Profil

SUN Tiezhu

ORCID
0000-0001-7141-8488
Main Referenced Co-authors
BISSYANDE, Tegawendé  (12)
KLEIN, Jacques  (12)
TANG, Xunzhu  (6)
ALLIX, Kevin  (5)
KIM, Kisub  (5)
Main Referenced Keywords
Android Malware Analysis (2); Malicious Payload Localization (2); Android (1); Android app analysis (1); Android apps (1);
Main Referenced Disciplines
Computer science (14)

Publications (total 14)

The most downloaded
631 downloads
SUN, T., DAOUDI, N., ALLIX, K., & BISSYANDE, T. F. D. A. (2021). Android Malware Detection: Looking beyond Dalvik Bytecode. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). doi:10.1109/ASEW52652.2021.00019 https://hdl.handle.net/10993/48892

The most cited

23 citations (Scopus®)

SUN, T., DAOUDI, N., ALLIX, K., & BISSYANDE, T. F. D. A. (2021). Android Malware Detection: Looking beyond Dalvik Bytecode. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). doi:10.1109/ASEW52652.2021.00019 https://hdl.handle.net/10993/48892

SONG, Y., SUN, T., TANG, X., RAJPUT, P. K., BISSYANDE, T., & KLEIN, J. (16 November 2025). Measuring LLM Code Generation Stability via Structural Entropy [Paper presentation]. 40th IEEE/ACM International Conference on Automated Software Engineering, Seoul, South Korea.
Peer reviewed

SUN, T., ALECCI, M., SONG, Y., TANG, X., KIM, K., SAMHI, J., BISSYANDE, T. F. D. A., & KLEIN, J. (2025). RAML: Toward Retrieval-Augmented Localization of Malicious Payloads in Android Apps. In The 40th IEEE/ACM International Conference on Automated Software Engineering, ASE 2025. IEEE/ACM.
Peer reviewed

TANG, X., SUN, T., SONG, Y., Siyuan Ma, KLEIN, J., & BISSYANDE, T. F. D. A. (07 September 2025). ExpertCache: GPU-Efficient MoE Inference through Reinforcement Learning-Guided Expert Selection [Paper presentation]. The 41st International Conference on Software Maintenance and Evolution, New Ideas and Emerging Results Track.
Peer reviewed

SUN, T., ALECCI, M., PILGUN, A., SONG, Y., TANG, X., SAMHI, J., BISSYANDE, T. F. D. A., & KLEIN, J. (2025). MalLoc: Toward Fine-grained Android Malicious Payload Localization via LLMs. In The 41st International Conference on Software Maintenance and Evolution (ICSME) 2025 conference. IEEE. doi:10.1109/ICSME64153.2025.00076
Peer reviewed

PIAN, W., LI, Y., TIAN, H., SUN, T., SONG, Y., TANG, X., HABIB, A., KLEIN, J., & BISSYANDE, T. (2025). You Don’t Have to Say Where to Edit! jLED – Joint Learning to Localize and Edit Source Code. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3712187
Peer Reviewed verified by ORBi

SUN, T. (2024). Boosting Android Malware Learning [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/63170

SUN, T., DAOUDI, N., PIAN, W., KIM, K., ALLIX, K., BISSYANDE, T., & KLEIN, J. (2024). Temporal-Incremental Learning for Android Malware Detection. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3702990
Peer Reviewed verified by ORBi

KIM, K., Kim, J., Park, B., KIM, D., Chong, C. Y., Wang, Y., SUN, T., Tang, D., KLEIN, J., & BISSYANDE, T. (2024). DataRecipe --- How to Cook the Data for CodeLLM? In DataRecipe --- How to Cook the Data for CodeLLM?New York City, United States: Association for Computing Machinery (ACM). doi:10.1145/3691620.3695593
Peer reviewed

SUN, T., DAOUDI, N., KIM, K., ALLIX, K., BISSYANDE, T., & KLEIN, J. (2024). DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware. In DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware. New York City, United States: Association for Computing Machinery (ACM). doi:10.1145/3674805.3690745
Peer reviewed

LI, Y., DANG, X., Tian, H., SUN, T., Wang, Z., Ma, L., KLEIN, J., & BISSYANDE, T. F. D. A. (2024). An Empirical Study of AI Techniques in Mobile Applications. Journal of Systems and Software. doi:10.1016/j.jss.2024.112233
Peer Reviewed verified by ORBi

SUN, T., PIAN, W., DAOUDI, N., ALLIX, K., BISSYANDE, T., & KLEIN, J. (2024). LaFiCMIL: Rethinking Large File Classification from the Perspective of Correlated Multiple Instance Learning. In A. Rapp & L. Di Caro (Eds.), Natural Language Processing and Information Systems - 29th International Conference on Applications of Natural Language to Information Systems, NLDB 2024, Proceedings. Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-031-70239-6_5
Peer reviewed

SUN, T., ALLIX, K., KIM, K., Zhou, X., KIM, D., Lo, D., Bissyande, T. F., & KLEIN, J. (01 September 2023). DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode. IEEE Transactions on Software Engineering, 49 (10), 4691 - 4706. doi:10.1109/TSE.2023.3310874
Peer Reviewed verified by ORBi

PIAN, W., Peng, H., TANG, X., SUN, T., TIAN, H., Habib, A., KLEIN, J., & BISSYANDE, T. F. D. A. (February 2023). MetaTPTrans: A Meta Learning Approach for Multilingual Code Representation Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 37 (4), 5239-5247. doi:10.1609/aaai.v37i4.25654
Peer reviewed

SUN, T., DAOUDI, N., ALLIX, K., & BISSYANDE, T. F. D. A. (2021). Android Malware Detection: Looking beyond Dalvik Bytecode. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). doi:10.1109/ASEW52652.2021.00019
Peer reviewed

Contact ORBilu