![]() | HARTMANN, L. M. (2026). Multi-objective Learning in Federation [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/67717 |
![]() | HARTMANN, L. M., DANOY, G., & BOUVRY, P. (18 August 2025). Multi-objective methods in Federated Learning: A survey and taxonomy [Paper presentation]. International Workshop on Federated Learning with Generative AI In Conjunction with IJCAI 2025 (FedGenAI-IJCAI'25), Montréal, Canada. doi:10.48550/arXiv.2502.03108 Peer reviewed |
![]() | HARTMANN, L. M., DANOY, G., & BOUVRY, P. (2025). FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences. ACM Transactions on Modeling and Performance Evaluation of Computing Systems. doi:10.1145/3708984 Peer reviewed |
![]() | HARTMANN, L. M., DANOY, G., & BOUVRY, P. (17 September 2024). Heterogeneity: An Open Challenge for Federated On-board Machine Learning [Paper presentation]. SPAICE conference, United Kingdom. Peer reviewed |
![]() | HARTMANN, L. M., DANOY, G., & BOUVRY, P. (2024). Introducing FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [Paper presentation]. Multi-Objective Decision Making Workshop at ECAI 2024, Santiago de Compostela, Spain. Peer reviewed |
![]() | HARTMANN, L. M., DANOY, G., ALSWAITTI, M., & BOUVRY, P. (December 2023). MOFL/D: A Federated Multi-objective Learning Framework with Decomposition [Paper presentation]. International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023 (FL@FM-NeurIPS’23), New Orleans, United States - Louisiana. Peer reviewed |
![]() | HARTMANN, L. M., DANOY, G., ALSWAITTI, M., & BOUVRY, P. (2023). JoVe-FL - A Joint-embedding Vertical Federated Learning Framework [Paper presentation]. International Conference on Agents and Artificial Intelligence. doi:10.5220/0011802600003393 |
![]() | HARTMANN, L. M., DANOY, G., ALSWAITTI, M., & BOUVRY, P. (2023). A split-training approach to JoVe-FL [Paper presentation]. International Conference on Optimization and Learning. Peer reviewed |