 93:6 (2005), 1542–1550, 10.1111/j.1471-4159.2005.03146.x (Jun).
Malkus KA, Tsika E, Ischiropoulos H. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Mol. Neurodegener. 2009/06/05 2009;4(1):24. doi: https://doi.org/10.1186/1750-1326-4-24.
Matias, I., Diniz, L.P., Damico, I.V., et al. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell, 21(1), 2022, e13521, 10.1111/acel.13521.
Miller, D.W., Hague, S.M., Clarimon, J., et al. Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:10 (2004), 1835–1838, 10.1212/01.wnl.0000127517.33208.f4 (May 25).
Mohamed, N.-V., Sirois, J., Ramamurthy, J., et al. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy. Brain Communications, 3(4), 2021, 10.1093/braincomms/fcab223.
Monzel, A.S., Smits, L.M., Hemmer, K., et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 8:5 (2017), 1144–1154, 10.1016/j.stemcr.2017.03.010 (May 9).
Monzel, A.S., Hemmer, K., Kaoma, T., et al. Machine learning-assisted neurotoxicity prediction in human midbrain organoids. Parkinsonism Relat. Disord. 75 (2020), 105–109, 10.1016/j.parkreldis.2020.05.011 (Jun).
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014/07/01 2014;15(7):482–496. doi: https://doi.org/10.1038/nrm3823.
Musi, N., Valentine, J.M., Sickora, K.R., et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell, 17(6), 2018, e12840, 10.1111/acel.12840 (Dec).
Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res. 2020/07/01/ 2020;46:101870. doi: https://doi.org/10.1016/j.scr.2020.101870.
Pasanen, P., Myllykangas, L., Siitonen, M., et al. Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology. Neurobiol. Aging 35:9 (2014), 2180.e1–2180.e5, 10.1016/j.neurobiolaging.2014.03.024 (Sep).
Polymeropoulos, M.H., Lavedan, C., Leroy, E., et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:5321 (1997), 2045–2047, 10.1126/science.276.5321.2045 (Jun 27).
Reinhardt, P., Glatza, M., Hemmer, K., et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One, 8(3), 2013, e59252, 10.1371/journal.pone.0059252.
Riessland, M., Kolisnyk, B., Kim, T.W., et al. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25:4 (2019), 514–530.e8, 10.1016/j.stem.2019.08.013 (Oct 3).
Schaser AJ, Osterberg VR, Dent SE, et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep. 2019/07/29 2019;9(1):10919. doi: https://doi.org/10.1038/s41598-019-47227-z.
Shaker, M.R., Aguado, J., Chaggar, H.K., Wolvetandg, E.J., Klotho inhibits senescence in human brain organoids. npj Aging and Mechanisms of Disease., 7(18), 2021, 10.1038/s41514-021-00070-x.
Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed. Pharmacother. 2021/05/01/ 2021;137:111327. doi: https://doi.org/10.1016/j.biopha.2021.111327.
Sikora, E., Bielak-Zmijewska, A., Dudkowska, M., et al. Cellular senescence in brain aging. Front. Aging Neurosci., 13, 2021, 646924, 10.3389/fnagi.2021.646924.
Singleton, A.B., Farrer, M., Johnson, J., et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science, 302(5646), 2003, 841, 10.1126/science.1090278 (Oct 31).
Smits LM, Schwamborn JC. Midbrain organoids: a new tool to investigate Parkinson's disease. Review. Frontiers in Cell and Developmental Biology. 2020-May-19 2020;8doi: https://doi.org/10.3389/fcell.2020.00359.
Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R., Goedert, M., Alpha-synuclein in Lewy bodies. Nature 388:6645 (1997), 839–840, 10.1038/42166 (Aug 28).
Ulmer, T.S., Bax, A., Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J. Biol. Chem. 280:52 (2005), 43179–43187, 10.1074/jbc.M507624200 (Dec 30).
Verma, D.K., Seo, B.A., Ghosh, A., et al. Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson's disease models. Cells, 10(7), 2021, 10.3390/cells10071694 (Jul 5).
Volpicelli-Daley, L.A., Luk, K.C., Patel, T.P., et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:1 (2011), 57–71, 10.1016/j.neuron.2011.08.033 (Oct 6).
Waudby, C.A., Camilloni, C., Fitzpatrick, A.W.P., et al. In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-synuclein within E. coli cells. PLoS One, 8(8), 2013, e72286, 10.1371/journal.pone.0072286.
Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., Lansbury, P.T. Jr., NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35:43 (1996), 13709–13715, 10.1021/bi961799n (Oct 29).
Yoon Y-S, You JS, Kim T-K, et al. Senescence and impaired DNA damage responses in alpha-synucleinopathy models. Exp. Mol. Med. 2022/02/01 2022;54(2):115–128. doi: https://doi.org/10.1038/s12276-022-00727-x.
Zagare, A., Gobin, M., Monzel, A.S., Schwamborn, J.C., A robust protocol for the generation of human midbrain organoids. STAR Protoc., 2(2), 2021, 100524, 10.1016/j.xpro.2021.100524 (Jun 18).
Zarranz, J.J., Alegre, J., Gómez-Esteban, J.C., et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55:2 (2004), 164–173, 10.1002/ana.10795 (Feb).
Zhang, P., Kishimoto, Y., Grammatikakis, I., et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat. Neurosci. 22:5 (2019), 719–728, 10.1038/s41593-019-0372-9 (May).