Article (Périodiques scientifiques)
XRAD: Ransomware Address Detection Method based on Bitcoin Transaction Relationships
Wang, Kai; Tong, Michael; PANG, Jun et al.
2024In ACM Transactions on the Web, 18 (4), p. 1-33
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TWEB24c.pdf
Postprint Auteur (922.48 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Recently, there is a surge in ransomware activities that encrypt users’ sensitive data and demand bitcoins for ransom payments to conceal the criminal’s identity. It is crucial for regulatory agencies to identify as many ransomware addresses as possible to accurately estimate the impact of these ransomware activities. However, existing methods for detecting ransomware addresses rely primarily on time-consuming data collection and clustering heuristics, and they face two major issues: (1) The features of an address itself are insufficient to accurately represent its activity characteristics, and (2) the number of disclosed ransomware addresses is extremely less than the number of unlabeled addresses. These issues lead to a significant number of ransomware addresses being undetected, resulting in a substantial underestimation of the impact of ransomware activities. To solve the above two issues, we propose an optimized ransomware address detection method based on Bitcoin transaction relationships, named XRAD , to detect more ransomware addresses with high performance. To address the first one, we present a cascade feature extraction method for Bitcoin transactions to aggregate features of related addresses after exploring transaction relationships. To address the second one, we build a classification model based on Positive-unlabeled learning to detect ransomware addresses with high performance. Extensive experiments demonstrate that XRAD significantly improves average accuracy, recall, and F1 score by 15.07%, 19.71%, and 34.83%, respectively, compared to state-of-the-art methods. In total, XRAD detects 120,335 ransomware activities from 2009 to 2023, revealing a development trend and average ransom payment per year that aligns with three reports by FinCEN, Chainalysis, and Coveware.
Centre de recherche :
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Wang, Kai ;  School of Computer Science, Fudan University, Shanghai, China
Tong, Michael ;  software school, Fudan University, Shanghai, China
PANG, Jun  ;  University of Luxembourg
Wang, Jitao ;  School of Computer Science, Fudan University, Shanghai, China
Han, Weili ;  Software School, Fudan University, Shanghai, China
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
XRAD: Ransomware Address Detection Method based on Bitcoin Transaction Relationships
Date de publication/diffusion :
08 octobre 2024
Titre du périodique :
ACM Transactions on the Web
ISSN :
1559-1131
eISSN :
1559-114X
Maison d'édition :
Association for Computing Machinery (ACM)
Volume/Tome :
18
Fascicule/Saison :
4
Pagination :
1-33
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
National Key Projects of Research and Development
NSFC
Disponible sur ORBilu :
depuis le 10 octobre 2024

Statistiques


Nombre de vues
101 (dont 7 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu