Aguiléra V, Allio S, Benezech V, Combes F, Milion C (2014) Using cell phone data to measure quality of service and passenger flows of paris transit system. Transportation Research Part C: Emerging Technologies 43, 198–211. Special Issue with Selected Papers from Transport Research Arena
J.M. Bandeira P. Tafidis E. Macedo J. Teixeira B. Bahmankhah C. Guarnaccia M.C. Coelho Exploring the potential of web based information of business popularity for supporting sustainable traffic management Trans Telecommunication J 21 1 47 60 10.2478/ttj-2020-0004
Capponi A, Fiandrino C, Kantarci B, Foschini L, Kliazovich D, Bouvry P (2019) A survey on mobile crowdsensing systems: Challenges, solutions and opportunities. IEEE Communications Surveys Tutorials, 1–49. https://doi.org/10.1109/COMST.2019.2914030
Capponi A, Vitello P, Fiandrino C, Cantelmo G, Kliazovich D, Sorger U, Bouvry P (2019) Crowdsensed data learning-driven prediction of local businesses attractiveness in smart cities. In: Proc. of IEEE ISCC, pp. 1–6. https://doi.org/10.1109/ISCC47284.2019.8969771
M.G. Demissie S. Phithakkitnukoon T. Sukhvibul F. Antunes R. Gomes C. Bento Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: a case study of senegal IEEE Trans Intell Trans Syst 17 9 2466 2478 10.1109/TITS.2016.2521830
X. Ding Z. Liu H. Xu The passenger flow status identification based on image and wifi detection for urban rail transit stations J Vis Commun Image Representation 58 119 129 10.1016/j.jvcir.2018.11.033
M. Dixit A. Sivakumar Capturing the impact of individual characteristics on transport accessibility and equity analysis Trans Res Part D 87 10.1016/j.trd.2020.102473 102473
J. Dixon I. Elders K. Bell Evaluating the likely temporal variation in electric vehicle charging demand at popular amenities using smartphone locational data IET Intell Trans Syst 14 6 504 510 10.1049/iet-its.2019.0351
Foell S, Kortuem G, Rawassizadeh R, Phithakkitnukoon S, Veloso M, Bento C (2013) Mining temporal patterns of transport behaviour for predicting future transport usage. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp ’13 Adjunct, pp. 1239–1248. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2494091.2497354
D. Fry J. Aaron Hipp C. Alberico J.-H. Huang G.S. Lovasi M.F. Floyd Land use diversity and park use in new york city Preventive Med Rep 22 10.1016/j.pmedr.2021.101321 101321
P. Geurts D. Ernst L. Wehenkel Extremely randomized trees Mach Learn 63 3 42 10.1007/s10994-006-6226-1
GVB: Jaarverslag 2021 (2021)
J. Hagenauer M. Helbich A comparative study of machine learning classifiers for modeling travel mode choice Expert Syst Appl 78 273 282 10.1016/j.eswa.2017.01.057
X. Hu H. Zheng W. Wang X. Li A novel approach for crowd video monitoring of subway platforms Optik 124 22 5301 5306 10.1016/j.ijleo.2013.03.057
Kolassa S, Schütz W (2007) Advantages of the mad/mean ratio over the mape. Foresight: The International Journal of Applied Forecasting, 40–43
V. Kostakos T. Camacho C. Mantero Towards proximity-based passenger sensing on public transport buses Personal Ubiquitous Comput 17 1807 1816 10.1007/s00779-013-0652-4
Lau SL, Sabri Ismail SM (2015) Towards a real-time public transport data framework using crowd-sourced passenger contributed data. In: Proc. of IEEE VTC-Fall), pp. 1–6. https://doi.org/10.1109/VTCFall.2015.7391180
T. London Travel in london report 14 Transport London London, UK
Lou X, Yan M (2021) Classifying subway passengers based on mobile network data analysis. In: Proc. of IEEE/ACIS ICIS, pp. 92–96. https://doi.org/10.1109/ICIS51600.2021.9516871
V. Mahajan G. Cantelmo C. Antoniou Explaining demand patterns during COVID-19 using opportunistic data: a case study of the city of munich Euro Trans Res Rev 13 1 1 14 10.1186/s12544-021-00485-3
Moyo T, Musakwa W (2016) Using crowdsourced data (twitter & facebook) to delineate the origin and destination of commuters of the gautrain public transit system in south africa. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-2, 143–150. https://doi.org/10.5194/isprs-annals-III-2-143-2016
Myrvoll TA, Håkegård JE, Matsui T, Septier F (2017) Counting public transport passenger using WiFi signatures of mobile devices. In: Proc. of IEEE ITSC, pp. 1–6. https://doi.org/10.1109/ITSC.2017.8317687
I. Nti O. Nyarko-Boateng J. Aning Performance of machine learning algorithms with different k values in k-fold cross-validation Int J Inform Technol Comput Sci 6 61 71 10.5815/ijitcs.2021.06.05
Oransirikul T, Nishide R, Piumarta I, Takada H (2014) Measuring bus passenger load by monitoring Wi-Fi transmissions from mobile devices. Procedia Technology 18, 120–125. doi: 10.1016/j.protcy.2014.11.023. International workshop on Innovations in Information and Communication Science and Technology, IICST 3-5 September 2014 Poland Warsaw
M.-P. Pelletier M. Trépanier C. Morency Smart card data use in public transit: a literature review Trans Res Part C 19 4 557 568 10.1016/j.trc.2010.12.003
B. Pender G. Currie A. Delbosc N. Shiwakoti Social media use during unplanned transit network disruptions: a review of literature Trans Rev 34 4 501 521 10.1080/01441647.2014.915442
F.C. Pereira F. Rodrigues M. Ben-Akiva Using data from the web to predict public transport arrivals under special events scenarios J Intell Trans Syst 19 3 273 288 10.1080/15472450.2013.868284
Rodrigues M, Teoh T, Ramos C, Knezevic L, Marcucci E, Lozzi G, Gatta V, Cré I (2021) for Internal Policies of the Union, E.P.D.-G., Panteia,: Relaunching Transport and Tourism in the EU After COVID-19: Transport Workers vol. pt. 2. European Parliament
Shlayan N, Kurkcu A, Ozbay K (2016) Exploring pedestrian bluetooth and WiFi detection at public transportation terminals. In: Proc. of IEEE ITSC, pp. 229–234. https://doi.org/10.1109/ITSC.2016.7795559
Solmaz G, Baranwal P, Cirillo F: CountMeIn: Adaptive crowd estimation with Wi-Fi in smart cities. In: Proc. of IEEE PerCom, pp. 187–196 (2022). https://doi.org/10.1109/PerCom53586.2022.9762354
Z. Tao J. Tang K. Hou Online estimation model for passenger flow state in urban rail transit using multi-source data Comput-Aided Civ Infrastruct Eng 36 6 762 780 10.1111/mice.12671
S. Timokhin M. Sadrani C. Antoniou Predicting venue popularity using crowd-sourced and passive sensor data Smart Cities 3 3 818 841 10.3390/smartcities3030042
Vitello P, Capponi A, Klopp P, Connors RD, Viti F, Fiandrino C, The CORONA Business in Modern Cities: Poster Abstract
Wang W, Attanucci JP, Wilson NHM (2011) Bus passenger origin-destination estimation and related analyses
Wang X, Zhou Z, Yang Z, Liu Y, Peng C (2017) Spatio-temporal analysis and prediction of cellular traffic in metropolis. In: Proc. of IEEE ICNP, pp. 1–10. https://doi.org/10.1109/ICNP.2017.8117559
T.F. Welch A. Widita Big data in public transportation: a review of sources and methods Trans Rev 39 6 795 818 10.1080/01441647.2019.1616849
Wu R, Cao Y, Liu CH, Hui P, Li L, Liu E (2012) Exploring passenger dynamics and connectivities in beijing underground via bluetooth networks. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 208–213. https://doi.org/10.1109/WCNCW.2012.6215492
Zhang J, Liu J, Wang Z (2021) Convolutional neural network for crowd counting on metro platforms. Symmetry 13(4). https://doi.org/10.3390/sym13040703
Zhao J, Zhang L, Ye K, Ye J, Zhang J, Zhang F, Xu C: Gltc (2022) A metro passenger identification method across afc data and sparse wifi data. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/TITS.2022.3171332