Blood-brain barrier; TEER; drug discovery; high throughput screening; lung; microfluidics; organ-on-chip; shear stress; skin; vascular barriers; Humans; Models, Biological; Electric Impedance; Blood-Brain Barrier/metabolism; Lab-On-A-Chip Devices; Biochemistry; Histology; Cell Biology
Abstract :
[en] The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.
Disciplines :
Biotechnology
Author, co-author :
Nguyen, Hoang-Tuan ; Finnadvance Ltd, Oulu, Finland ; Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
Rissanen, Siiri-Liisa; Finnadvance Ltd, Oulu, Finland
Peltokangas, Mimosa; Finnadvance Ltd, Oulu, Finland
Laakkonen, Tino; Finnadvance Ltd, Oulu, Finland
Kettunen, Jere; Finnadvance Ltd, Oulu, Finland
Barthod, Lara; Finnadvance Ltd, Oulu, Finland
Sivakumar, Ragul; Finnadvance Ltd, Oulu, Finland
Palojärvi, Anniina; Finnadvance Ltd, Oulu, Finland
Junttila, Pauliina; Finnadvance Ltd, Oulu, Finland
Talvitie, Jussi; Finnadvance Ltd, Oulu, Finland
BASSIS, Michele ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
NICKELS, Sarah Louise ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Kalvala, Sara; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
Ilina, Polina; Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
Tammela, Päivi; Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
Lehtonen, Sarka; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ; Neuroscience Center, University of Helsinki, Helsinki, Finland
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
WongCH, SiahKW, LoAW.Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–20. doi:10.1093/biostatistics/kxx069.
ScannellJW, BlanckleyA, BoldonH, WarringtonB.Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200. doi:10.1038/nrd3681.
DiMasiJA, FeldmanL, SecklerA, WilsonA. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87(3):272–277. doi:10.1038/clpt.2009.295.
CookD, Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., Pangalos, MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–431. doi:10.1038/nrd4309.
Ronaldson-BouchardK, Vunjak-NovakovicG. Organs-on-a-Chip: a fast track for engineered human tissues in drug development. Cell Stem Cell. 2018;22(3):310–324. doi:10.1016/j.stem.2018.02.011.
XiaoS, CoppetaJR, RogersHB, IsenbergBC, ZhuJ, OlalekanSA, McKinnonKE, DokicD, RashediAS, HaisenlederDJ. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8(1):14584. doi:10.1038/ncomms14584.
SwinneyDC, AnthonyJ. How were new medicines discovered?Nat Rev Drug Discov. 2011;10(7):507–519. doi:10.1038/nrd3480.
HuhD, MatthewsBD, MammotoA, Montoya-ZavalaM, HsinHY, IngberDE. Reconstituting organ-level lung functions on a chip. Sci (New York, NY). 2010;328(5986):1662–1668. doi:10.1126/science.1188302.
BarrileR, van der MeerAD, ParkH, FraserJP, SimicD, TengF, ConeglianoD, NguyenJ, JainA, ZhouM. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin Pharmacol Ther. 2018;104(6):1240–1248. doi:10.1002/cpt.1054.
MorganP, BrownDG, LennardS, AndertonMJ, BarrettJC, ErikssonU, FidockM, HamrénB, JohnsonA, MarchRE. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17(3):167–181. doi:10.1038/nrd.2017.244.
YangJ-W, ShenY-C, LinK-C, ChengS-J, ChenS-L, ChenC-Y, KumarPV, LinS-F, LuH-E, ChenG-Y. et al. Organ-on-a-Chip: opportunities for assessing the toxicity of particulate matter. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.00519.
WilkinsonJM. A review of complex in vitro cell culture stressing the importance of fluid flow and illustrated by organ on a chip liver models. Front Toxicol. 2023;5. doi:10.3389/ftox.2023.1170193.
SatoM, SasakiN, AtoM, HirakawaS, SatoK, SatoK. Microcirculation-on-a-Chip: A microfluidic platform for assaying blood- and Lymphatic-Vessel Permeability. PloS One. 2015;10(9):e0137301. doi:10.1371/journal.pone.0137301.
RennertK, SteinbornS, GrögerM, UngerböckB, JankA-M, EhgartnerJ, NietzscheS, DingerJ, KiehntopfM, FunkeH. et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119–131. doi:10.1016/j.biomaterials.2015.08.043.
TohY-C, LimTC, TaiD, XiaoG, van NoortD, YuH. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026–2035. doi:10.1039/b900912d.
AtaçB, WagnerI, HorlandR, LausterR, MarxU, TonevitskyAG, AzarRP, LindnerG. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip. 2013;13(18):3555–3561. doi:10.1039/c3lc50227a.
WeegmanBP, EssawyA, NashP, CarlsonAL, VoltzkeKJ, GengZ, JahaniM, BeckerBB, PapasKK, FirpoMT. et al. Nutrient regulation by continuous feeding for large-scale expansion of mammalian cells in spheroids. J Vis Exp. 2016;52224(115). doi:10.3791/52224-v.
WeegmanBP, NashP, CarlsonAL, VoltzkeKJ, GengZ, JahaniM, BeckerBB, PapasKK, FirpoMT. et al. Nutrient regulation by continuous feeding removes limitations on cell yield in the large-scale expansion of mammalian cell spheroids. PloS One. 2013;8(10):e76611. doi:10.1371/journal.pone.0076611.
RaghavanV, RbaibiY, Pastor-SolerNM, CarattinoMD, WeiszOA. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc Natl Acad Sci U S A. 2014;111(23):8506–8511.
DuanY, WeinsteinAM, WeinbaumS, WangT. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc Natl Acad Sci. 2010;107(50):21860–21865.
AbaciHE, ShenY-I, TanS, GerechtS. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease. Sci Rep. 2014;4(1):4951. doi:10.1038/srep04951.
LuD, KassabGS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface. 2011;8(63):1379–1385. doi:10.1098/rsif.2011.0177.
ZakkarM, AngeliniGD, EmanueliC. Regulation of vascular endothelium inflammatory signalling by shear stress. Curr Vasc Pharmacol. 2016;14(2):181–186. doi:10.2174/1570161114666151202205139.
IchiokaS, ShibataM, KosakiK, SatoY, HariiK, KamiyaA. Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res. 1997;72(1):29–35. doi:10.1006/jsre.1997.5170.
HuangY, QianJ-Y, ChengH, LiX-M. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells. 2021;13(7):894–913. doi:10.4252/wjsc.v13.i7.894.
JiQ, WangYL, XiaLM, YangY, WangCS, MeiYQ. High shear stress suppresses proliferation and migration but promotes apoptosis of endothelial cells co-cultured with vascular smooth muscle cells via down-regulating MAPK pathway. J Cardiothorac Surg. 2019;14(1):216. doi:10.1186/s13019-019-1025-5.
Real-time force and frequency analysis of engineered human heart tissue derived from induced pluripotent stem cells using magnetic sensing - PubMed. https://pubmed.ncbi.nlm.nih.gov/27600722/.
JeongS, KimS, BuonocoreJ, ParkJ, WelshCJ, LiJ, HanA. A three-dimensional arrayed microfluidic blood–brain barrier model with integrated electrical sensor array. IEEE Trans Biomed Eng. 2018;65(2):431–439. doi:10.1109/TBME.2017.2773463.
Simple circuit equivalents for the constant phase element | PloS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248786.
IshahakM, HillJ, AminQ, WubkerL, HernandezA, MitrofanovaA, SloanA, FornoniA, AgarwalA. Modular microphysiological system for modeling of biologic barrier function. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.581163.
KälväläS. et al. Air-liquid interface culture of midbrain organoids improves neuronal functionality and integration of microglia. 2023. Preprint at doi:10.1101/2023.10.10.561672.
PiantinoM, LouisF, Shigemoto-MogamiY, KitamuraK, SatoK, YamaguchiT, KawabataK, YamamotoS, IwasakiS, HirabayashiH. et al. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio. 2022;14:100232. doi:10.1016/j.mtbio.2022.100232.
GardAL, LuuRJ, MillerCR, MaloneyR, CainBP, MarrEE, BurnsDM, GaiblerR, MulhernTJ, WongCA. et al. High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro. Sci Rep. 2021;11(1):14961. doi:10.1038/s41598-021-94095-7.
WangYI, ShulerML. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip. 2018;18(17):2563. doi:10.1039/C8LC00394G.
YangY, FathiP, HollandG, PanD, WangNS, EschMB. Pumpless microfluidic devices for generating healthy and diseased endothelia. Lab Chip. 2019;19(19):3212–3219. doi:10.1039/C9LC00446G.
WangYI, OleagaC, LongCJ, EschMB, McAleerCW, MillerPG, HickmanJJ, ShulerML. Self-contained, low-cost body-on-a-chip systems for drug development. Exp Biol Med (Maywood). 2017;242(17):1701–1713. doi:10.1177/1535370217694101.
WangYI, AbaciHE, ShulerML. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114(1):184–194. doi:10.1002/bit.26045.
EschMB, ProtJ-M, WangYI, MillerP, Llamas-VidalesJR, NaughtonBA, ApplegateDR, ShulerML. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab Chip. 2015;15(10):2269–2277. doi:10.1039/C5LC00237K.
SungJH, KamC, ShulerML. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip. 2010;10(4):446–455. doi:10.1039/b917763a.
ZoioP, Lopes-VenturaS, OlivaA. Barrier-on-a-Chip with a modular architecture and integrated sensors for real-time measurement of biological Barrier function. Micromachines. 2021;12(7):816. doi:10.3390/mi12070816.
MiyazakiT, HiraiY, KameiK, TsuchiyaT, TabataO. Design strategy of electrode patterns based on finite element analysis in microfluidic device for Trans-Epithelial Electrical Resistance (TEER) measurement. Elect Comm in Japan. 2021;104(2):e12296. doi:10.1002/ecj.12296.
ShuvoOI, IslamMN. Sensitivity analysis of the tetrapolar electrical impedance measurement systems using COMSOL multiphysics for the non-uniform and inhomogeneous medium. Dhaka Univ J Sci. 2016;64(1):7–13. doi:10.3329/dujs.v64i1.28517.
KhireTS, NehillaBJ, GetpreecharsawasJ, GrachevaME, WaughRE, McGrathJL. Finite element modeling to analyze TEER values across silicon nanomembranes. Biomed Microdevices. 2018;20(1):11. doi:10.1007/s10544-017-0251-7.
SrinivasanB, KolliAR, EschMB, AbaciHE, ShulerML, HickmanJJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–126. doi:10.1177/2211068214561025.
HelmMWVD, HenryOYF, BeinA, Hamkins-IndikT, CronceMJ, LeineweberWD, OdijkM, van der MeerAD, EijkelJCT, IngberDE. et al. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip. 2019;19(3):452–463. doi:10.1039/C8LC00129D.
VighJP, KincsesA, OzgürB, WalterFR, Santa-MariaAR, ValkaiS, VastagM, NeuhausW, BrodinB, DérA. et al. Transendothelial electrical resistance measurement across the blood–brain barrier: a critical review of methods. Micromachines. 2021;12(6):685. doi:10.3390/mi12060685.
YesteJ, IllaX, GutiérrezC, SoléM, GuimeràA, VillaR. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures. J Phys D: Appl Phys. 2016;49(37):375401. doi:10.1088/0022-3727/49/37/375401.
TuK-H, YuL-S, SieZ-H, HsuH-Y, Al-JamalKT, WangJTW, ChiangY-Y. Development of real-time transendothelial electrical resistance monitoring for an in vitro blood-brain barrier system. Micromachines. 2020;12(1):37. doi:10.3390/mi12010037.
Blood–brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses |. PNAS. https://www.pnas.org/doi/10.1073/pnas.2021915118.
CosoloWC, MartinelloP, LouisWJ, ChristophidisN. Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol. 1989;256(2):R443–R447. doi:10.1152/ajpregu.1989.256.2.R443.
YuanW, LvY, ZengM, FuBM. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res. 2009;77(2):166–173. doi:10.1016/j.mvr.2008.08.004.
MészárosM, PhanTHM, VighJP, PorkolábG, KocsisA, PáliEK, PolgárTF, WalterFR, BologninS, SchwambornJC. et al. Targeting human endothelial cells with glutathione and alanine increases the crossing of a polypeptide nanocarrier through a blood–brain barrier model and entry to human brain organoids. Cells. 2023;12(3):503. doi:10.3390/cells12030503.
ZhongH, RenZ, WangX, MiaoK, NiW, MengY, LuL, WangC, LiuW, DengC-X. et al. Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. Int J Biol Sci. 2020;16(8):1450–1462. doi:10.7150/ijbs.44414.
BreitkreutzD, SchoopVM, MiranceaN, BaurM, StarkH-J, FusenigNE. Epidermal differentiation and basement membrane formation by HaCaT cells in surface transplants. Eur J Cell Biol. 1998;75(3):273–286. doi:10.1016/S0171-9335(98)80123-4.
HasegawaH, NaitoI, NakanoK, MomotaR, NishidaK, TaguchiT, SadoY, NinomiyaY, OhtsukaA. The distributions of type IV collagen.ALPHA. chains in basement membranes of human epidermis and skin appendages. Arch Histol Cytol. 2007;70(4):255–265. doi:10.1679/aohc.70.255.
Deinhardt-EmmerS, RennertK, SchickeE, CseresnyésZ, WindolphM, NietzscheS, HellerR, SiwczakF, HauptKF, CarlstedtS. et al. Co-infection with staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication. 2020;12(2):025012. doi:10.1088/1758-5090/ab7073.
DoryabA, TaskinMB, StahlhutP, SchröppelA, WagnerDE, GrollJ, SchmidO. A biomimetic, copolymeric membrane for cell-stretch experiments with pulmonary epithelial cells at the air-liquid interface. Adv Funct Mater. 2021;31(10):2004707. doi:10.1002/adfm.202004707.
TogamiK, YamaguchiK, ChonoS, TadaH. Evaluation of permeability alteration and epithelial–mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and calu-3 cells: development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis. J Pharmacol Toxicol Methods. 2017;86:19–27. doi:10.1016/j.vascn.2017.02.023.
BenamKH, VillenaveR, LucchesiC, VaroneA, HubeauC, LeeH-H, AlvesSE, SalmonM, FerranteTC, WeaverJC. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13(2):151–157. doi:10.1038/nmeth.3697.
ChangS-H, KoP-L, LiaoW-H, PengC-C, TungY-C. Transwell insert-embedded microfluidic devices for time-lapse monitoring of alveolar epithelium barrier function under various stimulations. Micro (Basel). 2021;12(4):406. doi:10.3390/mi12040406.
WuJ, WangY, LiuG, JiaY, YangJ, ShiJ, DongJ, WeiJ, LiuX. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res. 2018;51(2):e6950. doi:10.1590/1414-431x20176950.
LieberM, SmithB, SzakalA, Nelson-ReesW, TodaroG. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17:62–70. doi:10.1002/ijc.2910170110.