Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
Introducing FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences
HARTMANN, Lena Maria; DANOY, Grégoire; BOUVRY, Pascal
2024Multi-Objective Decision Making Workshop at ECAI 2024
Peer reviewed
 

Documents


Texte intégral
MoDeM_2024-CR2.pdf
Postprint Auteur (4.88 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Federated Learning; Personalized Federated Learning; Federated Multiobjective Learning; Federated Multi-objective Learning; Federated Heterogeneity
Résumé :
[en] Multi-objective problems occur in all aspects of life; knowing how to solve them is crucial for accurate modelling of the real world. Rapid progress is being made in adapting traditional machine learning paradigms to the multi-objective use case, but so far few works address the specific challenges of distributed multi-objective learning. Federated Learning is a distributed machine learning paradigm introduced to tackle problems where training data originates in distribution and cannot be shared. With recent advances in hardware and model capabilities, Federated Learning (FL) is finding ever more widespread application to problems of increasing complexity, from deployment on edge devices to the tuning of large language models. However, heterogeneity caused by differences between participants remains a fundamental challenge in application. Existing work has largely focused on mitigating two major types of heterogeneity: data and device heterogeneity. Yet as the use of FL evolves, other types of heterogeneity become relevant. In this work, we consider one such emerging heterogeneity challenge: the preference-heterogeneous setting, where each participant has multiple objectives, and heterogeneity is induced by different preferences over these objectives. We propose FedPref, the first Personalised Federated Learning algorithm designed for this setting, and empirically demonstrate that our approach yields significantly improved average client performance and adaptability compared to other heterogeneity-mitigating algorithms across different preference distributions.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > PCOG - Parallel Computing & Optimization Group
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HARTMANN, Lena Maria  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Introducing FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences
Date de publication/diffusion :
2024
Nom de la manifestation :
Multi-Objective Decision Making Workshop at ECAI 2024
Lieu de la manifestation :
Santiago de Compostela, Espagne
Date de la manifestation :
20 October 2024
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 05 octobre 2024

Statistiques


Nombre de vues
163 (dont 16 Unilu)
Nombre de téléchargements
80 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu