Article (Périodiques scientifiques)
Impacts of data consistency levels in cloud-based NoSQL for data-intensive applications
Ferreira, Saulo; RODRIGUES DE MENDONÇA NETO, Júlio; Nogueira, Bruno et al.
2024In Journal of Cloud Computing, 13 (1)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s13677-024-00716-7.pdf
Postprint Auteur (2.44 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Cloud; Data consistency; Databases; NoSQL; Performance; Cassandras; Cloud-based; Consistency level; Database management; Management systems; MongoDB; Systems performance; Software; Computer Networks and Communications
Résumé :
[en] When using database management systems (DBMSs), it is common to distribute instance replicas across multiple locations for disaster recovery and scaling purposes. To efficiently geo-replicate data, it is crucial to ensure the data and its replicas remain consistent with the same and the most up-to-date data. However, DBMSs’ inner characteristics and external factors, such as the replication strategy and network latency, can affect system performance when dealing with data replication, especially when the replicas are deployed far apart from the others. Thus, it is essential to comprehend how achieving high data consistency levels in geo-replicated systems can impact systems performance. This work analyzes various data consistency settings for the widely used NoSQL DBMSs, namely MongoDB, Redis, and Cassandra. The analysis is based on real-world experiments in which DBMS nodes are deployed on cloud platforms in different locations, considering single and multiple region deployments. Based on the results of the experiments, we provide a comprehensive analysis regarding the system throughput and response time when executing reading and writing operations, pointing out scenarios where each DBMS could be better employed. Some of our findings include, for instance, that opting for strong data consistency significantly impacts Cassandra’s reading operations in the single-region deployment, while MongoDB writing operations are most affected in a multi-region scenario. Additionally, all of these DBMSs exhibit statistically significant variations across all scenarios in the multi-region setup when the data consistency is switched from weak to stronger level.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ferreira, Saulo;  Universidade Federal Rural de Pernambuco, Recife, Brazil
RODRIGUES DE MENDONÇA NETO, Júlio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Nogueira, Bruno;  Universidade Federal de Alagoas, Maceió, Brazil
Tiengo, Willy;  Universidade Federal de Alagoas, Maceió, Brazil
Andrade, Ermeson;  Universidade Federal Rural de Pernambuco, Recife, Brazil
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Impacts of data consistency levels in cloud-based NoSQL for data-intensive applications
Date de publication/diffusion :
décembre 2024
Titre du périodique :
Journal of Cloud Computing
eISSN :
2192-113X
Maison d'édition :
Springer Science and Business Media Deutschland GmbH
Volume/Tome :
13
Fascicule/Saison :
1
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 18 décembre 2024

Statistiques


Nombre de vues
70 (dont 1 Unilu)
Nombre de téléchargements
23 (dont 0 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
4
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu