Elastomer O-Ring seal; High-pressure hydrogen storage; Limited recovery; Low temperature; Primary leakage; Viscoelastic; Elastomer O-ring seal; Experimental verification; High pressure hydrogen storage; Lows-temperatures; Material modeling; O-ring seal; O-Rings; Viscoelastics; Renewable Energy, Sustainability and the Environment; Fuel Technology; Condensed Matter Physics; Energy Engineering and Power Technology; Elastomer O -Ring seal
Résumé :
[en] Elastomer O-ring seals are used in many technical applications and their requirements are becoming increasingly challenging for high-pressure applications like hydrogen storage systems. We analyze the performance of such seals at low temperatures and highlight the essential effects of primary leakage. Linear viscoelastic material modeling is described and defined with the help of Dynamic Mechanical Thermal Analysis (DMTA), Time-Temperature Superposition Principle (TTSP), and the shift function of Williams-Landel-Ferry (WLF) by assuming thermo-rheological simple material behavior. Numerical calculations and experimental validation are done for strain-rate dependent uniaxial tensile tests, Temperature Retraction (TR), Compression Set (CS), and specific leakage tests with O-rings. Thanks to Finite Element Analysis (FEA) it is possible to identify the most significant influences on the sealing tightness. Thermal shrinkage and the increasingly limited recovery of elastomer O-rings are mainly responsible for primary leakage at low temperatures and can be enforced by time-temperature dependent stress relaxation and manufacturing tolerances.
Disciplines :
Science des matériaux & ingénierie
Auteur, co-auteur :
REPPLINGER, Christian ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Stefan MAAS
Sellen, S.; ROTAREX S.A., Lintgen, Luxembourg
KEDZIORA, Slawomir ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Zürbes, A.; University of Applied Sciences BINGEN, Bingen am Rhein, Germany
MAAS, Stefan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Material modeling for numerical simulation of elastomer O-rings with experimental verification at low temperatures
Szabó, G., Váradii, K., Large strain viscoelastic material model for deformation, stress and strain analysis of O-ring. Period Polytech - Mech Eng 62 (2018), 148–157.
W. Haas, “Grundlehrgang Dichtungstechnik,” Institut für Maschinenelemente (IMA) - Universität Stuttgart.
Grelle, T., Wolff, D., Jaunich, M., Temperature-dependent leak tightness of elastomer seals after partial and rapid release of compression. Polym Test 48 (2015), 44–49.
H. K. Müller and B. S. Nau, “Grundbegriffe der Dichtungstechnik,” www.fachwissendichtungstechnik.de.
“Commission Regulation (EU) No. 406/2010, Implementing regulation (EC) No 79/2009 of the European Parliament and of the Council on type-approval of hydrogen-powered motor vehicles.”. Off J Eur Union, 2010.
Albrecht, D., Achenbach, M., Seals for high-pressure tank systems in fuel cell cars. KGK rubberpoint, 2014.
Thomson, W., Joule, J.P., Ueber die Wärmewirkung bewegter Flüssigkeiten. Annalen der Physik und Chemie 173 (1856), 576–589.
Chen, J., Veenstra, M., Purewal, J., Hobein, B., Papasavva, S., Modeling a hydrogen pressure regulator in a fuel cell system with Joule–Thomson effect. Int J Hydrogen Energy 44 (2019), 1272–1287.
Toyota launches the new Mirai,” www.global.toyota, February. 23, 2021.
Merkle, S., Achenbach, M., Das müssen Sie bei der Berechnung von Gummi unbedingt wissen. Ingenieurbüro merkle & partner/stefan merkle holding GmbH, heidenheim, 2018.
Jaunich, M., Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz., 2012, BAM - Bundesanstalt für Materialforschung und -prüfung, Berlin Dissertation.
Battermann, W., Köhler, R., Elastomere Federung, elastische Lagerungen: Grundlagen ingenieurmäßiger Berechnung und Konstruktion. 1982, Ernst & Sohn.
Lutz, T., Ein Beitrag zur Berechnung druckbelasteter Elastomerlager., 1990, Universität Kaiserslautern Dissertation.
Holzapfel, G.A., Nonlinear solid mechanics: a continuum approach for engineering. 2000, John Wiley & Sons Ltd, Chichester.
Bonet, J., Wood, R.D., Nonlinear continuum mechanics for finite element analysis. 2008, Cambridge University Press, New York.
Stommel, M., Stojek, M., Korte, W., FEM zur Berechnung von Kunststoff- und Elastomerbauteilen. 2011, Carl Hanser Verlag, München.
Treloar, L.R.G., The elasticity of a network of long-chain molecules - II. Trans Faraday Soc 39 (1943), 241–246.
Mooney, M., A theory of large elastic deformation. J Appl Phys 11 (1940), 582–592.
Rivlin, R.S., Saunders, D.W., Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil Trans Roy Soc Lond Math Phys Sci 243 (1951), 251–288.
Yeoh, O.H., Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63 (1990), 792–805.
Ogden, R.W., Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326 (1972), 565–584.
Gent, A.N., A new constitutive relation for rubber. Rubber Chem Technol 69 (1996), 59–61.
Fillers, R.W., Tschoegl, N.W., The effect of pressure on the mechanical properties of polymers. Trans Soc Rheol 21 (1977), 51–100.
Moonan, W.K., Tschoegl, N.W., Effect of pressure on the mechanical properties of polymers. 2. Expansivity and compressibility measurements. Macromolecules 16 (1983), 55–59.
Moonan, W.K., Tschoegl, N.W., Effect of pressure on the mechanical properties of polymers. 3. Substitution of the glassy parameters for those of the occupied volume. International Journal of Polymeric Materials and Polymeric Biomaterials 10 (1984), 199–211.
Kralj, A., Prodan, T., Emri, I., Review on effect of pressure on mechanical properties of polymers and apparatus for measurements under hydrostatic pressure. 1999, 1–28.
Ferry, J.D., Viscoelastic properties of polymers. 1980, John Wiley & Sons, Inc, New York.
Ho, E., Elastomeric seals for rapid gas decompression applications in high-pressure services. 2006, BHR group, The Fluid Engineering Centre, Cranfield.
ISO 37. Rubber, vulcanized or thermoplastic - determination of tensile stress-strain properties. 2017.
Hooke, R., Lectures de potentia restitutiva, or of spring explaining the power of springing bodies. John martyn, 2024 London.
Newton, I., The mathematical principles of natural philosophy. College of physicians, and of the, 2024, Royal Society, London.
Czibula, C., Ganser, C., Seidlhofer, T., Teichert, C., Hirn, U., Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method. J Mater Sci 54 (2019), 11448–11461.
Schuster, M., Kraus, M., Schneider, J., Siebert, G., Investigations on the thermorheologically complex material behaviour of the laminated safety glass interlayer ethylenevinyl-acetate, 3, 2018, 373–388.
Kelly, P., Solid mechanics Part I: an introduction to solid mechanics. 2013, University of Aukland.
Hearn, E.J., Miscellaneous topics. Mechanics of materials, 2, 1997, 509–533.
Li, Time-temperature superposition method for glass transition temperature of plastic materials. Mater Sci Eng 278 (2000), 36–45.
Nakano, T., Applicability condition of time-temperature superposition principle (TTSP) to a multi-phase system. Mech Time-Dependent Mater 17 (2013), 439–447.
Herdy, M., Introductory theory manual - ViscoData & ViscoShift. 2003.
Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77 (1955), 3701–3707.
Michaeli, W., Brandt, M., Brinkmann, M., Simulation des nicht-linear viskoelastischen Werkstoffverhaltens von Kunststoffen mit dem 3D-Deformationsmodell. Zeitschrift Kunststofftechnik/Journal of Plastics Technology 2 (2006), 1–24.
Peschke, H., Simulation von Elastomerdichtungen unter dynamischer Belastung. INA-Sonderdruck, 1999, 1–7.
Achenbach, M., Streit, G., Thermodynamische Beschreibung der Gummielastizität. 11. International sealing conference, 1999, Dresden, 1–16.
Kraus, M., Schuster, M., Kuntsche, J., Siebert, G., Schneider, J., Parameter identification methods for visco- and hyperelastic material models. Glass Structures & Engineering 2 (2017), 147–167.
Akulichev, A.G., Echtermeyer, A.T., Persson, B.N.J., Interfacial leakage of elastomer seals at low temperatures. Int J Pres Ves Pip 160 (2018), 14–23.
Rouleau, L., Pirk, R., Pluymers, B., Desmet, W., Characterization and modeling of the viscoelastic behavior of a self-adhesive rubber using dynamic mechanical analysis tests. J Aero Technol Manag 7 (2015), 200–208.
Rinnbauer, M., Technische Elastomerwerkstoffe: Basis für Hightech-Lösungen in der Dichtungs- und Schwingungstechnik. 2006, Verlag Moderne Industrie/Freudenberg Sealing Technologies GmbH & Co. KG, Weinheim.
Achenbach, M., Service life of seals – numerical simulation in sealing technology enhances prognoses. Comput Mater Sci 19 (2000), 213–222.
Grelle, T., Wolff, D., Jaunich, M., Leakage behaviour of elastomer seals under dynamic unloading conditions at low temperatures. Polym Test 58 (2017), 219–226.
Ehrenstein, G.W., Riedel, G., Trawiel, P., Thermal analysis of plastics. 2004, Carl Hanser Verlag GmbH & Co. KG, München.
Abubakar, I.J., Myler, P., Zhou, E., Constitutive modelling of elastomeric seal material under compressive loading. Modeling and numerical simulation of material science, 6, 2016, 28–40.
Popov, V.L., Kontaktmechanik und Reibung - Von der Nanotribologie bis zur Erdbebendynamik. 2015, Springer Vieweg, Berlin.
Kraus, M., Niederwald, M., Siebert, G., Keuser, M., Rheological modelling of linear viscoelastic materials for strengthening in bridge engineering. Japanese German bridge symposium, osaka, 2016, 1–12.
Gordnian, K., Crystallization and thermo-viscoelastic modelling of polymer composites., 2017, University of British Columbia, Vancouver Dissertation.
ISO 2921. Rubber, vulcanized - determination of low-temperature characteristics - temperature-retraction procedure (TR test). 2019.
Akulichev, A.G., Alcock, B., Echtermeyer, A.T., Elastic recovery after compression in HNBR at low and moderate temperatures: experiment and modelling. Polym Test 61 (2017), 46–56.
Jaunich, M., Stark, W., Wolff, D., A new method to evaluate the low temperature function of rubber sealing materials. Polym Test 29 (2010), 815–823.
Jaunich, M., Stark, W., Wolff, D., Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement. Polym Test 31 (2012), 987–992.
ISO 3601-1: fluid power systems - O-rings - Part 1: inside diameters, cross-sections, tolerances and designation codes, 2012.
Cerbe, G., Wilhelms, G., Technische Thermodynamik - Theoretische Grundlagen und praktische Anwendungen. 2011, Carl Hanser Verlag, München.
Hornig, R., Sunder, J., Low-temperature sealing force behaviour of FKM elastomers as a function of the degree of chemical crosslinking and cifferently restricted geometric deformation in static compression. Int Polym Sci Technol 42 (2015), 1–10.
DIN ISO 815-2: Rubber. Vulcanized or thermoplastic - determination of compression set - Part 2: at low temperatures. 2016.
Li, H., Ma, J., Liu, B.Y., Gu, R.J., Li, G.J., An insight into neutral layer shifting in tube bending. Int J Mach Tool Manufact 126 (2018), 51–70.
H. Franke, “Seminar über Dichtheitsmessungen und Lecksuchmethoden,” www.lecksuchtechnik.de.