SUN, T., ALLIX, K., KIM, K., Zhou, X., KIM, D., Lo, D., Bissyande, T. F., & KLEIN, J. (01 September 2023). DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode. IEEE Transactions on Software Engineering, 49 (10), 4691 - 4706. doi:10.1109/TSE.2023.3310874 Peer Reviewed verified by ORBi |
LOTHRITZ, C., LEBICHOT, B., ALLIX, K., EZZINI, S., BISSYANDE, T. F. D. A., KLEIN, J., Boytsov, A., Lefebvre, C., & Goujon, A. (2023). Evaluating the Impact of Text De-Identification on Downstream NLP Tasks. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa). Tartu, Estonia: University of Tartu Library. Peer reviewed |
SOUANI, B., KHANFIR, A., BARTEL, A., ALLIX, K., & LE TRAON, Y. (2022). Android Malware Detection Using BERT. In Z. Jianying, Applied Cryptography and Network Security Workshops (pp. 575–591). Berlin, Germany: Springer. doi:10.1007/978-3-031-16815-4_31 Peer reviewed |
ARSLAN, Y., LEBICHOT, B., ALLIX, K., VEIBER, L., Lefebvre, C., Boytsov, A., Goujon, A., BISSYANDE, T. F. D. A., & KLEIN, J. (2022). Towards Refined Classifications Driven by SHAP Explanations. In A. Holzinger, P. Kieseberg, A. M. Tjoa, ... E. Weippl (Eds.), Machine Learning and Knowledge Extraction (pp. 68-81). Springer. Peer reviewed |
LOTHRITZ, C., LEBICHOT, B., ALLIX, K., VEIBER, L., BISSYANDE, T. F. D. A., KLEIN, J., Boytsov, A., Goujon, A., & Lefebvre, C. (2022). LuxemBERT: Simple and Practical Data Augmentation in Language Model Pre-Training for Luxembourgish. In Proceedings of the Language Resources and Evaluation Conference, 2022 (pp. 5080-5089). Peer reviewed |
SAMHI, J., GAO, J., DAOUDI, N., Graux, P., Hoyez, H., Sun, X., ALLIX, K., BISSYANDE, T. F. D. A., & KLEIN, J. (2022). JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis. In 44th International Conference on Software Engineering (ICSE 2022). doi:10.1145/3510003.3512766 Peer reviewed |
DAOUDI, N., ALLIX, K., BISSYANDE, T. F. D. A., & KLEIN, J. (May 2022). A Deep Dive inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores. ACM Transactions on Privacy and Security, 25 (2). doi:10.1145/3503463 Peer Reviewed verified by ORBi |
ARSLAN, Y., LEBICHOT, B., ALLIX, K., VEIBER, L., Lefebvre, C., BOYTSOV, A., Goujon, A., BISSYANDE, T. F. D. A., & KLEIN, J. (2022). On the Suitability of SHAP Explanations for Refining Classifications. In In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022). doi:10.5220/0010827700003116 Peer reviewed |
ARSLAN, Y., ALLIX, K., Lefebvre, C., Boytsov, A., BISSYANDE, T. F. D. A., & KLEIN, J. (2022). Exploiting Prototypical Explanations for Undersampling Imbalanced Datasets. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1449-1454). doi:10.1109/ICMLA55696.2022.00228 Peer reviewed |
SUN, T., DAOUDI, N., ALLIX, K., & BISSYANDE, T. F. D. A. (2021). Android Malware Detection: Looking beyond Dalvik Bytecode. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). doi:10.1109/ASEW52652.2021.00019 Peer reviewed |
LOTHRITZ, C., ALLIX, K., LEBICHOT, B., VEIBER, L., BISSYANDE, T. F. D. A., & KLEIN, J. (2021). Comparing MultiLingual and Multiple MonoLingual Models for Intent Classification and Slot Filling. In 26th International Conference on Applications of Natural Language to Information Systems (pp. 367-375). Springer. doi:10.1007/978-3-030-80599-9_32 Peer reviewed |
ARSLAN, Y., ALLIX, K., VEIBER, L., LOTHRITZ, C., BISSYANDE, T. F. D. A., KLEIN, J., & Goujon, A. (2021). A Comparison of Pre-Trained Language Models for Multi-Class Text Classification in the Financial Domain. In Companion Proceedings of the Web Conference 2021 (WWW '21 Companion), April 19--23, 2021, Ljubljana, Slovenia (pp. 260–268). New York, United States: Association for Computing Machinery. doi:10.1145/3442442.3451375 Peer reviewed |
RIOM, T., SAWADOGO, D. D. A., ALLIX, K., BISSYANDE, T. F. D. A., MOHA, N., & KLEIN, J. (29 March 2021). Revisiting the VCCFinder approach for the identification of vulnerability-contributing commits. Empirical Software Engineering, 26. doi:10.1007/s10664-021-09944-w Peer Reviewed verified by ORBi |
DAOUDI, N., ALLIX, K., BISSYANDE, T. F. D. A., & KLEIN, J. (2021). Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection. Empirical Software Engineering, 26. doi:10.1007/s10664-021-09955-7 Peer Reviewed verified by ORBi |
SAMHI, J., ALLIX, K., BISSYANDE, T. F. D. A., & KLEIN, J. (2021). A First Look at Android Applications in Google Play related to Covid-19. Empirical Software Engineering. doi:10.1007/s10664-021-09943-x Peer Reviewed verified by ORBi |
DAOUDI, N., SAMHI, J., KABORE, A. K., ALLIX, K., BISSYANDE, T. F. D. A., & KLEIN, J. (2021). DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode. In Communications in Computer and Information Science. Springer. doi:10.1007/978-3-030-87839-9_4 Peer reviewed |
LOTHRITZ, C., ALLIX, K., VEIBER, L., KLEIN, J., & BISSYANDE, T. F. D. A. (2020). Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition. In Proceedings of the 28th International Conference on Computational Linguistics (pp. 3750–3760). Peer reviewed |
VEIBER, L., ALLIX, K., ARSLAN, Y., BISSYANDE, T. F. D. A., & KLEIN, J. (2020). Challenges Towards Production-Ready Explainable Machine Learning. In L. VEIBER, K. ALLIX, Y. ARSLAN, T. F. D. A. BISSYANDE, ... J. KLEIN, Proceedings of the 2020 USENIX Conference on Operational Machine Learning (OpML 20). USENIX Association. Peer reviewed |
ALLIX, K., BISSYANDE, T. F. D. A., KLEIN, J., & LE TRAON, Y. (2016). AndroZoo: Collecting Millions of Android Apps for the Research Community. In Proceedings of the 13th International Workshop on Mining Software Repositories (pp. 468--471). New York, NY, USA, Unknown/unspecified: ACM. doi:10.1145/2901739.2903508 Peer reviewed |
HURIER, M., ALLIX, K., BISSYANDE, T. F. D. A., KLEIN, J., & LE TRAON, Y. (2016). On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights on Building Ground Truths of Android Malware. In Detection of Intrusions and Malware, and Vulnerability Assessment - 13th International Conference (pp. 142--162). Springer. doi:10.1007/978-3-319-40667-1_8 Peer reviewed |
ALLIX, K. (2015). Challenges and Outlook in Machine Learning-based Malware Detection for Android [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/24900 |
LI, L., ALLIX, K., LI, D., BARTEL, A., BISSYANDE, T. F. D. A., & KLEIN, J. (2015). Potential Component Leaks in Android Apps: An Investigation into a new Feature Set for Malware Detection. In The 2015 IEEE International Conference on Software Quality, Reliability and Security (QRS 2015). doi:10.1109/QRS.2015.36 Peer reviewed |
LI, L., ALLIX, K., LI, D., BARTEL, A., BISSYANDE, T. F. D. A., & KLEIN, J. (2015). A Study of Potential Component Leaks in Android Apps. SnT Centre - University of Luxembourg. https://orbilu.uni.lu/handle/10993/25337 |
ALLIX, K., BISSYANDE, T. F. D. A., KLEIN, J., & LE TRAON, Y. (2015). Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of Timeline in Machine Learning-Based Malware Detection. In Engineering Secure Software and Systems - 7th International Symposium ESSoS 2015, Milan, Italy, March 4-6, 2015. Proceedings (pp. 51-67). Springer International Publishing. doi:10.1007/978-3-319-15618-7_5 Peer reviewed |
ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Empirical assessment of machine learning-based malware detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios. Empirical Software Engineering, 1-29. doi:10.1007/s10664-014-9352-6 Peer Reviewed verified by ORBi |
ALLIX, K., JEROME, Q., BISSYANDE, T. F. D. A., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). A Forensic Analysis of Android Malware -- How is Malware Written and How It Could Be Detected? In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference (pp. 384--393). Washington, DC, USA, Unknown/unspecified: IEEE Computer Society. doi:10.1109/COMPSAC.2014.61 Peer reviewed |
JEROME, Q., ALLIX, K., STATE, R., & ENGEL, T. (2014). Using opcode-sequences to detect malicious Android applications. In IEEE International Conference on Communications, ICC 2014, Sydney Australia, June 10-14, 2014. Sydney, Australia: IEEE. doi:10.1109/ICC.2014.6883436 Peer reviewed |
ALLIX, K., BISSYANDE, T. F. D. A., KLEIN, J., & LE TRAON, Y. (2014). Machine Learning-Based Malware Detection for Android Applications: History Matters! Luxembourg, Luxembourg: University of Luxembourg, SnT. https://orbilu.uni.lu/handle/10993/17251 |
ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Large-scale Machine Learning-based Malware Detection: Confronting the "10-fold Cross Validation" Scheme with Reality. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy (pp. 163--166). New York, NY, USA, Unknown/unspecified: ACM. doi:10.1145/2557547.2557587 Peer reviewed |
BARTEL, A., KLEIN, J., Monperrus, M., ALLIX, K., & LE TRAON, Y. (2012). In-Vivo Bytecode Instrumentation for Improving Privacy on Android Smartphones in Uncertain Environments. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/25161. |
BARTEL, A., KLEIN, J., Monperrus, M., ALLIX, K., & LE TRAON, Y. (2012). Improving Privacy on Android Smartphones Through In-Vivo Bytecode Instrumentation. Luxembourg, Unknown/unspecified: uni.lu. https://orbilu.uni.lu/handle/10993/3889 |