Picard, S., Botev, J., Rhythmic stimuli effects on subjective time perception in immersive virtual environments. Proceedings of the 14th international workshop on immersive mixed and virtual environment systems, MMVE ’22, 2022, Association for Computing Machinery, New York, NY, USA 9781450393829, 5–11, 10.1145/3534086.3534330.
Picard, S., Botev, J., Rhythmic stimuli and time experience in virtual reality. Proceedings of the 20th euroXR international conference, EuroXR ’23, 2023, Springer, Cham, 53–75, 10.1007/978-3-031-48495-7_4.
Hoagland, H., The physiological control of judgments of duration: Evidence for a chemical clock. J Gen Psychol 9:2 (1933), 267–287, 10.1080/00221309.1933.9920937.
Ghaderi, A., Niemeier, M., Crawford, J.D., Linear vector models of time perception account for saccade and stimulus novelty interactions. bioRxiv, 2021, 10.1101/2020.07.13.201087.
Gorea, A., Ticks per thought or thoughts per tick? A selective review of time perception with hints on future research. J Physiol Paris 105:4 (2011), 153–163, 10.1016/j.jphysparis.2011.09.008.
Droit-Volet, S., Fayolle, S., Lamotte, M., Gil, S., Time, emotion and the embodiment of timing. Timing Time Percept 1:1 (2013), 99–126, 10.1163/22134468-00002004.
Droit-Volet, S., El-Azhari, A., Haddar, S., Drago, R., Gil, S., Similar time distortions under the effect of emotion for durations of several minutes and a few seconds. Acta Psychol, 210, 2020, 103170, 10.1016/j.actpsy.2020.103170.
Makwana, M., Srinivasan, N., Intended outcome expands in time. Sci Rep, 7(1), 2017, 6305, 10.1038/s41598-017-05803-1.
Roseboom, W., Fountas, Z., Nikiforou, K., Bhowmik, D., Shanahan, M., Seth, A.K., Activity in perceptual classification networks as a basis for human subjective time perception. Nature Commun, 10(1), 2019, 10.1038/s41467-018-08194-7.
Watt, J.D., Effect of boredom proneness on time perception. Psychol Rep 69:1 (1991), 323–327, 10.2466/pr0.1991.69.1.323 PMID: 1961817.
Rutrecht, H., Wittmann, M., Khoshnoud, S., Igarzábal, F.A., Time speeds up during flow states: A study in virtual reality with the video game thumper. Timing Time Percept 9:4 (2021), 353–376, 10.1163/22134468-bja10033.
Jackson, S.A., Eklund, R.C., Assessing flow in physical activity: The flow state scale–2 and dispositional flow scale–2. J Sport Exerc Psychol 24:2 (2002), 133–150, 10.1123/jsep.24.2.133.
Pelet, J.-É., Ettis, S., Cowart, K., Optimal experience of flow enhanced by telepresence: Evidence from social media use. Inf Manag 54:1 (2017), 115–128, 10.1016/j.im.2016.05.001.
Nah, F., Eschenbrenner, B., Flow experience in virtual worlds: Individuals versus Dyads. SIGHCI 2015 proceedings, 2015 URL: https://aisel.aisnet.org/sighci2015/19.
Reid, D., A model of playfulness and flow in virtual reality interactions. Presence Teleoperators Virtual Environ 13:4 (2004), 451–462, 10.1162/1054746041944777.
Mullen, G., Davidenko, N., Time compression in virtual reality. Timing Time Percept 9 (2021), 1–16, 10.1163/22134468-bja10034.
Igarzábal, F.A., Hruby, H., Witowska, J., Khoshnoud, S., Wittmann, M., What happens while waiting in virtual reality? A comparison between a virtual and a real waiting situation concerning boredom, self-regulation, and the experience of time. Technol Mind Behav, 2(2), 2021, 10.1037/tmb0000038 URL: https://tmb.apaopen.org/pub/what-happens-while-waiting-in-virtual-reality.
Mallam, S.C., Ernstsen, J., Nazir, S., Accuracy of time duration estimations in virtual reality. Proc Hum Factors Ergon Soc Annu Meet 64:1 (2020), 2079–2083, 10.1177/1071181320641503.
Bruder, G., Steinicke, F., Time perception during walking in virtual environments. 2014 IEEE virtual reality, VR, 2014, 67–68, 10.1109/VR.2014.6802054.
Schatzschneider, C., Bruder, G., Steinicke, F., Who turned the clock? Effects of manipulated zeitgebers, cognitive load and immersion on time estimation. IEEE Trans Vis Comput Graphics 22:4 (2016), 1387–1395, 10.1109/tvcg.2016.2518137.
van der Ham, I.J., Klaassen, F., van Schie, K., Cuperus, A., Elapsed time estimates in virtual reality and the physical world: The role of arousal and emotional valence. Comput Hum Behav 94 (2019), 77–81, 10.1016/j.chb.2019.01.005.
Unruh, F., Landeck, M., Oberdörfer, S., Lugrin, J.L., Latoschik, M.E., The influence of avatar embodiment on time perception - towards VR for time-based therapy. Front Virtual Real, 2, 2021, 10.3389/frvir.2021.658509.
Droit-Volet, S., Ramos, D., Bueno, J.L.O., Bigand, E., Music, emotion, and time perception: the influence of subjective emotional valence and arousal?. Front Psychol, 4, 2013, 417, 10.3389/fpsyg.2013.00417.
Hammerschmidt, D., Wöllner, C., London, J., Burger, B., Disco time: The relationship between perceived duration and tempo in music. Music Sci, 4, 2021, 2059204320986384, 10.1177/2059204320986384.
Wöllner, C., Hammerschmidt, D., Tapping to hip-hop: Effects of cognitive load, arousal, and musical meter on time experiences. Atten Percept Psychophys 83:4 (2021), 1552–1561, 10.3758/s13414-020-02227-4.
Peters, C.M., Glazebrook, C.M., Rhythmic auditory stimuli heard before and during a reaching movement elicit performance improvements in both temporal and spatial movement parameters. Acta Psychol, 207, 2020, 103086, 10.1016/j.actpsy.2020.103086.
Wang, X., Wöllner, C., Shi, Z., Perceiving tempo in incongruent audiovisual presentations of human motion: Evidence for a visual driving effect. Timing Time Percept 10:1 (2021), 75–95, 10.1163/22134468-bja10036.
Wearden, J., Penton-Voak, I., Feeling the heat: Body temperature and the rate of subjective time, revisited. Q J Exp Psychol Sect B 48:2 (1995), 129–141, 10.1080/14640749508401443.
Kingma, B.R., Roijendijk, L.M., Maanen, L.V., Rijn, H.V., Beurden, M.H.V., Time perception and timed decision task performance during passive heat stress. Temp Austin 8:1 (2020), 53–63, 10.1080/23328940.2020.1776925.
Dormal, V., Heeren, A., Pesenti, M., Maurage, P., Time perception is not for the faint-hearted? Physiological arousal does not influence duration categorisation. Cogn Process 19:3 (2017), 399–409, 10.1007/s10339-017-0852-3.
Cho, D., Ham, J., Oh, J., Park, J., Kim, S., Lee, N.K., Lee, B., Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sens Basel, 17(10), 2017, 2435, 10.3390/s17102435.
Chen, H., Dey, A., Billinghurst, M., Lindeman, R.W., Exploring pupil dilation in emotional virtual reality environments. ICAT-EGVE 2017 - International conference on artificial reality and telexistence and eurographics symposium on virtual environments, 2017, The Eurographics Association, 10.2312/EGVE.20171355.
Lambourne, K., The effects of acute exercise on temporal generalization. Q J Exp Psychol Hove 65:3 (2012), 526–540, 10.1080/17470218.2011.605959.
Yarrow, K., Haggard, P., Heal, R., Brown, P., Rothwell, J.C., Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414:6861 (2001), 302–305, 10.1038/35104551.
Knöll, J., Morrone, M.C., Bremmer, F., Spatio-temporal topography of saccadic overestimation of time. Vis Res 83 (2013), 56–65, 10.1016/j.visres.2013.02.013.
Picard, S., Botev, J., Rhythmic Stimuli and time experience in virtual reality - complete data analysis. 2023, Zenodo, 10.5281/zenodo.10804031.