[en] Sessile drying droplets in various bio-related systems attracted attention due to the complex interactions between convective flows, droplet pinning, mechanical stress, wettability, and the emergence of unique patterns. This study focuses on the drying dynamics of Chlamydomonas reinhardtii (chlamys), a versatile model algae used in molecular biology and biotechnology. The experimental findings shed light on how motility and nutrient availability influence morphological patterns- a fusion of macroscopic fluid dynamics and microbiology. This paper further discusses the interplay of two competing stressors during drying- nutrient scarcity (quantitative analysis) and mechanical stress (qualitative analysis), where the global mechanical stress does not induce cracks. Interestingly, motile chlamys form clusters under nutrient scarcity due to metabolic stress, indicating the onset of flocculation, a common feature observed in microbial systems. Moreover, non-motile chlamys exhibit an "anomalous coffee-ring effect" in the presence of nutrients, with an inward movement observed near the droplet edge despite sufficient water in the droplet. The quantitative image processing techniques provide fundamental insights into these behaviors in classifying the patterns into four categories (motile+with nutrients, motile+without nutrients, non-motile+with nutrients, and non-motile+without nutrients) across five distinct drying stages- Droplet Deposition, Capillary Flow, Dynamic Droplet Phase, Aggregation Phase, and Dried Morphology.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Pal, Anusuya; Department of Physics, University of Warwick, CV47AL, Coventry, UK. apal@g.ecc.u-tokyo.ac.jp ; Graduate School of Arts and Sciences, The University of Tokyo, Komaba 4-6-1, 153-8505, Meguro, Tokyo, Japan. apal@g.ecc.u-tokyo.ac.jp
SENGUPTA, Anupam ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Yanagisawa, Miho; Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, 153-8902, Meguro, Tokyo, Japan ; Graduate School of Science, The University of Tokyo, Hongo 7-3-1, 113-0033, Bunkyo, Tokyo, Japan ; Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, 153-8902, Meguro, Tokyo, Japan
External co-authors :
yes
Language :
English
Title :
Role of motility and nutrient availability in drying patterns of algal droplets.
Leverhulme Trust Japan Society for Promotion of Science (JSPS), KAKENHI Luxembourg National Research Fund's ATTRACT Investigator Grant Japan Society for Promotion of Science (JSPS), KAKENHI Luxembourg National Research Fund's CORE Grant
Sengupta, A. Microbial active matter: A topological framework. Frontiers in Physics 8 (2020).
K. Drescher R.E. Goldstein N. Michel M. Polin I. Tuval Direct measurement of the flow field around swimming microorganisms Physical Review Letters 2010 105 2010PhRvL.105p8101D 21231017
M.R. Bittermann D. Bonn S. Woutersen A. Deblais Light-switchable deposits from evaporating drops containing motile microalgae Soft Matter 2021 17 6536 6541 2021SMat..17.6536B 1:CAS:528:DC%2BB3MXhtlClsbfL 34259707
A. Pal A. Gope A. Sengupta Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives Advances in Colloid and Interface Science 2023 314 1:CAS:528:DC%2BB3sXmsFGls7g%3D 37002959
Y.-J. Juang J.-S. Chang Applications of microfluidics in microalgae biotechnology: A review Biotechnology journal 2016 11 327 335 1:CAS:528:DC%2BC28Xhtlanu70%3D 26807667
A.K. Thokchom R. Swaminathan A. Singh Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis Langmuir 2014 30 12144 12153 1:CAS:528:DC%2BC2cXhsFKnsbzO 25229613
Sempels, W., Dier, R. D., Mizuno, H., Hofkens, J. & Vermant, J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature Communications 4 (2013).
Y.K. Kang J.S. Ryu J. Lee H.J. Chung et al. Simple visualized readout of suppressed coffee ring patterns for rapid and isothermal genetic testing of antibacterial resistance Biosensors and Bioelectronics 2020 168 1:CAS:528:DC%2BB3cXhsl2htb3F 32905928
Majee, S. et al. Spatiotemporal evaporating droplet dynamics on fomites enhances long term bacterial pathogenesis. Communications Biology 4 (2021).
Q. Huang W. Wang P.J. Vikesland Implications of the coffee-ring effect on virus infectivity Langmuir 2021 37 11260 11268 1:CAS:528:DC%2BB3MXitVaitL3N 34525305
M. Ríos-Ramírez A. Reyes-Figueroa J. Ruiz-Suárez J. González-Gutiérrez Pattern formation of stains from dried drops to identify spermatozoa motility Colloids and Surfaces B: Biointerfaces 2018 169 486 493 29860013
A. Peshkov S. McGaffigan A.C. Quillen Synchronized oscillations in swarms of nematode turbatrix aceti Soft Matter 2022 18 1174 1182 2022SMat..18.1174P 1:CAS:528:DC%2BB38Xht1Sisbk%3D 35029257
N.A. Araújo et al. Steering self-organisation through confinement Soft Matter 2023 19 1695 1704 2023SMat..19.1695A 36779972 9977364
R.D. Deegan et al. Capillary flow as the cause of ring stains from dried liquid drops Nature 1997 389 827 1997Natur.389.827D 1:CAS:528:DyaK2sXmvFSktrY%3D
A. Susarrey-Arce et al. Pattern formation by staphylococcus epidermidis via droplet evaporation on micropillars arrays at a surface Langmuir 2016 32 7159 7169 1:CAS:528:DC%2BC28XhtVKis7jF 27341165
A. Susarrey-Arce et al. Bacterial footprints in elastic pillared microstructures ACS Applied Bio Materials 2018 1 1294 1300 1:CAS:528:DC%2BC1cXhvFSjurzK 34996233
Richard, E., Dubois, T., Allion-Maurer, A., Jha, P. K. & Faille, C. Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns. Food Microbiology 91 (2020).
Y. Ye Y. Hao M. Ye X. Song Z. Deng Evaporative drying: A general and readily scalable route to spherical nucleic acids with quantitative, fully tunable, and record-high dna loading Small 2022 18 2202458 1:CAS:528:DC%2BB38XhtlGku7jJ
Fujisawa, S., Daicho, K., Yurtsever, A., Fukuma, T. & Saito, T. Molecular dynamics of drying-induced structural transformations in a single nanocellulose. Small 2302276 (2023).
Liu, Y. et al. Three-dimensional coffee-ring effect induced deposition on foam surface for enhanced photothermal conversion. Small 2207822 (2023).
R. Bhardwaj X. Fang P. Somasundaran D. Attinger Self-assembly of colloidal particles from evaporating droplets: role of dlvo interactions and proposition of a phase diagram Langmuir 2010 26 7833 7842 1:CAS:528:DC%2BC3cXjvVKnsbg%3D 20337481
Z. Wang D. Orejon Y. Takata K. Sefiane Wetting and evaporation of multicomponent droplets Physics Reports 2022 960 1 37 2022PhR..960..1W 4395382 1:CAS:528:DC%2BB38Xht1WjtbjO
A. Pal A. Gope A.S. Athair G.S. Iannacchione A comparative study of the drying evolution and dried morphology of two globular proteins in de-ionized water solutions RSC Advances 2020 10 16906 16916 2020RSCAd.1016906P 1:CAS:528:DC%2BB3cXot1CksL8%3D 35496925 9053175
A. Pal A. Gope G.S. Iannacchione A comparative study of the phase separation of a nematic liquid crystal in the self-assembling drying protein drops MRS Advances 2019 4 1309 1314 1:CAS:528:DC%2BC1MXptFSntbw%3D
A. Pal A. Gope G.S. Iannacchione Hierarchical exploration of drying patterns formed in drops containing lysozyme, pbs, and liquid crystals Processes 2022 10 955 1:CAS:528:DC%2BB38XhsFals7rJ
A. Pal A. Gope J.D. Obayemi G.S. Iannacchione Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood Scientific reports 2020 10 1 12
A. Pal A. Gope G. Iannacchione Temperature and concentration dependence of human whole blood and protein drying droplets Biomolecules 2021 11 231 1:CAS:528:DC%2BB3MXktlKgurc%3D 33562850 7915023
D. Lohse X. Zhang Physicochemical hydrodynamics of droplets out of equilibrium Nature Reviews Physics 2020 2 426 443 2020NatRP..2.426L
A new model for a drying droplet. International Journal of Heat and Mass Transfer 122, 451–458 (2018).
S.S. Sazhin et al. A simplified model for bi-component droplet heating and evaporation International Journal of heat and mass transfer 2010 53 4495 4505 2010IJHMT.53.4495S 1:CAS:528:DC%2BC3cXhtVans7rI
T.L. Schenck et al. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering Acta biomaterialia 2015 15 39 47 1:CAS:528:DC%2BC2MXhtVCls7g%3D 25536030
F. de Carpentier S.D. Lemaire A. Danon When unity is strength: the strategies used by chlamydomonas to survive environmental stresses Cells 2019 8 1307 31652831 6912462
L.M. Arrieta Payares L.D.C. Gutiérrez Púa L.A. Di Mare Pareja S.C. Paredes Méndez V.N. Paredes Méndez Microalgae applications to bone repairing processes: A review ACS Biomaterials Science & Engineering 2023 9 2991 3009 1:CAS:528:DC%2BB3sXhtVKgu7zI
R.H. Wijffels O. Kruse K.J. Hellingwerf Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae Current opinion in biotechnology 2013 24 405 413 1:CAS:528:DC%2BC3sXnt1ansbs%3D 23647970
Gelderblom, H., Diddens, C. & Marin, A. Evaporation-driven liquid flow in sessile droplets. Soft matter (2022).
S.K. Wilson H.-M. D’Ambrosio Evaporation of sessile droplets Annual Review of Fluid Mechanics 2023 55 481 509 2023AnRFM.55.481W
Sengupta, A. et al. Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. Science Advances 8, eabn6005 (2022).
A. Pal A. Gope R. Kafle G.S. Iannacchione Phase separation of a nematic liquid crystal in the self-assembly of lysozyme in a drying aqueous solution drop MRS Communications 2019 9 150 158 1:CAS:528:DC%2BC1MXltVeit74%3D
W. Liu J. Midya M. Kappl H.-J. Butt A. Nikoubashman Segregation in drying binary colloidal droplets ACS nano 2019 13 4972 4979 1:CAS:528:DC%2BC1MXlsleisb0%3D 30897326 6727607
B.M. Weon J.H. Je Capillary force repels coffee-ring effect Physical Review E 2010 82 2010PhRvE.82a5305W
M.D. Abràmoff P.J. Magalhães S.J. Ram Image processing with imagej Biophotonics International 2004 11 36 42
E. Devadasu R. Subramanyam Enhanced lipid production in chlamydomonas reinhardtii caused by severe iron deficiency Frontiers in Plant Science 2021 12 33927732 8076870
Y.-S. Yu M.-C. Wang X. Huang Evaporative deposition of polystyrene microparticles on pdms surface Scientific reports 2017 7 14118 2017NatSR..714118Y 29074976 5658432
K. Ishimoto Jeffery’s orbits and microswimmers in flows: A theoretical review Journal of the Physical Society of Japan 2023 92 2023JPSJ..92f2001I
B.V. Hokmabad A. Nishide P. Ramesh C. Krüger C.C. Maass Spontaneously rotating clusters of active droplets Soft matter 2022 18 2731 2741 2022SMat..18.2731H 1:CAS:528:DC%2BB38XnslCku78%3D 35319552
Roccuzzo, S. et al. Metabolic insights into infochemicals induced colony formation and flocculation in scenedesmus subspicatus unraveled by quantitative proteomics. Frontiers in Microbiology 792 (2020).
T. Kiørboe J.L. Hansen Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material Journal of Plankton Research 1993 15 993 1018
J.A. Gerde L. Yao J. Lio Z. Wen T. Wang Microalgae flocculation: impact of flocculant type, algae species and cell concentration Algal research 2014 3 30 35
R. Jeanneret M. Contino M. Polin A brief introduction to the model microswimmer chlamydomonas reinhardtii The European Physical Journal Special Topics 2016 225 2141 2156 2016EPJST.225.2141J
M. Goldschmidt-Clermont P. Malnoe J.-D. Rochaix Preparation of chlamydomonas chloroplasts for the in vitro import of polypeptide precursors Plant Physiology 1989 89 15 18 1:CAS:528:DyaL1MXhtlagsb4%3D 16666506 1055791
R. Jeanneret D.O. Pushkin V. Kantsler M. Polin Entrainment dominates the interaction of microalgae with micron-sized objects Nature communications 2016 7 12518 2016NatCo..712518J 1:CAS:528:DC%2BC28XhtlyltbvN 27535609 4992151