beamforming; NTN UT; satellite communications; TMA; Array beamforming; Directionof-arrival (DOA); Network users; Non-terrestrial network user terminal; Phased-arrays; Power; Satellite communications; Terrestrial networks; Time modulated arrays; User terminals; Computer Networks and Communications
Résumé :
[en] Though beamforming is the fundamental element of satellite communication, it incurs costs, complexity, and power consumption. In this paper, we study a Time-Modulated Array (TMA) beamforming design on the Non-Terrestrial Network (NTN) User Terminal (UT) to receive a signal from a LEO satellite downlink. Despite its simplicity and cost-effectiveness, conventional TMA has intrinsic gain, flexibility, and interference limitations. We compared TMA beamforming with the conventional phased array and studied a tri-state switching method to address the TMA limitations. Based on the 3GPP beam pattern, we studied the beamforming cost and complexity to achieve a viable Signal-To-Noise Plus Interference Ratio (SINR). To facilitate low-cost TMA beamforming, we first derive the Direction of Arrival (DoA) to the TMA switching parameters mapping. Subsequently, we formulate a constrained nonlinear multi-variable problem and solve it using iterative optimization based on perfect DoA. Additionally, we use an analytical approach to suppress sidelobes and unused harmonics using alternating switching. Furthermore, we develop an Alternating Direction Method of Multipliers (ADMM) and Adaptive Switching Parameters Control (ASPC) methods to design TMA beamforming based on a beacon signal. We compare TMA and phased array beamforming techniques, confirming the promising performance of TMA with reduced cost, complexity, and power consumption.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LEMA, Gebrehiwet Gebrekrstos ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MYSORE RAMA RAO, Bhavani Shankar ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SPARC
Grotz, Joel ; SES, Luxembourg
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Time Modulated Arrays Beamforming for Non-Terrestrial Network User Terminal
Date de publication/diffusion :
08 janvier 2025
Titre du périodique :
IEEE Open Journal of the Communications Society
eISSN :
2644-125X
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
A. Lappalainen and C. Rosenberg, "Can 5G fixed broadband bridge the rural digital divide, " IEEE Commun. Stand. Mag., vol. 6, no. 2, pp. 79-84, Jun. 2022.
T. Ahmmed, A. Alidadi, Z. Zhang, A. U. Chaudhry, and H. Yanikomeroglu, "The digital divide in Canada and the role of LEO satellites in bridging the gap, " IEEE Commun. Mag., vol. 60, no. 6, pp. 24-30, Jun. 2022.
B. Di, L. Song, Y. Li, and H. V. Poor, "Ultra-dense LEO: Integration of satellite access networks into 5G and beyond, " IEEE Wireless Commun., vol. 26, no. 2, pp. 62-69, Apr. 2019.
A. Sattarzadeh et al., "Satellite-based non-terrestrial networks in 5G: Insights and challenges, " IEEE Access, vol. 10, pp. 11274-11283, 2022.
A. Eltohamy, M. Elkhouly, P. Große, M. Landmann, and G. Del Galdo, "Efficient phased array radiation pattern evaluation for 5G and SatCom on-the-move (SOTM) applications, " in Proc. 17th Eur. Conf. Antennas Propag. (EuCAP), 2023, pp. 1-5.
G. Li, S. Yang, Y. Chen, and Z.-P. Nie, "A novel electronic beam steering technique in time modulated antenna array, " Prog. Electromagn. Res., vol. 97, pp. 391-405, 2009, doi: 10.2528/PIER09072602.
Solutions for NR to Support Non-Terrestrial Networks (NTN), Version 16.0.0, 3GPP Standard TS 38.821, 2019.
Study on Narrow-Band Internet of Things (NB-IoT)/Enhanced Machine Type Communication (eMTC) Support for Non-Terrestrial Networks (NTN), Version 0.5.0, 3GPP Standard TS 38.821, 2021.
(5G Automot. Assoc., Munich, Germany). Evolution of Vehicular Communication Systems Beyond 5G. Accessed: May 26, 2024. [Online]. Available: https://5gaa.org/evolution-of-vehicularcommunication-systems-beyond-5g/
G. D. M. L. Boccia, G. Amendola, and G. Angiulli. "Phaseonly synthesis of reconfigurable linear arrays with optimized power patterns." 2023. [Online]. Available: https://connectivity.esa.int/sites/default/files/01-1145-Boccia.pdf
S. Zhang, C. Guo, T. Wang, and W. Zhang, "ON-OFF analog beamforming for massive MIMO, " IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4113-4123, May 2018.
S.-M. Moon, S. Yun, I.-B. Yom, and H. L. Lee, "Phased array shapedbeam satellite antenna with boosted-beam control, " IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7633-7636, Dec. 2019.
Q. Zhang, S. Feng, L. Fu, J. Wen, J. Ge, and J. Ma, "Design and implementation of adaptive digital beamforming based on FPGA, " in Proc. 4th China Int. SAR Symp., 2023, pp. 1-7.
A. K. Pandey, "Phased array antenna with beamforming network for 5G mmWave communication system, " in Proc. 50th Eur. Microw. Conf. (EuMC), 2021, pp. 364-367.
Y. Yamada et al., "Unequally element spacing array antenna with butler matrix feed for 5G mobile base station, " in Proc. 2nd Int. Conf. Telematics Future Gener. Netw., 2018, pp. 72-76.
I. I. Idrus et al., "A low-loss and compact single-layer butler matrix for a 5G base station antenna, " PLoS ONE, vol. 14, no. 12, 2019, Art. no. e0226499.
Q. Zeng et al., "Phase modulation technique for harmonic beamforming in time-modulated arrays, " IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 1976-1988, Mar. 2022.
L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization, " IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1408-1411, Apr. 2010.
G. Ni, Y. Song, J. Chen, C. He, and R. Jin, "Single-channel LCMV-based adaptive beamforming with time-modulated array, " IEEE Antennas Wireless Propag. Lett., vol. 19, pp. 1881-1885, 2020.
F. Yang, S. Yang, L. Sun, Y. Chen, S. Qu, and J. Hu, "DOA estimation via sparse signal recovery in 4-D linear antenna arrays with optimized time sequences, " IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 771-783, Jan. 2020.
Z. Li, F. Yang, Y. Chen, S.-W. Qu, J. Hu, and S. Yang, "Wideband receive beamforming based on 4-D antenna arrays with postmodulation, " IEEE Antennas Wireless Propag. Lett., vol. 21, pp. 740-744, 2022.
R. Maneiro-Catoira, J. C. Brégains, and L. Castedo, "Enhanced timemodulated arrays for harmonic beamforming, " IEEE J. Sel. Topics Signal Process., vol. 11, no. 2, pp. 259-270, Mar. 2017.
R. Maneiro-Catoira, J. Brégains, J. A. García-Naya, and L. Castedo, "Time modulated array controlled by periodic pulsed signals, " in Proc. 26th Eur. Signal Process. Conf., 2018, pp. 637-641.
Y.-Q. Yang, H. Wang, and Y.-X. Guo, "A time-modulated array with digitally preprocessed rectangular pulses for wireless power transmission, " IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 3283-3288, Apr. 2020.
G. Bogdan, K. Godziszewski, Y. Yashchyshyn, C. H. Kim, and S.-B. Hyun, "Time-modulated antenna array for real-time adaptation in wideband wireless systems-Part I: Design and characterization, " IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 6964-6972, Oct. 2020.
G. Maldonado, A. R. Maldonado, L. I. Balderas, and M. A. Panduro, "Time-modulated antenna arrays for ultra-wideband 5G applications, " Micromachines, vol. 13, no. 12, p. 2233, 2022.
G. Ni, C. He, and R. Jin, "Harmonic-based MIMO transceiver with time-modulated arrays, " IEEE Trans. Antennas Propag., vol. 71, no. 9, pp. 7553-7565, Sep. 2023.
Q. Zhu, S. Yang, R. Yao, and Z. Nie, "Directional modulation based on 4-D antenna arrays, " IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 621-628, Feb. 2014.
J. Guo, L. Poli, M. A. Hannan, P. Rocca, S. Yang, and A. Massa, "Time-modulated arrays for physical layer secure communications: Optimization-based synthesis and experimental assessment, " IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6939-6949, Dec. 2018.
C. He, Q. Chen, A. Cao, J. Chen, and R. Jin, "Application of the time modulated array in satellite communications, " IEEE Wireless Commun., vol. 26, no. 2, pp. 24-30, Apr. 2019.
I. Kanbaz, G. O. Arican, Z. Noamadeh, and E. Aksoy, "An optimization approach to synthesis of the isoflux pattern for GEO/MEO satellites using time modulated antenna arrays, " in Proc. Signal Process. Commun. Appl. Conf., 2022, pp. 1-4.
G. G. Lema, A. Bandi, E. Lagunas, B. S. R. Mysore, and J. Grotz, "TMA-based beamforming for next generation satellite communication applications, " in Proc. IEEE Int. Conf. Commun., 2024, pp. 1919-1925.
L. You, K.-X. Li, J. Wang, X. Gao, X.-G. Xia, and B. Ottersten, "Massive MIMO transmission for LEO satellite communications, " IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1851-1865, Aug. 2020.
F. Tang, Q. Wang, C. Zhu, J. Huang, and W. Zhou, "Multicast Multigroup Beamforming for frame-based LEO satellite communications, " in Proc. 9th Int. Conf. Comput. Commun. Syst. (ICCCS), 2024, pp. 805-810.
A. Safaai-Jazi, "A new formulation for the design of Chebyshev arrays, " IEEE Trans. Antennas Propag., vol. 42, no. 3, pp. 439-443, Mar. 1994.
S.-R. Zhang, Y.-X. Zhang, and C.-Y. Cui, "Efficient multiobjective optimization of time-modulated array using a hybrid particle swarm algorithm with convex programming, " IEEE Antennas Wireless Propag. Lett., vol. 19, pp. 1842-1846, 2020.
G. Ram, D. Mandal, R. Kar, and S. P. Ghosal, "Swarm optimization based side lobe reduction in time modulated linear antenna arrays, " in Proc. Int. Conf. CICN, 2014, pp. 1101-1105.
G. G. Lema, G. T. Tesfamariam, and M. I. Mohammed, "A novel elliptical-cylindrical antenna array for radar applications, " IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1681-1688, May 2016.
S. Cakaj, "The parameters comparison of the 'Starlink' LEO satellites constellation for different orbital shells, " Front. Commun. Netw., vol. 2, May 2021, Art. no. 643095.
O. Abbasi and G. Kaddoum, "Channel aging-aware LSTM-based channel prediction for satellite communications, " IEEE Netw. Lett., vol. 6, no. 3, pp. 183-187, Sep. 2024.
C. Li, O. El-Aassar, A. Kumar, M. Boenke, and G. M. Rebeiz, "LNA design with CMOS SOI process-l.4dB NF K/Ka band LNA, " in Proc. IEEE Int. Microw. Symp. (IMS), 2018, pp. 1484-1486.
C. Wilson and B. Floyd, "20-box30 GHz mixer-first receiver in 45-nm SOI CMOS, " in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2016, pp. 344-347.
M. Baert and W. Dehaene, "20.1 A 5GS/s 7.2 ENOB time-interleaved VCO-based ADC achieving 30.5fJ/conv-step, " in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2019, pp. 328-330.
U. Kodak and G. M. Rebeiz, "Bi-directional flip-chip 28 GHz phasedarray core-chip in 45nm CMOS SOI for high-efficiency high-linearity 5G systems, " in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), 2017, pp. 61-64.
B. Degnan, B. Marr, and J. Hasler, "Assessing trends in performance per watt for signal processing applications, " IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1, pp. 58-66, Jan. 2016.
P. Saha. "A quantitative analysis of the power advantage of hybrid beamforming for multibeam phased array receivers." Analog. Accessed: Dec. 1, 2021. [Online]. Available: https://www.analog.com/en/resources/technical-articles/poweradvantage-of-hybrid-beamforming.html
M. N. Dazhi, H. Al-Hraishawi, M. R. B. Shankar, S. Chatzinotas, and B. Ottersten, "Energy-efficient service-aware multi-connectivity scheduler for uplink multi-layer non-terrestrial networks, " IEEE Trans. Green Commun. Netw., vol. 7, no. 3, pp. 1326-1341, Sep. 2023