[en] The circadian clock, a fundamental biological regulator, governs essential cellular processes in health and disease. Circadian-based therapeutic strategies are increasingly gaining recognition as promising avenues. Aligning drug administration with the circadian rhythm can enhance treatment efficacy and minimize side effects. Yet, uncovering the optimal treatment timings remains challenging, limiting their widespread adoption. In this work, we introduce a high-throughput approach integrating live-imaging and data analysis techniques to deep-phenotype cancer cell models, evaluating their circadian rhythms, growth, and drug responses. We devise a streamlined process for profiling drug sensitivities across different times of the day, identifying optimal treatment windows and responsive cell types and drug combinations. Finally, we implement multiple computational tools to uncover cellular and genetic factors shaping time-of-day drug sensitivity. Our versatile approach is adaptable to various biological models, facilitating its broad application and relevance. Ultimately, this research leverages circadian rhythms to optimize anti-cancer drug treatments, promising improved outcomes and transformative treatment strategies.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Ector, Carolin; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany ; Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
Schmal, Christoph; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
DIDIER, Jeff ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
DE LANDTSHEER, Sébastien ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Finger, Anna-Marie ; Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany ; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
Müller-Marquardt, Francesca; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany ; Institute of Research for Development, University of Montpellier, Montpellier, France
Schulte, Johannes H ; Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, Berlin, Germany ; Clinic for Pediatrics and Adolescent Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Keilholz, Ulrich; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany ; German Cancer Consortium (DKTK), Berlin, Germany
Herzel, Hanspeter; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany ; Charité - Universitätsmedizin Berlin, Berlin, Germany
Kramer, Achim ; Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
Granada, Adrián E ; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany. adrian.granada@charite.de ; German Cancer Consortium (DKTK), Berlin, Germany. adrian.granada@charite.de
External co-authors :
yes
Language :
English
Title :
Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping.
A. Chaix A. Zarrinpar S. Panda The circadian coordination of cell biology J. Cell Biol. 2016 215 15 25 1:CAS:528:DC%2BC28XitFeltLfM 27738003 5057284
R. Zhang N.F. Lahens H.I. Ballance M.E. Hughes J.B. Hogenesch A circadian gene expression atlas in mammals: implications for biology and medicine Proc. Natl. Acad. Sci. USA 2014 111 16219 16224 2014PNAS.11116219Z 1:CAS:528:DC%2BC2cXhvVWmsLvK 25349387 4234565
Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science359, https://doi.org/10.1126/science.aao0318 (2018).
C. Saini et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells Diabetes Obes. Metab. 2016 18 355 365 1:CAS:528:DC%2BC28XjvFGhtb8%3D 26662378
A. Neufeld-Cohen et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins Proc. Natl. Acad. Sci. USA 2016 113 E1673 E1682 1:CAS:528:DC%2BC28XitlSjurc%3D 26862173 4812734
S. Chakrabarti F. Michor Circadian clock effects on cellular proliferation: Insights from theory and experiments Curr. Opin. Cell Biol. 2020 67 17 26 1:CAS:528:DC%2BB3cXhsFWjtL%2FM 32771864
C. Scheiermann Y. Kunisaki P.S. Frenette Circadian control of the immune system Nat. Rev. Immunol. 2013 13 190 198 1:CAS:528:DC%2BC3sXitFeis7g%3D 23391992 4090048
A. Sancar et al. Circadian clock control of the cellular response to DNA damage FEBS Lett. 2010 584 2618 2625 1:CAS:528:DC%2BC3cXmslGis7s%3D 20227409 2878924
E.S. Schernhammer et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study J. Natl. Cancer Inst. 2001 93 1563 1568 1:STN:280:DC%2BD3MrlvVWqtw%3D%3D 11604480
Puram et al. Core circadian clock genes regulate leukemia stem cells in AML Cell 2016 165 303 316 1:CAS:528:DC%2BC28XlslersrY%3D 27058663 4826477
T. Papagiannakopoulos et al. Circadian rhythm disruption promotes lung tumorigenesis Cell Metab. 2016 24 324 331 1:CAS:528:DC%2BC28Xht1KlsbvJ 27476975 5367626
S.K. Chun et al. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer Sci. Adv. 2022 8 1:CAS:528:DC%2BB38Xit1OktrzP 35947664 9365282
Z. Diamantopoulou et al. The metastatic spread of breast cancer accelerates during sleep Nature 2022 607 156 162 2022Natur.607.156D 1:CAS:528:DC%2BB38XhsFyjtLrI 35732738
J. Wang et al. Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression Cancer Cell Int. 2019 19 31346317 6636133
Y. Lee et al. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment PLOS Biol. 2019 17 e3000228 1:CAS:528:DC%2BC1MXht12gtb3F 31039152 6490878
W.-D. Chen et al. The circadian rhythm controls telomeres and telomerase activity Biochem. Biophys. Res. Commun. 2014 451 408 414 1:CAS:528:DC%2BC2cXhtlCisb3M 25109806
P. Rida M.I. Syed R. Aneja Time will tell: Circadian clock dysregulation in triple negative breast cancer Front Biosci. Schol. Ed. 2019 11 178 192 30844743
P.F. Innominato et al. Prediction of overall survival through circadian rest-activity monitoring during chemotherapy for metastatic colorectal cancer Int. J. Cancer 2012 131 2684 2692 1:CAS:528:DC%2BC38XpsFOku7w%3D 22488038
Y. Ye et al. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy Cell Syst. 2018 6 314 328.e312 1:CAS:528:DC%2BC1cXpslOksbg%3D 29525205 6056007
Y. Lee et al. Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle Sci. Adv. 2021 7 2021SciA..7.2645L 1:CAS:528:DC%2BB3MXnsFOrurg%3D 33579708 7880601
R. Dallmann S.A. Brown F. Gachon Chronopharmacology: New insights and therapeutic implications Annu. Rev. Pharmacol. Toxicol. 2014 54 339 361 1:CAS:528:DC%2BC2cXjsVSqt70%3D 24160700
F. Lévi A. Okyar S. Dulong P.F. Innominato J. Clairambault Circadian timing in cancer treatments Annu. Rev. Pharmacol. Toxicol. 2010 50 377 421 20055686
P.A. Wood J. Du-Quiton S. You W.J.M. Hrushesky Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index Mol. Cancer Ther. 2006 5 2023 2033 1:CAS:528:DC%2BD28XosVansLo%3D 16928823
A.R. Damato et al. A randomized feasibility study evaluating temozolomide circadian medicine in patients with glioma Neuro Oncol. Pract. 2022 9 193 200
M.D. Ruben D.F. Smith G.A. FitzGerald J.B. Hogenesch Dosing time matters Science 2019 365 547 549 2019Sci..365.547R 1:CAS:528:DC%2BC1MXhsFCisb3N 31395773 8011856
A. Kramer et al. Foundations of circadian medicine PLOS Biol. 2022 20 e3001567 1:CAS:528:DC%2BB38Xos1SrsLc%3D 35324893 8946668
Mönke, G., Sorgenfrei, F. A., Schmal, C. Granada, A. E. Optimal time frequency analysis for biological data - pyBOAT. Preprint at bioRxiv https://doi.org/10.1101/2020.04.29.067744 (2020).
T. Börding A.N. Abdo B. Maier C. Gabriel A. Kramer Generation of human CRY1 and CRY2 knockout cells using duplex CRISPR/Cas9 technology Front. Physiol. 2019 10 577 31143130 6521593
T.L. Leise Analysis of nonstationary time series for biological Rhythms research J. Biol. Rhythms 2017 32 187 194 1:CAS:528:DC%2BC1MXht1Cku7g%3D 28569118
M. Hafner M. Niepel M. Chung P.K. Sorger Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs Nat. Methods 2016 13 521 527 1:CAS:528:DC%2BC28XntVCltr0%3D 27135972 4887336
C.H. Ko J.S. Takahashi Molecular components of the mammalian circadian clock Hum. Mol. Genet. 2006 15 R271 R277 1:CAS:528:DC%2BD28XpvFGlsLg%3D 16987893
J.S. Takahashi Transcriptional architecture of the mammalian circadian clock Nat. Rev. Genet. 2017 18 164 179 1:CAS:528:DC%2BC28XitFWntrbL 27990019
M.-C. Mormont F. Levi Cancer chronotherapy: Principles, applications, and perspectives Cancer 2003 97 155 169 1:CAS:528:DC%2BD3sXmsFyrsA%3D%3D 12491517
G. Sulli M.T.Y. Lam S. Panda Interplay between circadian clock and cancer: New frontiers for cancer treatment Trends Cancer 2019 5 475 494 1:CAS:528:DC%2BC1MXhsFWisL7L 31421905 7120250
Lin, H.-H., Qraitem, M., Lian, Y., Taylor, S. R. & Farkas, M. E. Analyses of BMAL1 and PER2 oscillations in a model of breast cancer progression reveal changes with malignancy. Integr. Cancer Ther. (2019).
S.S. Lellupitiyage Don et al. Circadian oscillations persist in low malignancy breast cancer cells Cell Cycle 2019 18 2447 2453 1:CAS:528:DC%2BC1MXhsFGgtbjK 31357909 6739049
J.E. Baggs et al. Network features of the mammalian circadian clock PLOS Biol. 2009 7 e1000052 19278294 2653556
G.K. Gupta et al. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies Cancers 2020 12 2392 1:CAS:528:DC%2BB3cXisVyltrfM 32846967 7565566
M. Fallahi-Sichani S. Honarnejad L.M. Heiser J.W. Gray P.K. Sorger Metrics other than potency reveal systematic variation in responses to cancer drugs Nat. Chem. Biol. 2013 9 708 714 1:CAS:528:DC%2BC3sXhtl2kt7vP 24013279 3947796
F.A. Lévi et al. Chronomodulated versus fixed-infusion—rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (Leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial J. Natl. Cancer Inst. 1994 86 1608 1617 1994qcet.book...L 7932825
R.B. Sothern F. Lévi E. Haus F. Halberg W.J. Hrushesky Control of a murine plasmacytoma with doxorubicin-cisplatin: dependence on circadian stage of treatment J. Natl. Cancer Inst. 1989 81 135 145 1:CAS:528:DyaL1MXovVWmtQ%3D%3D 2909754
E. Nagoshi et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells Cell 2004 119 693 705 1:CAS:528:DC%2BD2cXhtVGls7fL 15550250
M. Izumo C.H. Johnson S. Yamazaki Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping Proc. Natl. Acad. Sci. USA 2003 100 16089 16094 2003PNAS.10016089I 1:CAS:528:DC%2BD2cXhtVGjtA%3D%3D 14657355 307697
A. Balsalobre F. Damiola U. Schibler A serum shock induces circadian gene expression in mammalian tissue culture cells Cell 1998 93 929 937 1:CAS:528:DyaK1cXjvFKqsL8%3D 9635423
J. Bieler et al. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells Mol. Syst. Biol. 2014 10 739 25028488 4299496
C. Gérard A. Goldbeter Entrainment of the mammalian cell cycle by the circadian clock: Modeling two coupled cellular rhythms PLOS Comput. Biol. 2012 8 e1002516 2012PLSCB..8E2516G 22693436 3364934
S. Bernard B. Čajavec Bernard F. Lévi H. Herzel Tumor growth rate determines the timing of optimal chronomodulated treatment schedules PLOS Comput. Biol. 2010 6 e1000712 2010PLSCB..6E0712B 2644805 20333244 2841621
B. Zhu et al. A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms Cell Metab. 2017 25 1305 1319 1:CAS:528:DC%2BC2sXpslWgtrw%3D 28591634 5526350
A.-M. Finger et al. Intercellular coupling between peripheral circadian oscillators by TGF-β; signaling Sci. Adv. 2021 7 eabg5174 2021SciA..7.5174F 1:CAS:528:DC%2BB3MXitVKkur3M 34301601 8302137
A. Balsalobre et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling Science 2000 289 2344 2347 2000Sci..289.2344B 1:CAS:528:DC%2BD3cXmvF2qsrg%3D 11009419
version 9.11.0.1769968 (R2021b) (The MathWorks Inc., 2021).
T.L. Leise M.E. Harrington Wavelet-based time series analysis of circadian rhythms J. Biol. Rhythms 2011 26 454 463 21921299
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K. & O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 4, 1237 (2019).
J. Myung et al. The choroid plexus is an important circadian clock component Nat. Commun. 2018 9 2018NatCo..9.1062M 29540683 5852131
Leise, T. L. Wavelet analysis of circadian and ultradian behavioral rhythms. J. Circadian Rhythmshttps://doi.org/10.1186/1740-3391-11-5 (2013).
J. Barretina et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity Nature 2012 483 603 607 2012Natur.483.603B 1:CAS:528:DC%2BC38XmtVequ7o%3D 22460905 3320027