Communication publiée sur un site web (Colloques, congrès, conférences scientifiques et actes)
RANS: Highly-Parallelised Simulator for Reinforcement Learning based Autonomous Navigating Spacecrafts
EL HARIRY, Mhamed Matteo; RICHARD, Antoine; OLIVARES MENDEZ, Miguel Angel
202317th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA '23)
Peer reviewed
 

Documents


Texte intégral
2310.07393v1.pdf
Postprint Auteur (4.47 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Simulation; Spacecrafts; Reinforcement Learning; Trajectory Optimization.
Résumé :
[en] Nowadays, realistic simulation environments are essential to validate and build reliable robotic solutions. This is particularly true when using Reinforcement Learning (RL) based control policies. To this end, both robotics and RL developers need tools and workflows to create physically accurate simulations and synthetic datasets. Gazebo, MuJoCo, Webots, Pybullets or Isaac Sym are some of the many tools available to simulate robotic systems. Developing learning-based methods for space navigation is, due to the highly complex nature of the problem, an intensive data-driven process that requires highly parallelized simulations. When it comes to the control of spacecrafts, there is no easy to use simulation library designed for RL. We address this gap by harnessing the capabilities of NVIDIA Isaac Gym, where both physics simulation and the policy training reside on GPU. Building on this tool, we provide an open-source library enabling users to simulate thousands of parallel spacecrafts, that learn a set of maneuvering tasks, such as position, attitude, and velocity control. These tasks enable to validate complex space scenarios, such as trajectory optimization for landing, docking, rendezvous and more.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
EL HARIRY, Mhamed Matteo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
RICHARD, Antoine ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
RANS: Highly-Parallelised Simulator for Reinforcement Learning based Autonomous Navigating Spacecrafts
Date de publication/diffusion :
2023
Nom de la manifestation :
17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA '23)
Organisateur de la manifestation :
ESA ESTEC
Date de la manifestation :
11/10/2023
Sur invitation :
Oui
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
URL complémentaire :
Disponible sur ORBilu :
depuis le 10 décembre 2024

Statistiques


Nombre de vues
55 (dont 2 Unilu)
Nombre de téléchargements
53 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu