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Abstract

Traditionally Public Transport (PT) demand estimation relies on man-
ual survey-based or, where available, smartcard passenger data. However,
transport service providers and authorities make it rarely available to
researchers. An additional challenge is the variety of formats and the low
granularity in which such data is available. Recently, first steps towards
the use of advanced ICT-based data-driven approaches have started to
emerge. These new data sources can provide new opportunities for gener-
ating more data and insights into transit demand patterns and behaviour.
In this paper, we propose a novel data-driven transit demand esti-
mation process, TransitCrowd, and apply it to subway stations. Tran-
sitCrowd estimates the passengers entering and exiting each station
using as proxy the subway crowdness provided by Google Popular
Times (GPT) crowdsensed information often available at sheer scale
in any city. TransitCrowd’s key component is its one-time calibra-
tion process, which creates temporal signatures of the stations based
on historical GPT information, and regression-based machine learning
and live GPT to predict passenger flows. We assess TransitCrowd’s
estimation accuracy for two cities across a two-months period, i.e.,
New York and Washington., showing very promising results for both
estimation and real-time prediction of transit flows at subway stations.

Keywords: Public transport, Crowdsensing, Machine learning, Google
Popular Times
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1 Introduction

Transportation planners and researchers need accurate and precise data to
monitor and manage Public Transport PT systems. Today, Public Transport
Authorities (PTAs) rely on smartcard data and automated passenger counts
that can be used to estimate transit demand and its variation under differ-
ent operational conditions [1]. However, most PTAs are unwilling to share
this data easily, and if they do, it is usually restricted to a short time period.
Data are crucial to truly understand the complex dynamics of transit demand,
especially in the last decades, where public transit demand has faced many
challenges, such as the introduction of new on-demand services, the evolution
of new modes of transport, and disruptive events like the Covid19 pandemic.
According to the European Parliament’s Committee on Transport and Tourism
(TRAN), the usage of public transport will settle on a decrease of 10-15%
compared to the pre-pandemic levels in the next 3 years [2]. Despite this vari-
ation, PT is widely used in metropolitan areas and medium sized cities today.
Some examples are London (population of 9 million) where PT accounts for
5 million trips a day [3], and Amsterdam (population 900,000) where 300,000
passengers travel by PT on a normal weekday [4].

Recently, new technologies have been introduced and deployed, which pro-
vide multiple sources of data and information that can be utilized for demand
estimation and analysis [5]. The widespread of mobile devices enables the use
of Information and Communications Technology (ICT) by unleashing interest-
ing opportunities to improve the quality of PT. This large amount of smart
devices is a potential source of data according to the mobile crowdsensing
(MCS) paradigm [6].

In the literature, many types of crowdsensed data have been exploited for
PT analysis. An example is given by [7], which proposes a framework that
provides real time public transport data using crowdsensed information pro-
vided by passengers’ smartphones. The shortcomings of this approach are that
passengers have to actively contribute to the framework and that developing
a crowdsensed campaign from scratch requires a big effort. Most of the stud-
ies exploit WiFi and Bluetooth technologies as a measure of passengers [8][9].
Although these works can achieve an accurate and precise estimation of tran-
sit demand, they suffer severe drawbacks. First, they require the creation from
scratch of a new crowdsensed campaign which usually requires a big effort.
Second, they require user consent and cooperation.

Since 2015, Google has made available a new service called Google Pop-
ular Times (GPT) that is based on anonymized crowdsensed data passively
collected from Google users. GPT is a feature of Google Maps and Search that
visualises the temporal profile of the level of crowding of a certain location or
point of interest (retail shops, restaurants, public places). Hence, this informa-
tion can be potentially useful for assessing how busy a certain activity is. In
[10] the authors used GPT to model the demand at local businesses level.

In this paper we investigate the potential of GPT information to for public
transport demand estimation and prediction applications. This dataset has the
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advantage of being already provided by Google and not requiring new data
collection. Moreover, widespread availability of GPT opens up possibilities
for estimating public transport demand in areas where such information is
not typically collected. However, the main limitation of GPT is the lack of
transparency and details in the data acquisition and processing, as Google only
provides the information in an aggregated and normalised way, and at 1-hour
intervals. This study aims at overcoming this shortcoming by combining GPT
with real public transport data in order to leverage the GPT data for transit
demand estimation and prediction at subway stations.

Hence, in this paper, we explore the potential of exploiting GPT data as
substitute of transit data. Moreover, since GPT is worldwide available, and
provides live and historical information each hour, it can enrich transit data
where the transit data granularity is low. Finally, we show how GPT can be
used to estimate the in- and outflow of transit users at subway stations.

To pursue these goals, we design and test TransitCrowd, a framework that
is able to make live estimations of transit data exploiting only the GPT of
stations.

In summary, the contributions we make with this paper are as follows:
Contribution 1. We analyse and quantify the correlation between transit

entry and exit flow data in order to gain insight into the relationship between
passenger flows at subway stations and GPT information.

Then, we introduce the TransitCrowd tool, which is able to estimate and
predict transit demand data regardless of the granularity of the input transit
data. Our tool comprises two different estimators, a signature-based estimation
and a regression-based machine learning model.

Contribution 2. The first estimator (Reg estimator) is trained separately
in each city, it requires an initial transit dataset and focuses on obtaining the
maximum accuracy in the trained area. This tool is suited for areas where a
transit dataset is available with low granularity or that is limited on time.

Contribution 3. The second estimator (Sig estimator) is more flexible. It
gives a potentially transferable methodology without requiring starting transit
data, but at the cost of lower accuracy. This estimator can be leveraged in
case no transit data is available for the area under analysis.

The paper proceeds with an overview of the related works presented in the
next section, followed by a description of the data exploited in the study, the
methodology behind the framework, and evaluation of the results. Finally, the
last section gives conclusions of the work, and some final remarks.

2 Related works

Understanding how to leverage large-scale datasets is fundamental to inves-
tigate the potential of big data for public transport analysis [11]. Typical
approaches infer mobility of PT users’ from smartcard data and automated
data collection systems. These approaches have been used for instance to infer
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bus passengers origin-destination [12], to extract information about passen-
gers routines to predict transportation usage [13], or to measure the impact
of individual characteristics on PT accessibility [14]. The issue with this type
of data is that it is controlled by PTAs, and only a few share their datasets.
Consequently, the studies based on smartcard data are usually characterized
by a short data collection period or focus on a specific city.

During the past few years, several researches have exploited cellular net-
work usage (i.e., LTE) as alternative to automatic data collection methods.
In [15], the authors created a new framework able to exploit cellular data
to measure passenger flows in subway stations in Paris, France. Mobile and
wireless network data analysis can also be applied to classify subway users, dis-
tinguishing subway residents from commuters [16]. In [17] the authors created
a methodology that leverages cell phone usage as a proxy to extract passengers’
travel demand. Their findings help PTAs examine their public transportation
options and effectively develop new transit routes or expand current routes to
meet users’ requirements.

Unfortunately, these approaches carry significant drawbacks due to techni-
cal constraints, such as lack of location accuracy, poor network coverage, and
the unwillingness of network operators to share their datasets [18]. Similar to
mobile phone data, WiFi and Bluetooth technology have emerged in the liter-
ature to capture mobility of PT users. In particular, WiFi sensors have been
exploited to identify trajectories of metro passengers [19], to estimate real-
time passengers’ peak flow in order to avoid accidents [20], and to measure bus
passengers’ loads [21]. Although Bluetooth connections are explored more for
proximity-based studies, in [22] the authors leverage this technology to detect
bus passengers’ origin and destination, while in [23] the authors analyze pas-
senger dynamics and connectivity in Beijing subway. Another essential source
of data for counting crowds is cameras in combination with machine vision
approaches. Several works obtained interesting results studying the integration
of video information with WiFi connection [24][25][26].

Although these approaches are shown to obtain promising results, they
require every time new data collection campaigns for each specific city. This
problem raises the issue of comparing a developed methodology in differ-
ent cities since it would be challenging and expensive to carry multiple data
collections.

As an alternative, mobile crowdsensing (MCS) allows to collect mobil-
ity data from users, e.g. identifying their usual habits and inferring special
events [27]. The use of crowdsensed data has become a win-win solution in
different domains of transportation, such as monitoring traffic dynamics and
demand analysis on special events [28]. Crowdsensed-based approaches can
be applied to better tackle transit demand and understand citizens’ mobility.
For example, crowdsensed data from the web can help to detect origin and
destination of passengers in public transport [29].

In the context of MCS, this study focuses on a specific crowdsensed dataset,
the Google Popular Times (GPT), due to its characteristics of wide availability
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and ease to collect it. Despite this potential, few studies analyzed the pos-
sible importance of GPT for the transportation domain. In [30] the authors
focused on venue popularity, they developed a WiFi microcontroller to mea-
sure the real number of people in a place, the comparison of their data with
the corresponding GPT revealed promising results.

Another interesting analysis of GPT is presented in [31], where the tempo-
ral variation of electric vehicle charging demand using the GPT of the activities
around the charging stations was analysed. In [32], the authors analyze the
relationship between GPT, park use, and built-environment density.

GPT resulted a fundamental data source during Covid19 pandemic, many
studies exploited this dataset to analyze citizens’ mobility during lock-
down [33] [34], since live GPT values can be an important source to make
comparisons between different time periods. Unlike the above studies, this work
aims to exploit GPT in order to extract public transport demand information.
The closest work to our research is [35] that has the objective of investigating
the possibility of using GPT to predict traffic volumes in a specific area. Their
analysis indicated a clear relationship between GPT, traffic, and environmen-
tal performances. By contrast, no research analyzed the importance of GPT
for the public transport domain. In this study, we investigate the possibility
to provide an estimation of the passenger flows of transit stations relying only
on GPT data.

3 Dataset and Preliminary Analysis

In this section, we describe the dataset we exploit in our analysis of transit
stations demand.

3.1 Google Popular Times

GPT is a feature of Google maps that visualise the standard temporal profile of
the number of people visiting a place (retail shops, restaurants, public places)
as a vector of normalized per-hour weekly values in the range [0 : 100] (0:
closing hours, 1: lowest amount of visits per-hour in a week and 100: the
highest).

The GPT information is generated from data sent anonymously by smart-
phones with the google history location enabled, the location of these devices
is tracked in the background and sent to Google through WiFi or mobile
networks.

Fig. 1 shows and instance of how GPT displays information for a specific
place on Google Maps. We distinguish between two types of GPT information:
live and standard. The blue bars show the standard GPT, which tells us how
busy the place usually is at different times of the day. This standard view is
made by looking at past data from many weeks and taking an average. On the
other side, the red bar represents the live GPT value, reflecting the current
crowd density at the location, with updates every hour. The live GPT offers
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Fig. 1 An example of GPT record

(a) Washington stations (b) New York stations

Fig. 2 Maps of the cities considered in our study

real-time information, ensuring a thorough understanding of the location’s
current popularity dynamics.

The use of normalized values indicates the trend of an activity during a
week and inherently the factors that influence such behaviour (e.g., a restau-
rant that has more success during weekends in touristic areas or at lunchtime
in business districts). This data offers unexplored opportunities for linking
human mobility with activity pattern dynamics, since the nature behind the
GPT data is the individuals’ traces collected by Google when entering and
exiting the locations, and in between performing a the activity in the visited
place. However, this information hides the absolute quantity of the demand,
i.e. the real number of customers. In this work, we focus on leveraging GPT
of the subway stations to investigate if such information can be exploited to
determine the inflow and outflow of users at the same station.
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3.2 Transit Data

Our dataset includes the GPT for 105 subway stations from the Manhattan
region, NYC (fig. 2b), and 80 subway stations from Washington DC, USA
(fig. 2a). We considered the data shared by the PTAs of the two cities. For New
York the Metropolitan Transportation Authority (MTA) provides information
for boarding and alighting passengers for all the subway stations1, while for
Washington we exploited entrances and exits data provided by the Washington
Metropolitan Area Transit Authority (WMATA)2. The data of New York con-
sists of the number of turnstile entries and exits for subway stations aggregated
in four hour intervals. The information we considered includes 1.135 unique
turnstile positions that are associated with 732 station entrances or exits of
105 subway stations within the island of Manhattan. The data of Washington
include directly the information of entrances and exits per hour for every sub-
way station in the city, our dataset contains the entrances/exits values for 80
subway stations in Washington area. We collected two months of transit data
for both cities.

In order to compare the transit data with GPT we needed a dataset of the
same length. To this end, we exploited the first month of transit to create a
typical weekly profile made by averaging the transit data of the same hours
and days of the week.

To align the transit data with the GPT of stations, we adopt a time-based
aggregation approach for both the GPT and transit datasets. Washington tran-
sit data is provided on an hourly basis, allowing us to directly correlate each
transit value with its respective GPT value. In contrast, New York transit data
is segmented into 4-hour intervals. To match this with the GPT, we consoli-
date the GPT data by averaging values across the preceding four-hour span,
ensuring a comparison with the corresponding transit data point. It’s worth
noting that while this method ensures alignment with the corresponding tran-
sit data point, it introduces potential risks. Averaging over a four-hour period
can mask sudden pikes or drops in GPT within those intervals, potentially
leading to inaccuracies in our estimations.

3.3 Correlation Analysis

In a preliminary analysis phase, we want to understand which information
from the transit dataset of a station is the most similar to the GPT profile. The
scope is to understand how the increase or decrease of the GPT percentage is
correlated with the real amount of passengers entering and/or exiting from the
stations. To analyze the transit usage data and its correlation with the GPT
we use the following simple linear regression model:

Gh,s = βTh,s + ϵ, (1)

1Source: http://web.mta.info/developers/turnstile.html
2Source: https://www.wmata.com/initiatives/ridership-portal/Rail-Data-Portal.cfm

http://web.mta.info/developers/turnstile.html
https://www.wmata.com/initiatives/ridership-portal/Rail-Data-Portal.cfm
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(a) Greensboro Entrances
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(c) 175 Entrances
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(d) 207 Entrances
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(e) Greensboro Exit
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Fig. 3 Correlation between GPT and transit data for 4 exemplifying station, 2 in New
York and 2 in Washington
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where Gh,s is the GPT value for station s and hour of the week h, β represents
the regression coefficient, ϵ is the residual error, and T is the corresponding
transit data for the same station and hour. We tested this basic regression
model for both transit information (entrances and exits), the sum, and the
difference between the two. The performance of the regression models are
evaluated using the coefficient of determination, i.e., R2 score, which is the
proportion of variation explained by independent variables.

We began by analyzing the aggregated results from the two cities in our
dataset. Using the linear regression described in (1), we considered the stan-
dard GPT value across all stations in conjunction with data from entrances,
exits, the sum of entrances and exits, and the difference between entrances
and exits. The logic behind using these four variables is that GPT informa-
tion contains human traces of both people entering and exiting each station.
However, this information is expected to strongly depend on the volume of pas-
sengers transiting the station. Stations located in residential areas may reveal
a much larger number of individuals entering the station in the morning than
exiting, whereas the flow inverts in the afternoon peak when the commuters
return home from their workplaces. Working activities are instead expected to
show the opposite behavior. Therefore, we expect that GPT information con-
tains both inflow and outflow information with different relative importance
both from a spatial and a temporal dimension. The relation emerging from the
computed correlation will be at the basis of the models developed within the
TransitCrowd tool introduced and presented in the next section.

We compute the R2 score derived from comparing the entire dataset of the
standard GPT from all stations across both cities with the transit data. The
goal is to see if the overall pattern of GPT matches any specific set of transit
data more closely.

Analysing the R2 for all stations it is clear that for both cities the entrances
have generally a higher correlation (R2 = 0.91 New York and R2 = 0.81 Wash-
ington) than the exits (R2 = 0.70 New York and R2 = 0.71 Washington), and
the sum of entrances and exits result (R2 = 0.89 New York and R2 = 0.89
Washington) shows a much higher correlation than the difference entrances-
exits, which obtains the lowest scores of correlation (R2 = 0.29 New York and
R2 = 0.16 Washington). This outcome could be explained by the fact that pas-
sengers entering a station have to wait for the subway to arrive, hence leaving
a longer trace at the station as picked up by GPT, while the process of exiting
is generally faster. Despite the general trend suggesting that GPT is mainly
driven by the entrances profiles, at the single station level we notice the exis-
tence of a minority of the stations where the relationship is the opposite and
GPT is more correlated with the exit flows. Fig. 3 shows this important aspect
of the GPT-Transit relationship, we selected 2 stations per city, the R2 val-
ues and the regression lines reveal that certain stations have high correlation
with entrances (fig.3b,3c) and low correlation with exits (fig.3b, 3c) and at the
same time some stations reveal an opposite behavior; examples are stations
Greensboro (Washington) and 207st (New York). For both stations the GPT
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is more correlated with exits (fig.3e,3h) than entrances (fig.3a,3d), but these
remain a large minority of all analysed stations.

This characteristic of peculiar similarity to the exits of some stations
leads us to develop a specific profile for each station able to identify the
interconnection between the GPT and the transit data for a generic week.

4 The TransitCrowd Estimation Framework

The correlation analysis suggests that a linear combination of entrances and
exits at each subway station was used to generate the data visualised by the
Google Popular Times. Conversely, we can leverage the correlation between
these two data sources to be able to infer from GPT data their input param-
eters. This is the idea behind a novel data-driven approach to estimate and
predict transit demand, i.e. the TransitCrowd framework. However, the rela-
tive weights to assign to entrances and exit in this linear combination varies
by station, and within a station by time of day, day of week and in relation to
the volume of entries, exits and the time each individual dwells inside each sta-
tion. We do not seek to derive a functional relationship to derive the weights,
but instead we first develop a time series model to leverage the transit data
and the standard GPT data for each station individually (signature of a sta-
tion), which is used to define the weights in a data-drive approach and be
used in combination with live GPT information to predict the specific entries
and exits of each station. In order to rescale the demand to estimate and pre-
dict the actual entrances and exit flows, a suite of regression-based machine
learning models is trained using the same standard GPT data and the average
turnstile data.

Fig. 4 shows the process behind the TransitCrowd framework developed in
this study. The methodology aims at estimating the exit and entrance profiles
of every subway station in a city for a specific week. The inputs are the standard
GPT, the averaged transit data, and the live GPT. The framework combines
the two estimation tools, the Sig Estimator and the Reg Estimator. Both tools
estimate the flows of entrances and exits at subway stations, but with different
characteristics. The Reg estimator prioritizes the accuracy of the results in
terms of rescaling. The Sig Estimator is based on simpler statistics methods,
at the cost of a lower transferability compared to the Reg estimator.

For both estimators, we employ a station-specific model for each subway
station rather than a singular overarching model. This decision was made
to account for the unique characteristics and demand patterns of individual
stations. Each station, depending on its location, surrounding amenities, and
connectivity, can exhibit a distinct relationship of GPT and entrance and exit
patterns. By focusing our models to individual stations, we aim to capture
these characteristics more accurately. In the following, we describe the details
of the two estimation tools.
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Fig. 4 TransitCrowd framework, blue symbols represent input data, orange blocks are the
Sig estimator, and green ones the Reg estimator

4.1 Sig Estimator

The Sig estimator is composed by two interconnected modules: Signature
extraction, and Live Estimation. The first module aims at extracting the sig-
nature that characterizes the relationship between the GPT of a single station
and corresponding entrances and exits profiles. To extract this signature, we
exploit the standard GPT and the averaged entrances and exits as inputs.
First, we need to normalise the entrances and the exits data from the transit
dataset in order to replicate the GPT scale (0-100). To do so, we apply to both
entrances and exits a mix-man normalization scaling the dataset on the 0-1
interval and we then multiply by 100. The scaling procedure is the following:

tscaled =
t−min(T )

max(T )−min(T )
· 100, ∀t ∈ T, (2)

where T represents the exits or the entrances dataset for a single station for
the selected time period, min and max are the corresponding minimum and
maximum values within the same period; these two values are stored for each
station and will be used in the live estimation phase. Once scaled the transit
data, we compute the signature of the stations. The signature represents the
additive error between the standard GPT and the scaled exits and entrances.
This additive error captures the unique behavior of each station, emphasizing
its distinct characteristics. For each station, we compute two signatures, one for
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the entrances and one for the exits. It is important to note that this signature
is not merely an error or residual but a representation of the station’s unique
behavior in relation to the normalized transit data. The term signature was
chosen intentionally to underscore this specific station-level characteristic.

The signature calculation for entrances and exits, respectively, is the
following:

Sen,s = ten,scaled −GPTs, (3)

Sex,s = tex,scaled −GPTs, (4)

where S is the signature for the station s corresponding to the transit data of
entrances ten,scaled or exits tex,scaled.

In the second step, we try to estimate the real values of users exiting and
entering the subway stations for a specific week by leveraging the corresponding
GPT Live data. Specifically, we exploit as input the signatures Sex,s and Sen,s

extracted in the previous phase using past information and we combine them
with the information of the current week from the Live GPT. The estimation
function for the Entrances and Exits profiles of a week w is the following:

Enw,s = (Sen,s +GLs,w) · (max
en,s

−min
en,s

) + min
en,s

, (5)

Exw,s = (Sex,s +GLs,w) · (max
ex,s

−min
ex,s

) + min
ex,s

, (6)

where max and min are the same stored from (2), Sex,s is the signature of
exits for station s, and GL is the GPT Live data extracted for station s during
week w. The same function applies also to the estimation of the entrances
profile and it is repeated for every station in the dataset for 12 different weeks
after the signature extraction.

4.2 Reg Estimator

With the aim of estimating the entrances/exit flows from each subway sta-
tion, we selected as input the corresponding standard GPT and the averaged
entrances and exits to train a suite of ML models, which were selected among
the most widely and successfully used in the literature dealing with regres-
sion problems [36]. Our model is structured in two phases: regression training
and regression estimation. During the regression training phase, the standard
GPT, which encapsulates the historical crowdedness patterns of each station,
serves as our primary input. To enhance the model’s accuracy, we integrated a
temporal dimension into our analysis by including information about the day
of the week and the hour corresponding to the GPT value. The regression’s
target is shaped by the averaged data of entrances and exits, aggregated over
a four-week period for each station. It is pivotal to highlight that this training
approach is meticulously tailored to each station, ensuring a representation
of both entrance and exit dynamics. Transitioning to the regression estima-
tion phase, we leverage the model trained in the previous step. Instead of the
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standard GPT, here we incorporate the Live GPT for each station. This real-
time data, when combined with the specific day and hour corresponding to
the Live GPT value, empowers our model to estimate a week of entrance and
exit patterns, individually for each station in our dataset.

To validate the trained models, we employed the stratified k-fold cross-
validation method, specifically opting for the standard ML choice of 10 folds
[37]. This method is known for its robustness in evaluating model performance,
particularly with imbalanced datasets. Stratified k-fold cross-validation main-
tains the same class distribution in each fold as the entire dataset, reducing
bias and overfitting risks. It ensures accurate evaluation metrics and enhances
the model’s generalization to new data. In our study, each station is treated
individually, providing a customized validation for each. While detailed errors
for each fold aren’t provided due to space limits, our validation aims to ensure
model accuracy and generalizability across various stations and scenarios.

Moreover, each ML model has a set of hyperparameters that need to be
tuned in order to improve its performance. This process, commonly known as
“hyperparameter tuning”, is carried out by implementing the random search
method, which allows assessing the values of the hyperparameter with a larger
impact on model performance.

Using R2 as performance parameter, we assessed that the best-trained
model for our approach is the Extra trees regressor [38]. It is a model of ensem-
ble learning technique that aggregates the results of different de-correlated
decision trees. Unlike traditional decision tree methods, the Extra Trees regres-
sor selects random splits for each decision tree, which helps in adding an extra
layer of randomness and reducing the variance. This characteristic makes it
distinct from other ensemble methods, such as the Random Forest, where the
best split among a random subset is chosen. Due to its inherent randomness
and ability to handle large datasets with higher dimensionality, the Extra
Trees regressor is particularly well-suited for complex regression tasks where
capturing intricate patterns and relationships in the data is crucial. Once the
training and the choice of the model are done, we move to the real estimation
step. In this phase, we replace the GPT standard used for training with GPT
live of a specific week that we want to estimate.

5 Performance Evaluation

We evaluate the performance of TransitCrowd calculating the estimation
error at station level using the weighted Mean Absolute Percentage Error
(wMAPE) [39]. We start analyzing the results provided by the Sig Estimator.
As described in the previous section, the signature extraction is the first step
of Sig estimator.

Fig. 5 gives an example by presenting the signatures of entrances and exits
for the subway station ”50th” in New York, the first row of the plot reveals the
three datasets exploited for the signature extraction: standard GPT, entrances,
and exits (scaled 0-100). The second and the third row of the plot show the
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Fig. 5 Extraction of signatures profiles for subway station named “50th”

signature for the entrances and the one for the exits obtained by applying (3)
and (4). It is interesting to observe that for this station, the most significant
discrepancies between the GPT and the transit data occur during the morning
peaks for exits signature and in the afternoon for entrances signature. These
results indicate that the signature of this specific station assigns a higher weight
to the passengers exiting the station in the morning, and a higher weight to the
individuals exiting the station in the afternoon, suggesting that the station is
located in a working area where there is a higher share of commuters arriving
in the morning and leaving in the evening.

To further showcase the added value of the Sig estimation results for clas-
sifying stations’ behavior and identifying similarities between stations Fig. 6
shows the results of a simple k-means clustering for all stations in NYC. The
results showing the highest Silhouette score indicates 5 distinct clusters, with
four (indicated with cyan, purple, violet and green dots) containing the largest
part of the stations. Notably, the two major working areas, i.e. the areas
around Downtown/Wall Street and the one around Times Square, are clearly
identified. This analysis demonstrates the potential of the Sig estimator to



Springer Nature 2021 LATEX template

TransitCrowd: Estimating Transit Demand with Mobile Crowdsensing 15

Fig. 6 Clustering of stations based on the signatures estimations

identify commonalities in mobility patterns and classify the stations using a
data-driven approach. We will further explore this application opportunity in
future research.

Once the signatures for all stations are extracted from the reference month,
we are ready to leverage the GPT Live data for estimation of the real flows of
entrances and exits. Fig. 7 shows an example of the result of the estimation
process in a single station (Dupont Circle, Washington) for 1 week following
the signature extraction month. The upper part of the figure reveals the profile
of the GPT Live for the corresponding week, then the lower part presents the
real estimation for entrances and exits produced by applying the matching
signature. The figure depicts a good result for this single station, most of
the peaks reached by the ground-truth are replicated by the estimated flows.
It is interesting to notice that the estimation error for this station is stable
throughout the week, this is a first signal that our prediction results are not
deteriorating along different days.

We continue our analysis by looking at the results of Reg estimator. Fig. 8
presents the entrances estimation errors in terms of weighted Mean Absolute
Percentage Error (wMAPE) of Reg for New York stations at different hours
of the day. The wMAPE is expressed as:
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Fig. 7 Live Estimation results for sig estimator, profiles of the predicted and true values
of turnstile data for week 1 after the signature extraction, for station Dupont Circle, Wash-
ington

wMAPE =

∑n

i=1 ∥yi − yi∥∑n

j=1 yj
(7)

where yi are the estimated values, yi the observed values, or ground truth, and
n is the length of these two series.

From the maps it is interesting to notice that the stations in the center of
Manhattan are characterized by higher errors throughout the day. Moreover,
Fig. 8c depicts how the errors in the evening are larger than in other day
periods.

It is worth noting that other factors, such as station type, may also play a
role in these errors. Overall, this figure highlights the need for further analysis
and improvements to the Reg estimator to ensure more accurate entrance
estimations for subway stations in New York City.
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Fig. 8 Estimation error for stations in New York at different hours of a working day

Table 1 Estimation error for all stations of Manhattan, New York

Week after training Error Entrances(wMAPE) Error Exits(wMAPE)

Sig Reg Sig Reg

1 0.378 0.350 0.370 0.305
2 0.309 0.218 0.278 0.118
3 0.306 0.236 0.278 0.150
4 0.308 0.263 0.271 0.178
5 0.263 0.235 0.263 0.183
6 0.390 0.269 0.396 0.193

Having illustrated the estimation results for single stations for Sig and Reg
estimator, Fig. 9 shows the performances of our framework on entrances for
every station in our dataset in terms of wMAPE. The results are in form of a
cumulative distribution function (CDF), every station contributes to the plot
with a value of wMAPE that represents the estimation error made by the
framework to estimate the entrance flow.

As expected, the Reg estimator produces lower errors, since for both plots
the violet line representing Reg is always on the left of the Sig line. The Reg
estimator obtains errors lower than 0.2 for the 60% of the estimations, while
the errors of Sig estimator are less than 0.3 for the 60% of dataset in both
cities.

The difference between the two cities is more evident in the interval [0.6−1],
here we can notice that New York CDF shows higher errors, both estimators
reach values greater than 0.5 for a small portion of estimations (10%). The
main outcome of the CDFs is that Reg estimator obtains better estimation
results than Sig tool. Therefore, the proposed idea of an estimator prioritizing
accuracy (Reg tool) is confirmed.

Once analyzed the estimation performances on the full dataset we want to
analyze the evolution throughout the weeks, the scope is to recognize if our
results are deteriorating along the weeks after the training.
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Fig. 9 Cumulative estimation error entrances for all stations using both Sig and Reg esti-
mator

Tab. 1 shows the performance of this estimation process on the New York
dataset period for the two estimators, it includes the average wMAPE of the
estimations in all stations for the entrances and the exits for all the weeks
in the data collection interval. The table shows that the estimation process
is stable over the weeks, and the wMAPE is always contained in the interval
[0.2 − 0.3]. it is notable that for both estimators the error does not appear
to systematically increase along the different weeks, moreover the week with
the lower errors is the 5th after training. This means that for Sig estimator
the signatures extracted before week 1 are still valid also after the 2 months
of the data collection, at the same time the Reg estimator does not require
new training process after several weeks of estimations. Continuing with our
analysis, We want to understand if the estimation errors of TransitCrowd are
influenced by the amount of entrances/exits we are estimating. While Fig. 7,
representing a single station, displayed higher errors for peak entrance and exit
values, we present Fig. 10 to provide a broader perspective on how the model
performs at high and low entrance and exit values across multiple stations.

Fig. 10 presents two density plots in order to visualize the distribution of
the estimation errors over the values of entrances. The density plots are based
on Washington results and concern both the Sig estimator(fig.10a) and the Reg
estimator(fig.10b). Errors from Sig estimator are concentrated around wMAPE
values of 0.35. In contrast, as for the previous results, the performances of
Reg estimator are slightly better, and the errors focus on the interval [0.25−
0.3]. The significant outcome of Fig. 10 is that for both estimators errors
are not increasing with the rise of entrances values, it is remarkable that for
entrances around 200 − 250 the errors remain the same that for entrances
0− 50. This result indicates that, overall, our model performs well across the
entire dataset of stations, even during peak entrance and exit periods. Finally,
Fig. 11 presents the relationship between the prediction error of entrances and
the variation of true values from the values of the reference week (i.e. the
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Fig. 10 Distribution estimation error entrances along true values
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Fig. 11 Distribution estimation error entrances along variation from training week

week of the signature extraction). The y-axis indicates the accuracy of the
estimations (wMAPE between prediction and true values), while the x-axis
depicts the deviation of the true values from the reference week (Mean absolute
error between reference week and true values). These density plots reveal that
the estimation error is not influenced by the variation of each week, this means
that TransitCrowd is able to estimate with similar errors standard weeks and
weeks different from the reference one.

6 Discussion

Despite the promising results of our framework, TransitCrowd, for estimat-
ing public transport demand flows, there are several limitations that must be
discussed. The first limitation concerns the testing of the framework under
normal conditions only. While the signature concept was able to accurately
replicate the normal trends of transit demand, it is unclear how well it will
perform in unusual or unexpected situations, such as extreme weather events,
public holidays, or other events where the demand at subway stations signif-
icantly deviates from normal weekly patterns. The second limitation relates



Springer Nature 2021 LATEX template

20 TransitCrowd: Estimating Transit Demand with Mobile Crowdsensing

to the transferability of the methodology. Currently, our approach has only
been tested in two cities with similar characteristics, and it is uncertain how
well the methodology will be transferable to other cities. Different cities have
different structures, cultural behaviors, and daily routines, which can impact
the accuracy of the results. The signature concept is based on the correla-
tion between GPT data and entrance/exit flows at subway stations, and these
correlations may not exist in the same way in another city. Additionally, the
city’s infrastructure, such as the size and layout of the subway network, may
also impact the accuracy of the results. Further studies are required to fully
understand the conditions under which our framework can be successfully
transferred to other cities, as well as to determine the characteristics of cities
that are suitable for transfer. Another limitation of TransitCrowd is tied to
our station-specific modeling approach. While this approach provides a more
precise representation of each station’s transit demand patterns, it also intro-
duces logistical challenges. Deploying and managing multiple models for each
station can be resource-intensive. This is particularly true for the regressor
estimator, which demands more resources compared to the signature method.
As a consequence, these logistical challenges highlight an advantage of the sig-
nature method over the regression approach. The regression approach remains
a viable solution when data is available for a specific period, and the necessary
resources for model computation are available. These limitations of our study
highlight the importance of further investigation in this field to fully under-
stand the potential of using GPT data for estimating public transport demand
flows.

6.1 Future Works

In our future research, we aim to extend the scope of this study, with a
particular focus on enhancing the transferability of the Signature Estimator.
Transferability is a key feature of the signature model, and we plan to develop
it in the following manner: First, we will extract the signatures from a ”train-
ing city” where transit data is readily available, exploiting the TransitCrowd
tool for this purpose. Subsequently, we will analyze various characteristics of
the station, including its type (whether it is a transfer station or not), the
number of lines passing through it, and features of the surrounding catchment
area. This will involve studying both static and dynamic data. Static elements
include the quantity and types of activities around the station, while dynamic
elements are represented by temporal demand data, sourced from GPT of the
activities. Once we have identified the features that most significantly influ-
ence a station’s signature, we will apply this knowledge to a ”testing city”
where transit data is unavailable. Our goal will be to identify the signature of
stations in that city based on the characteristics defined in the previous steps.
After estimating the signatures for the stations in the testing city, we will rein-
troduce the Transitcrowd tool, specifically in the ”Live Estimation” section.
By applying the corresponding GPT Live to the station signatures, we aim to
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obtain an indication of the entrances and exits patterns at the stations in a
city where no transit data is available.

7 Conclusion

In this work, we investigated the potential to leverage GPT to estimate public
transport demand flows, specifically focusing on the subway. By exploring this
crowdsensed data, we identified that GPT data can be correlated with entrance
patterns of the majority of subway stations, while the crowdedness of a subset
of stations is linked with their exits flows.

We developed TransitCrowd, a framework that exploits GPT to make live
estimations of transit data at subway station level. Our framework is flexi-
ble, being composed of two distinct estimator tools. The first, Reg estimator,
prioritizes the accuracy of results focusing on the city level. The second, Sig
estimator, extracts signatures from stations revealing the temporal profile
of correlations between GPT and entrances/exits. Through this fundamental
information, it is possible to apply the presented methodology to other cities.
Finally, we evaluated the performance of TransitCrowd, estimating two months
of entrance/exit flows using as input the GPT Live data for each station.

The estimation process produced promising results whose accuracy appears
to be stable over the different weeks considered. We observed that Tran-
sitCrowd is able to properly estimate weeks that are different from the training
one, and that the errors are not influenced by the high or low values of
entrance/exit flows.

Future works will focus on analyzing the signatures of different stations to
identify influential factors, such as activities around the stations or sociode-
mographic data. Once such factors are detected, the final goal is to estimate
signatures for stations in another city in order to test the transferability of our
estimation process to a new environment.
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