Thèse de doctorat (Mémoires et thèses)
Structural Inference of Interacting Dynamical Systems
WANG, Aoran
2024
 

Documents


Texte intégral
Doctoral_thesis_AoranWANG.pdf
Postprint Auteur (4.02 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Structural Inference; AI4Science
Résumé :
[en] This thesis delves into advanced methodologies for structural inference in dynamical systems, particularly focusing on the challenge of deducing underlying interaction graphs from observable data. The research encapsulates six seminal papers that collectively push the boundaries of iterative optimization, deep active learning, reservoir computing, partial correlation coefficients, and state-space models. At the core of the contributions of this thesis is a novel iterative structural inference model utilizing variational autoencoders. This model systematically refines interactions, enhancing directional accuracy and incorporating regularization for better complex systems modeling. In addition, a deep active learning framework is introduced. It leverages neural networks to boost inference accuracy with minimal prior knowledge, demonstrating scalability and superior performance across large-scale systems. Our work also includes a robust benchmarking of structural inference methods, showcasing the efficacy of integrating reservoir computing to capture interactions within high-dimensional data contexts. This integration proves particularly effective in handling sparse data scenarios. Furthermore, the application of partial correlation coefficients offers a statistical technique to pinpoint direct interactions, facilitating scalability. The incorporation of state-space models addresses the challenges posed by irregularly observed trajectories and incomplete observations, enhancing the robustness of our approach. Extensive evaluations across simulated and real-world datasets confirm the scalability, precision, and robustness of these methodologies, establishing a new benchmark in the field of structural inference.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Aoran  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Computer Science > Team Jun PANG
Langue du document :
Anglais
Titre :
Structural Inference of Interacting Dynamical Systems
Date de soutenance :
22 novembre 2024
Institution :
Aoran WANG [Faculty of Science, Technology and Medicine], Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Informatique (DIP_DOC_0006_B)
Promoteur :
PANG, Jun  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Président du jury :
THEOBALD, Martin ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Membre du jury :
ISUFI, Elvin;  Delft University of Technology > Department of Intelligent Systems
MOTTIN, Davide;  AU - Aarhus University > Department of Computer Science
KELSEN, Pierre ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 17 décembre 2024

Statistiques


Nombre de vues
180 (dont 10 Unilu)
Nombre de téléchargements
377 (dont 11 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu