DAOUDI, Nadia ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Jacques KLEIN ; Luxembourg Institute of Science and Technology, Luxembourg
KIM, Kisub ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Tegawendé François d A BISSYANDE ; Independent Researcher, Hongkong
ALLIX, Kevin ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Jacques KLEIN ; Independent Researcher, France
Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of android apps for the research community. In Proceedings of the 13th international conference on mining software repositories. 468-471.
Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss, Vol. 14. 23-26.
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv: 1607. 06450 (2016).
Naseef-Ur-Rahman Chowdhury, Ahshanul Haque, Hamdy Soliman, Mohammad Sahinur Hossen, Tanjim Fatima, and Imtiaz Ahmed. 2023. Android malware Detection using Machine learning: A Review. In Intelligent Systems Conference. Springer, 507-522.
N Daoudi, J Samhi, A K Kabore, K Allix, T F Bissyandé, and J Klein. 2021. Dexray: A simple, yet effective deep learning approach to android malware detection based on image representation of bytecode. In International Workshop on Deployable ML for Security Defense.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810. 04805 (2018).
Yuxin Ding, Xiao Zhang, Jieke Hu, and Wenting Xu. 2020. Android malware detection method based on bytecode image. Journal of Ambient Intelligence and Humanized Computing (2020).
Hossein Fereidooni, Mauro Conti, Danfeng Yao, and Alessandro Sperduti. 2016. ANASTASIA: ANdroid mAlware detection using STatic analySIs of Applications. In 2016 8th IFIP international conference on new technologies, mobility and security (NTMS). IEEE, 1-5.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778.
R Hebbar, P Papadopoulos, R Reyes, A F Danvers, A J Polsinelli, S Moseley, D Sbarra, M R Mehl, and S Narayanan. 2021. Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices. Audio, Speech, and Music Processing (2021).
TonTon Hsien-De Huang and Hung-Yu Kao. 2018. R2-d2: Color-inspired convolutional neural network (cnn)-based android malware detections. In 2018 IEEE International Conference on Big Data.
Yunjie Ji, Hao Liu, Bolei He, Xinyan Xiao, Hua Wu, and Yanhua Yu. 2020. Diversified multiple instance learning for document-level multi-aspect sentiment classification. In EMNLP.
Ya Pan, Xiuting Ge, Chunrong Fang, and Yong Fan. 2020. A systematic literature review of android malware detection using static analysis. IEEE Access 8 (2020), 116363-116379.
Abdurrahman Pektas and Tankut Acarman. 2020. Deep learning for effective Android malware detection using API call graph embeddings. Soft Computing 24 (2020), 1027-1043.
Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020. A survey of android malware detection with deep neural models. ACM Computing Surveys (CSUR) 53, 6 (2020), 1-36.
Günter Rote. 1991. Computing the minimum Hausdorff distance between two point sets on a line under translation. Inform. Process. Lett. 38, 3 (1991), 123-127.
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating errors. nature 323, 6088 (1986), 533-536.
HR Sandeep. 2019. Static analysis of android malware detection using deep learning. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 841-845.
Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. 2021. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Advances in neural information processing systems 34 (2021), 2136-2147.
K Song, L Bing, W Gao, J Lin, L Zhao, J Wang, C Sun, X Liu, and Q Zhang. 2019. Using customer service dialogues for satisfaction analysis with context-assisted multiple instance learning. In EMNLP.
Tiezhu Sun, Kevin Allix, Kisub Kim, Xin Zhou, Dongsun Kim, David Lo, Tegawendé F Bissyandé, and Jacques Klein. 2023. Dexbert: effective, task-agnostic and fine-grained representation learning of Android bytecode. IEEE Transactions on Software Engineering (2023).
Tiezhu Sun, Nadia Daoudi, Kevin Allix, and Tegawendé F Bissyandé. 2021. Android malware detection: looking beyond dalvik bytecode. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). IEEE, 34-39.
Tiezhu Sun, Weiguo Pian, Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2023. LaFiCMIL: Rethinking Large File Classification from the Perspective of Correlated Multiple Instance Learning. arXiv preprint arXiv: 2308. 01413 (2023).
Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019. Malscan: Fast market-wide mobile malware scanning by social-network centrality analysis. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 139-150.
Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh. 2021. Nyströmformer: A nyström-based algorithm for approximating self-attention. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 14138-14148.
Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Selfevolving android malware detection system. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 47-62.
Yang Yang, Xuehui Du, Zhi Yang, and Xing Liu. 2021. Android malware detection based on structural features of the function call graph. Electronics 10, 2 (2021), 186.
Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Sarah E Coupland, and Yalin Zheng. 2022. Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18802-18812.
Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. 2019. Lookahead optimizer: k steps forward, 1 step back. Advances in neural information processing systems 32 (2019).
Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, and Min Yang. 2020. Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware. In Proceedings of the 2020 ACM SIGSAC conference on computer and communications security. 757-770.