Article (Scientific journals)
Robust Channel-Phase Based Physical-Layer Authentication for Multi-Carriers Transmission
Lu, Xinjin; Shi, Yuxin; Chen, Ru-Han et al.
2024In IEEE Internet of Things Journal, p. 1-1
Peer Reviewed verified by ORBi Dataset
 

Files


Full Text
Robust Channel-Phase Based Physical-Layer Authentication for Multi-Carriers Transmission.pdf
Author postprint (677.34 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
authentication performance; channel-phase; Physical-Layer Authentication (PLA); probability of false alarm; Authentication performance; Channel phase; Impersonation attack; Multi carrier transmission; Performance; Phase based; Physical layers; Physical-layer authentication; Power; Probability of false alarm; Signal Processing; Information Systems; Hardware and Architecture; Computer Science Applications; Computer Networks and Communications
Abstract :
[en] This paper focuses on the serious threat to security of key-based physical-layer authentication (PLA) by an eavesdropper using an elaborate impersonation attack, which aims to pass the authentication process illegally. To prevent the eavesdropper from decreasing the authentication performance, we propose a robust channel-phase based PLA scheme for multi-carriers transmission, which contains a novel two-level decision. Specifically, the first level decision is used to protect legitimate users from high receiver power caused by the elaborate attack of the eavesdropper, and the second one is used to further authenticate the user. The optimal threshold for accurately detecting the response signal with high receiver power is derived. Moreover, we provide the theoretical performance analysis for the proposed scheme, and derive the closed-form expressions of the probability of detection and false alarm via the numerical statistic and the proper approximation. Simulation results show the robustness of our proposed scheme and verify the effectiveness of the theoretical analysis.
Disciplines :
Computer science
Author, co-author :
Lu, Xinjin ;  National University of Defense Technology, Changsha, China ; State Key Laboratory of Complex Electromagnetic, Environment Effects on Electronics and Information System, Luoyang, China
Shi, Yuxin ;  National University of Defense Technology, Sixty-Third Research Institute, Nanjing, China
Chen, Ru-Han ;  National University of Defense Technology, Sixty-Third Research Institute, Nanjing, China
Yang, Zhifei;  State Key Laboratory of Complex Electromagnetic, Environment Effects on Electronics and Information System, Luoyang, China
An, Kang ;  National University of Defense Technology, Sixty-Third Research Institute, Nanjing, China
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Ncsr 'Demokritos', Institute of Informatics and Telecommunications, Athens, Greece
External co-authors :
yes
Language :
English
Title :
Robust Channel-Phase Based Physical-Layer Authentication for Multi-Carriers Transmission
Publication date :
08 October 2024
Journal title :
IEEE Internet of Things Journal
eISSN :
2327-4662
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Pages :
1-1
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Research Program of National University of Defense Technology
Funding text :
This work is supported in part by Research Program of National University of Defense Technology under Grant No. ZK24-60. An earlier version of this paper was presented at 2024 IEEE 24th International Conference on Communication Technology (IEEE ICCT 2024). Xinjin Lu is with the National University of Defense Technology, Changsha 410000, China, and is also with State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China (luxin-jin2023@163.com). Yuxin Shi, Ru-Han Chen and Kang An are with the Sixty-Third Research Institute, National University of Defense Technology, Nanjing 210000, China (e-mail: shiyuxin13@nudt.edu.cn, tx rhc22@nudt.edu.cn, ankang89@nudt.edu.cn). Zhifei Yang is with State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China (e-mail: zhifeiyang@163.com). Symeon Chatzinotas is with the Institute of Informatics and Telecommunications, NCSR \u2018Demokritos\u2019, 153 41 Athens, Greece (e-mail: schatzin@ieee.org). Corresponding author: Yuxin Shi.
Available on ORBilu :
since 18 December 2024

Statistics


Number of views
80 (1 by Unilu)
Number of downloads
46 (0 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBilu