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Time-of-day effects of cancer drugs revealed
by high-throughput deep phenotyping

Carolin Ector1,2, Christoph Schmal3, Jeff Didier 4, Sébastien De Landtsheer 4,
Anna-Marie Finger 5,9, Francesca Müller-Marquardt1,10,
Johannes H. Schulte 6,11, Thomas Sauter 4, Ulrich Keilholz1,7,
Hanspeter Herzel3,8, Achim Kramer 5 & Adrián E. Granada 1,7

The circadian clock, a fundamental biological regulator, governs essential
cellular processes in health and disease. Circadian-based therapeutic strate-
gies are increasingly gaining recognition as promising avenues. Aligning drug
administration with the circadian rhythm can enhance treatment efficacy and
minimize side effects. Yet, uncovering the optimal treatment timings remains
challenging, limiting their widespread adoption. In this work, we introduce a
high-throughput approach integrating live-imaging and data analysis techni-
ques to deep-phenotype cancer cell models, evaluating their circadian
rhythms, growth, and drug responses. We devise a streamlined process for
profiling drug sensitivities across different times of the day, identifying opti-
mal treatment windows and responsive cell types and drug combinations.
Finally, we implement multiple computational tools to uncover cellular and
genetic factors shaping time-of-day drug sensitivity. Our versatile approach is
adaptable to various biological models, facilitating its broad application and
relevance. Ultimately, this research leverages circadian rhythms to optimize
anti-cancer drug treatments, promising improved outcomes and transforma-
tive treatment strategies.

The circadian clock is a central regulator of multiple physiological and
behavioral processes found in cyanobacteria, plants, fungi, and animals.
In mammals, the hierarchical organization of the circadian system
ensures coordinated biological rhythms from the level of the individual
cell to the whole organism level1. Primate and mouse studies showed
thatprotein-codinggenes are rhythmically expressed in a tissue-specific
by up to 80% and 40%, respectively2,3. These clock-controlled genes
regulate key biological processes such as metabolism4,5, cell
proliferation6, immune response7, DNA repair, and apoptosis8.

Disruptionof the circadian system is classified as a carcinogen and
is associated with multiple cancer subtypes9–12. Cancer hallmarks such
as sustained proliferation and metastasis13,14 have been linked to the
circadian clock15,16 andpatientswithmutations in circadian clockgenes
exhibit lower survival rates17–19. Beyond its role in cancer development,
the circadian clock directly interacts with therapeutic targets that
affect drug responses19–21. Consistent with these observations, recent
works have shown that administration of chemotherapeutic agents
aligned with the circadian rhythm changes their degree of efficacy
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throughout the day20,22–24. Despite the broad recognition of the bene-
fits of circadian-based drug treatments22,25,26, an efficient strategy to
identify optimal treatment times remains elusive, creating abottleneck
in the implementation. In addition, the mechanisms shaping time-of-
day (ToD) sensitivity profiles remain widely unknown.

Here, we introduce a method for the thorough characterization of
time-of-day responses in tumor and healthy tissue cell models (Fig. 1).
Using an array of experimental and data analysismethodswe perform a
deep-phenotyping of the critical cellular factors underlying time-of-day
responses, i.e., the circadian clock strength, growth dynamics and drug
response features.We thendeploy a high-throughput strategy toobtain
ToD profiles in a panel of drugs and cell linemodels. Comparing tumor
versus non-tumor ToDprofiles provides candidate treatment timings to
increase efficacy and reduce toxicity. We subsequently integrate our
dataset with publicly available gene-expression databases to rigorously
address three fundamental questions in the field of circadian pharma-
cology, known as chronopharmacology. These questions are: (A) What
is the optimal time of day for drug treatment? (B) Which cell subtype
benefits the most from circadian-aligned drug treatment? and (C) How
do cellular features shape time-of-day profiles? Finally, we define a
chronotherapeutic index, ranking cellular models and drug agents that
stand to gain the most benefit from circadian-based treatments.

Results
Deep circadian phenotyping in cancer cell models
Despite the increasing recognition of the role of the circadian clock in
cancer progression and treatment response, the extent to which dif-
ferent cancer subtypes maintain circadian rhythmicity remains poorly

understood. To address this andquantitatively characterize the degree
of rhythmicity of cancer cell models, we implement an approach that
integrates recordings of circadian clock activity with comprehensive
time-series analysis techniques, as depicted in Fig. 2a. To robustly
characterize the circadian clockmolecular network, wemonitored the
positive and negative feedback arms of the molecular clock using a
combination of two circadian luciferase reporters for Bmal1 and Per2
(Fig. 2b). In Fig. 2c we show representative raw luciferase signals from
the breast cancer cell line MDAMB468 and the corresponding
detrended and normalized signals27. As expected for a robust func-
tional clock network, Bmal1 and Per2 signals show stable anti-phasic
expression patterns throughout the recording (Fig. 2c and Supple-
mentary Fig. 1a, b).

Circadian clock strength varies in cancer andhealthy cellmodels
Following the acquisition of Bmal1 and Per2 expression dynamics, we
conducted a comprehensive circadian phenotyping of the signals. To
accurately capture different aspects of the circadian clock dynamics,
we implemented a strategy that integrates three complementary time-
series analysis techniques, i.e., autocorrelation (AC), continuous
wavelet transform (CWT), and multiresolution analysis (MRA). The
rationale behind using this complementary analysis is to harness the
strengths of each technique; AC for identifying stable temporal fea-
tures, CWT for revealing time-dependent amplitude and period
changes, and MRA for extracting multi-scale features, ensuring a
comprehensive understanding of the signal dynamics. Using this
approach we screened a broad panel of cell models, including non-
malignant breast epithelial MCF10A, cancer cell models of various

Fig. 1 | Framework for identifying optimal treatment times in cancer and
healthy tissue models. Schematic of the experimental and computational frame-
work to thoroughly characterize time-of-day drug responses in a variety of cell
subtypes, such as cancer and non-malignant cell models. A combination of live
recordings is implemented for the deep phenotyping of circadian strength, growth
dynamics, and drug responses that shape time-of-day profiles. Using a novel
streamlined experimental approach, time-of-day sensitivity profiles are obtained in

tumor and non-malignant cell models, providing best and worst timings for
increasedefficacy and reduced toxicity (toppanel). A tandemcomputational pipeline
integrates the deep phenotypingmetrics as well as gene expression data of circadian
clock genes to quantitatively address three fundamental questions in chron-
opharmacology (bottom panel). Combining multiple signatures, we define a chron-
otherapeutic index, ranking cellularmodels anddrug agents by their size-effect gains
from drug treatments aligned with the circadian clock (bottom right panel).
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entities (breast cancer, neuroblastoma, and sarcoma) as well as two
knockout variants of osteosarcoma U-2 OS cells with a single deletion
in the circadian clock gene Cry1 (U-2 OS sKO) or paired with a deletion
in the Cry2 locus28 (U-2 OS dKO).

Autocorrelation is a robust method for estimating the periodic
quality of a signal, particularly for time series whose properties remain
stable over time, known as stationary signals. Calculating the auto-
correlation function from each recording provides the strength and
period values, obtained from the second peak ordinate and abscissa
(lag), respectively (Fig. 2d). This analysis showed a wide range of cir-
cadian strengths across models with the U-2 OS wild-type ranking
highest with a median autocorrelation value of 0.74, whereas U-2 OS
sKO and U-2 OS dKO variants ranked lowest with median correlation

values of −0.04 (p = 7.7 × 10−12) and 0.09 (p = 1.4 × 10−10), respectively
(Fig. 2e). Heterogeneity between and within cancer types was further
observed for the oscillation period ranging from short periods of ~ 21 h
in HCC1806 and U-2 OS sKO cells (p =0.83) to longer periods of ~ 26h
in MDAMB468 and MCF10A cells. U-2 OS dKO (34.8 h, p = 8.2 × 10−5)
and the neuroblastoma cell line SH-SY5Y (39.2 h) showed periods well
above the circadian range and were excluded from this analysis
(Fig. 2f). Consistent with these results, detrended signal traces of the
different cell models and additional breast cancer cell lines indicate
high variability in circadian clock signals across the models tested
(Supplementary Fig. 1c).

To capture non-stationary features of circadian signals, such as
unstable periods and fluctuating amplitudes, we implemented

Fig. 2 | Determining circadian clock strength in cancer and healthy tissue cell
models. a Schematic of the deep circadian phenotyping approach. b Simplified
circadian feedback loops involving Bmal1 and Per2. c Raw and processed signals
fromMDAMB468-Bmal1/Per2-Luc cells.d Example of autocorrelation (AC) analysis.
The arrow indicates 2nd peak and abscissa (lag). Dashed lines = 95% CI. e Boxplot of
AC values and (f) lags of signals from various cell models. g Wavelet power spec-
trum (bottom) from continuous wavelet transform (CWT) showing time-resolved
periods of detrended-amplitude-normalized signals from MDAMB468-Bmal1-Luc
cells (top). Red line =main oscillatory component (ridge). h Boxplot of CWT ridge
lengths from various cell models. Box bounds in (e, f, h) are defined by the 25th and
75th percentiles. Extending whiskers represent data points within 1.5 times the
interquartile range from lower and upper quartiles. Red lines and crosses denote
the median and outliers, respectively. n = 12 samples, collected from Bmal1-/Per2-
reporters, with 6 samples per reporter (n = 2 biological replicates á technical tri-
plicates or duplicates [HCC1806 Per2-Luc]). n = 6 for U-2 OS KO-lines (Bmal1-Luc-
only) and MCF10A (single experiment). n = 9 for MDAMB468 (Per2-Luc: single

experiment). n = 17 for SH-SY5Y (biological triplicates with technical triplicates or
duplicates). i Multiresolution analysis (MRA) of detrended MDAMB468-Bmal1-Luc
signal. % = fraction to signal. j Scatterplot of normalized MRA noise versus circa-
dianicity components from the indicated cell models. The shaded area covers an
unattainable range. Data represents the mean ± s.d. of multiple samples per
reporter cell line (see above). kBar diagram ranking cell models by global circadian
strength, integratingmin-max scaled parameters fromAC (peak), CWT (ridge), and
MRA (circadianicity) for Bmal1-Luc and, where applicable, Per2-Luc signals. Data
represents mean ± s.d of scaled parameters (n = 6, except U-2 OS knockouts where
n = 3 parameters). Only the positive s.d. is shown. Color coding in (b–I, k) corre-
sponds to Bmal1 (yellow) and Per2 (blue) reporters. Color coding of cell models in
(e, f, h, j,k) corresponds to tissueorigin. One-wayANOVAandTukey’s post-hoc test
compared U-2 OS WT and KO cell lines, where **, ***, and **** indicate p-values of
5.7 × 10−3, 4.8 × 10−4 and ≤0.0001, respectively. n.s. = non-significant. Source data
for (c–k) are provided as a Source Data file.
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continuous wavelet transform, a prevalent technique for analyzing
dynamic temporal signals29. Figure 2g shows a CWT power spectrum
heatmap of the Bmal1 signal from the MDAMB468 example. The
heatmap displays signal components (0–40h period) over the 120-h
recording, color-coded by relative power (see “Methods”). Time-
connected regions of high relative power mark the signal’s main
oscillatory component, referred to as the ridge. Strong signals exhibit
continuous long ridges whereas weaker signals have short and dis-
continuous ridges. As a complementary measure of clock strength, we
quantified the ridge length from all our recordings. Our analysis shows
that U-2 OS cells have a well-maintained clock with a median ridge
lengthof 4.1days, closely followedbyMCF7,MDAMB468, andMCF10A
cells (3.4–3.8 days). U-2 OS sKO and dKO cells showed ridges shorter
than two days (1.9 days [p = 5.7 × 10−3] and 1.5 days [p = 4.8 × 10−4],
respectively) (Fig. 2h).

While both autocorrelation and continuous wavelet transform,
provide insights into the most significant signal component, they do
not quantify how the signal is distributed among non-circadian fre-
quencies. To obtain more comprehensive signal information and an
analogous signal-to-noise metric, we next implemented multi-
resolution analysis. MRA involves decomposing the detrended signal
into four distinct component bands, namely the noise (1–4 h), ultra-
dian (4–16 h), circadian (16–32 h), and infradian (32–48 h) components
(see “Methods”). In Fig. 2i, we present an example of MDAMB468
Bmal1-Luc where 75.9% of the signal is in the circadian range, 4.7% in
the noise and the remaining 19.4% in the ultradian or infradian range.
To obtain an analogous signal-to-noise measure of all recorded cell
models, we plotted the circadian component (“circadianicity”) versus
the noise component and observed a broad range of ratios (Fig. 2j).
Consistent with our previous analysis, U-2 OS cells show strong circa-
dian signal with the lowest noise levels (< 1%) and the highest pro-
portion of circadian components (~ 93%) for both reporters. Knockout
of Cry1 or Cry1/Cry2 reduced the circadian component to 59%
(p = 5.8 × 10−6) and 40% (p = 2.0 × 10−8), respectively, while increasing
the noise component by 5.8-fold in the single knockout and by 209-
fold in the double knockout. This signal-to-noise analysis map indi-
cates that signals from the Per2-reporter were slightly more circadian
and less noisy than those from the Bmal1-reporter (Fig. 2j and Sup-
plementary Fig. 1d).Bmal1 and Per2 exhibit unique oscillatory patterns,
reflecting distinct biological pathways within the circadian clock sys-
tem. Their individual behaviors might offer valuable insights into the
functionality of the circadian rhythm. To streamline our analysis and
facilitate comparison, we averaged the values of Bmal1 and Per2 in
Fig. 2e, f, h, and k. However, for a more detailed examination, separate
analyses for each can be found in Supplementary Fig. 1e, f.

Finally, to obtain a global strength metric, we normalized each
circadian parameter to its respective maximum value across all tested
cell linemodels and computed themean, facilitating a gradual ranking
of cell models from low to high circadian strength (Fig. 2k, see
“Methods”).

In summary, by using a multi-faceted approach to characterize
circadian rhythms in the different models tested, we identified het-
erogeneous circadian clock phenotypes, suggesting a strong clock in
U-2 OS, MCF7, MDAMB468, and MCF10A cells and an impaired but
present clock inGIMEN andHCC1806 cells. These results challenge the
common expectation that most cancer cells have a weak clock and
underscore the significance of defining gradual metrics of circadian
strength in a model-specific manner.

Growth and drug response dynamics in cancer cell models
Together with circadian potency, cell growth dynamics and how cells
respond to drug treatment in time are expected to influence responses
throughout the day. Thus, we next evaluated growth characteristics
and drug sensitivities across a spectrum of drug and cell line models.
To showcase our approach’s ability to detect within-subtype

differences, we examined nine cell lines of the triple-negative breast
cancer (TNBC) subtype alongside the non-malignant MCF10A breast
cell model. The TNBC cell lines were analyzed across severalmolecular
subtypes as classified by Lehmann et al., specifically the basal-like 1
(BL1), basal-like 2 (BL2), and mesenchymal-like (MES) TNBC subtypes.
Growth and drug sensitivity assays in cancer models often rely on
single time point measurements (e.g., ATP-based viability and replat-
ing assays) that provide a time-averaged snapshot. However, cancer
cells respond dynamically to drugs, with temporally evolving effects,
so conclusions drawn from single time point data can potentially mask
the true effects of drugs.Toaccurately capture the dynamicsof growth
and drug response, we implemented a time-resolved live-cell imaging
setup, directly counting cell nuclei in a fluorescence channel, while
simultaneously evaluating confluency in the complementary bright-
field channel (Fig. 3a). Figure 3b shows representative snapshots of
both imaging channels from MDAMB468 cells under untreated con-
ditions. Frame-by-frame quantification provides growth trajectories
for each cell model tested (Supplementary Fig. 2a), with MDAMB468
cells showing a 5.3-fold increase in growth and reaching a ~ 100%
confluency after 4 days (Fig. 3c). Quantification of doubling times
(DTs) calculated from confluency and cell numbers correlated well
across the 10 cell line models tested (R2 = 0.69) (Supplementary
Fig. 2b). Upon examining the normalized cell number trajectories, we
observed substantial variability in growth across the cell line models,
ranging from approximately 2- to 16-fold over the 4-day recordings
(Fig. 3d). To capture growth signatures from the entire recording, we
fitted an exponential function to each time series and obtained the
growth rate k for each trajectory (Fig. 3e). As expected, cell number
growth rates and doubling times exhibit a strong anticorrelation
(R2 = 0.83) (Fig. 3f and Supplementary Fig. 2c).

Next, we studied the response of the cancer cell models upon
treatment with a panel of seven drugs targeting a broad range of
mechanisms and pathways, i.e., the DNA synthesis inhibitors 5-FU and
doxorubicin, mitosis-inhibiting alisertib and paclitaxel, the PI3K/AKT/
mTOR inhibitor torin2, as well as cisplatin and olaparib which target
the DNA damage response (DDR) pathway (Fig. 3g). We then tracked
responses to a broad range of drug concentrations, as exemplified in
Fig. 3h by MDAMB468’s olaparib treatment. Here, doses up to 1.5 µM
resulted in slightly slower growth relative to the control, while 6.3 µM
of olaparib significantly hindered growth, and ≥ 25 µM led to total
inhibition and cell death. Fitting an exponential function to growth
curves yielded positive growth rate values for weak doses while higher
doses resulted in negative growth rates, indicating population decline.
Using this approach, we next quantified the response and stratified all
tested cell lines and drugs.

Multi-parametric evaluation of drug sensitivity reveals hetero-
geneity between and within models
Accurate assessment of drug effects is essential for identifying exploi-
table weaknesses in cancer treatments. Traditional drug sensitivity
metrics, like the IC50 (thedrugconcentration that reduces cell countsby
50% relative to the control), can be greatly influenced by factors such as
the assay duration and the number of cell divisions between drug
administration and the final evaluation of drug sensitivity. These factors
can inadvertently introduce artefactual correlations and lead to mis-
interpretations of drug sensitivity results. To obtain robust drug sensi-
tivity metrics, we employed the normalized growth rate inhibition (GR)
approach as described by Hafner et al.30. Here, growth rates under-
treated and untreated conditions are compared and normalized to a
single cell division. Fitting a dose-response equation toGR-values yields
five drug sensitivity parameters, namely, the concentrations at half-
maximal effect (GEC50) and at which GR =0.5 (GR50), the drug effect at
the infinite concentration (GRinf), the steepness of the sigmoidal fit (Hill
coefficient), and the area over the curve (GRAOC) (Fig. 3i). Moreover, the
GR value directly reflects cellular response phenotypes, indicating
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partial growth inhibition for values between 0 and 1, complete cytos-
tasis for a value of 0, and signifying cell death in the range from0 to − 1.
Interestingly, when the same cell line was treated with different cancer
drugs at their respective concentration evoking a saturating GRinf
response, distinct drug-dependent trajectories emerged (Fig. 3j). This
underscores the importance of a time-resolved approach for

characterizing drug sensitivity across different drugs and, accordingly,
across distinct cell line models.

We next compared a subset of drug-sensitivity metrics and cell
line models for the different drugs tested (Fig. 3k–m). While most
drugs were able to induce death in the subset of cell lines to varying
degrees, we identified three drugs that resulted in partial growth

Fig. 3 | Unravelinggrowthanddrug responsedynamics through long-term live-
cell imaging. a Schematic of the experimental setup. NLS= nuclear localization
sequence. b Snapshots of MDAMB468 growth in brightfield (top) and red-
fluorescent channel (bottom). Ruler = 400 µM. c MDAMB468 confluency (black)
and cell numbers (red) over time. d Normalized growth curves of indicated cell
models. BL1, BL2, and MES refer to TNBC subtypes basal-like-1/-2, and mesenchy-
mal-like, respectively. EP = epithelial. e Exponential fit (solid line) for MDAMB468
growth curves, yielding growth rate (k), and fit accuracy (R2). Dots represent nor-
malized cell numbers averaged across 9 images taken per well. The shaded area
represents the standard deviation. f Bar diagrams of doubling times and growth
rates, sorted in descending order from highest to lowest growth rates. Parameters
calculated from growth curves, averaged across 9 images taken per well (CAL51,
HCC38, HCC1806, HCC1937, MDAMB231, MDAMB468), or across six control wells
from later described time-of-day experiments.g Schematicof pathways targetedby
drugs used in this study. h Cell numbers and growth rates of MDAMB468 cells
treated with varying olaparib doses (color-coded) or solvent (dashed line). Data

represents the mean±s.d. of two plates. i Dose-response curve of GR-values, high-
lighting various drug sensitivity metrics. The underlying data corresponds to the
example shown in (h). Error bars=95%CI. jNormalized cell numbers ofMDAMB468
treated with approximate GRinf doses of the indicated drugs. Data represents the
mean ± s.d. of two plates or mean±s.e.m of 9 images taken on a single plate (cis-
platin). k–m Hierarchical clustering of drug sensitivity parameters across cell-drug
combinations. GEC50-values are shown relative to the approximate GRinf dose.
n Pearson’s correlation coefficients of sensitivity parameters shown in (k–m) and
additional combinations (Supplementary Data 1; n = 50 cell-drug combinations per
parameter, except for EC50-values where n = 49 due to fitting constraints). Denoted
are significant pairwise correlation coefficients (two-sided test with no adjustments
made), where * indicate p-values of 0.03 (Hill coeff. vs. GRAOC) or 0.018 (Hill coeff.
vs. GR50), **p-value of 0.0016, ***p-value of 0.0015, and ****p-values≤0.0001. Data
in (k–n) is based on the mean of two plates, or 9 images taken per well on a single
plate (cisplatin). Source data for (b–f, h–n) are provided as a Source Data file.
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inhibition of HCC1806, namely olaparib, 5-FU and alisertib (Fig. 3k).
Hierarchical clustering of GRinf −values revealed a grouping of the
two TNBC cell lines and while this clustering was maintained for the
GEC50-values (Fig. 3l), the Hill coefficient resulted in a different
clustering of the cell lines (Fig. 3m). To explore the potential rela-
tionships between various sensitivity metrics, we combined data
from multiple drugs and cell models and computed cross-correla-
tions, revealing significant associations among GEC50, GR50,
and EC50-values (p ≤ 0.0001) (Fig. 3n). In addition, significant yet
less pronounced correlations emerged between the Hill coefficient
and different drug sensitivity parameters, whereas the GRinf and
GRAOC-values showed minimal correlation with other metrics.
For complete GR curves and information on additionally tested cell
lines and drugs, see Supplementary Fig. 3 and Supplemen-
tary Data 1.

Variability throughout the day depends on the drug and
cell model
The presence of a robust circadian clock combined with drugs that
efficiently affect growth in a tumor model are promising pre-
requisites for identifying drug variability throughout the day.
However, these prerequisites do not provide a priori insights into
the specific time-of-day response profile. To systematically screen
ToD drug sensitivities, we developed an experimental strategy
designed to significantly reduce the investigator’s workload and
number of consecutive drug perturbations, thereby increasing
throughputness, reproducibility and accuracy (Fig. 4a). In this
approach, cell populations are seeded 24 h prior to the start of
continuous live-cell imaging followed by performing a 3-step cir-
cadian clock resetting protocol in which separate cell populations
receive a dexamethasone pulse at three different times (0, 4, 8 h).
To test cells in later stages of the circadian cycle, drugs are admi-
nistered at their estimated half-effective dose 32 and 48 h after the
first resetting step, creating a range of time differences between
reset and treatment of 0, 4, 8, 16, 20 and 24 h in relative circadian
time (Fig. 4a, right panel). The effects of the different treatment
times on cell growth were monitored by live-cell imaging up to
day 6, enabling the evaluation of drug responses for 4 days in both
treatment groups, as shown for the alisertib-treated TNBC cell line
HCC1937 in Fig. 4b. In typical ToD assays, cells are constantly pro-
liferating during the 24 h of ToD treatments, resulting in varying
cellular densities at the time of the drug treatments. These varying
cell densities have the potential to influence drug responses in vitro,
possibly concealing or introducing bias when determining ToD-
specific drug effects. To account for different cell densities at the
time of treatment, drug responses are determined as the ratio of the
number of cells at the time of each treatment to the number of cells
96 h after each treatment, keeping the time window from treatment
to evaluation identical across conditions (Fig. 4c, left panel). To
highlight relative response differences within a day, results are
presented relative to the circadian time of 0 h. Values > 1 indicate
increased resistance, while values < 1 indicate higher sensitivity
compared to treatment at time 0 h (Fig. 4c, right panel). We quantify
the maximum variability in relative responses as the ToD Maximum
Range (ToDMR).

Our next objective was to explore the variability of ToD profiles
of different drugs within a subset of TNBC cells. To accomplish this,
we screened ten cell line models shown in Fig. 3 treated with eight
different drugs, generating approximately 80 ToD profiles
(Fig. 4d, e and Supplementary Fig. 4a, b). Comparing examples from
individual cell lines, namely HCC1937 and MCF10A, revealed that
HCC1937 exhibited relatively conserved ToD profiles, whereas the
non-malignant cell line showed greater ToD variability for the dif-
ferent drugs (Fig. 4d). Furthermore, ToD sensitivity profiles varied
significantly from drug to drug (Fig. 4e and Supplementary Fig. 4b),

suggesting that ToD profilesmay be highly dependent on the cancer
cell model and drug mechanism of action.

To assess varying time-of-day sensitivities across all tested cell line
models and drugs, we calculated the corresponding ToDMR value for
each drug-cell combination (Fig. 4f). Averaging the ToDMR-values per
drug and cell line revealed a gradual ranking of ToDvariability for each
drug and cellmodel tested (Fig. 4g).Within the drug panel, the highest
and lowest ToD variability was observed for cisplatin and alisertib,
respectively, with a ~ 2-fold difference in the average ToDMR value
(Fig. 4g, top panel). Similarly, the ToD variability of the tested cell lines
varied by ~ 2-fold, with MCF10A showing the highest and HCC38 the
lowest average variability. Considering only cancer cell lines,
SUM149PT ranked highest and showed a similar degree of ToD sensi-
tivity variability as the non-malignant cell line (Fig. 4g, bottom panel).

To assess the impact of circadian clock disruptions on ToD-
dependent drug sensitivity, we evaluated circadian-perturbed U-2 OS
Cry1/2-dKO cells, alongside wild-type cells that demonstrated the
strongest circadian rhythms in our assessments (see Fig. 2). Using our
ToD treatment approach (see Fig. 4a), we tested three drugs which
elicited high ToD response variations in our breast cancer panel (see
Fig. 4g), and which target distinct molecular pathways. Our results
demonstrate substantial ToD-dependent drug sensitivity in WT cells
and markedly reduced responses in Cry1/2-dKO cells (Supplementary
Fig. 4c). Specifically, ToDMR-values decreased by 62% for cisplatin, 58%
for paclitaxel, and 40% for 5-FU in Cry1/2-dKO compared to WT cells
(Supplementary Fig. 4d), highlighting a critical role of the circadian
clock in influencing drug sensitivity throughout the day.

Together, our findings reveal distinct ToD profiles across most
tested drugs and models, highlighting individualized ToD sensitivity
within distinct drugs and cell models despite the common TNBC
categorization and shared drug-target pathways.

Determining treatment times for maximum drug effect
The critical factor in the design of future chronotherapeutic treat-
ments may be not only the sensitivity of cancer cells but rather the
differential time-of-day sensitivity between cancer and non-malignant
tissues26. To illustrate this, we compared the ToD response profiles of
TNBC cancer cell models with the profile of MCF10A, as shown for
HCC1937 and alisertib in Fig. 4h. In this case, the cancer and non-
malignant cell models show an antiphasic ToD response profile, with
an almost inverted profile. By calculating the greatest response dif-
ferences between the two cell models, we determined the treatment
times of maximum and minimum benefit (Fig. 4h–j). Analyzing the
entire panel of tested drugs per cell line model and plotting polar
density histogramsof the times ofmaximumandminimumbenefit, we
found that the highest overall benefit is achieved at 10–12 h and
18–20h in the treatment of HCC1937, while earlier treatment times of
the day yield minimum benefit. In contrast, SUM149PT and
MDAMB231 show a single prominent timewindow throughout the day
that provides maximum treatment benefit (Fig. 4i). In addition to cell
model-to-model variability in the benefit times, we explored the drug-
to-drug variability by calculating the polar density histogram for the
individual drugs tested across all cell linemodels (Fig. 4j). 5-FU showed
a clear preference for administration between 8 and 10 h, while torin2
and paclitaxel showed more variability in maximum and minimum
benefit times, indicating different response relationships to the non-
malignant cell model across the cancer cell lines tested.

Finally, we quantified the extent of maximum and minimum
treatment benefit by calculating the corresponding fold changes in
ToD responses between the cancer and non-malignant cell model
(Fig. 4k). By averaging these fold changes across cell lines and drugs,
we established a ranking referred to here as the “chronotherapeutic
index”. While the average ToD variability highlights the benefits of a
single model (Fig. 4g), the chronotherapeutic index reveals distinc-
tions between the cancer models and the non-malignant MCF10A cell
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Fig. 4 | Time-of-day drug sensitivity is drug and tissue model dependent.
a Schematic of the experimental setup to screen for time-of-day (ToD) responses.
Three clock-resetting steps are performed in 4-h intervals. Drugs are administered
32or 48 hours post initial reset, resulting in six circadian times (0, 4, 8, 16, 20, 24 h).
Growth is monitored by long-term live-cell imaging. Timelines on the right depict
experimental (top) and relative circadian times (bottom), color-coded by each ToD
tested.bCell counts of HCC1937 treated with alisertib at different times of the day.
Normalization to the respective time of treatment. c Cell numbers 4 days post-
treatment versus treatment times, corresponding to (b) (left). ToD response curve
(ToD-RC) depicting relative responses to ToD 0h. Blue arrows mark the maximum
ToD response range (ToDMR) (right). d ToD-RCs for HCC1937 (left) or MCF10A
(right) cells treatedwithdifferent drugs (color-coded). eToD-RCs for 10 cellmodels
treated with paclitaxel (left) or doxorubicin (right). Color coding of cell models
according to tissue origin. fHierarchical clusteringofToDMR-values across drug-cell

combinations. Values above 0.2 are shown. Data clustering with the UPGMA
method and Euclidian distance. g Bar diagrams ranking ToDMR-values per drug
(top) and cell model (bottom). h ToD-RCs for alisertib-treated HCC1937 tumor and
MCF10A non-tumor cells overlaid, yielding maximum and minimum benefit times.
Data shown in (b–h) represents the mean ( ± s.d.) of two plates. i Polar histograms
for benefit times across cell models (n = 7–9 drugs, as indicated in the figure) and
j, drugs (n = 9 cell models). k Butterfly charts depicting fold changes relative to
MCF10A at benefit times, averaged per cancer cell model (left,) and drug (right).
Color-coding of maximum and minimum benefit times is shown in (h–k) in green
and red, respectively. Data are shown in (g and k represents mean ± s.d. of tested
cell models per drug (n = 9 cell models; alpelisib and cisplatin: n = 8) and vice versa
(n = 8 drugs; HCC1806 and SUM149PT: n = 7). For clarity, one-sided error bars are
shown. Source data for (b–k are provided as a Source Data file.
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model, therebyoffering valuable insights into the potential advantages
of adopting a chronotherapeutic-based schedule. It’sworthnoting that
the rankings based solely on average ToD variability within a single
model or drug didn’t align completely with the ranking of the chron-
otherapeutic index. This emphasizes the importance of evaluating
effects in relation to healthy tissues when considering chronotherapy
applications (Fig. 4g, k).

To sum up, our findings emphasize distinct chronotherapeutic
response dynamics in vitro between cancer and healthy cell models,
underscoring two key objectives of chronotherapy: pinpointing opti-
mal treatment times to maximize cancer toxicity while minimizing
impacts on healthy tissues.

The relationship between time-of-day profiles and clock,
growth, and drug sensitivity metrics
The time-of-day sensitivity in cancer models results from complex
interactions involving the circadian clock, cancer cell growth, and drug
responses. However, the specific mechanisms governing these inter-
actions remain largely unknown. To address this, we employ statistical
tools, including linear regression, dominance analysis, and determi-
nant ranking, to uncover themain parameters influencing a key aspect
of ToD sensitivity curves, namely the maximum range in responses
(ToDMR) (Fig. 5a). To explore how individual metrics relate to ToDMR-
values, we first performed pairwise linear regression analysis
(Fig. 5b–f). We considered each circadian channel individually or
combined and found the strongest and most significant correlations
for clock metrics from the Bmal1 channel (Fig. 5d and Supplementary
Fig. 5a, see Supplementary Data 2 for a complete set of circadian
metrics across the cell models tested). ToDMR-values of 5-FU were
significantly correlated with amplitudes (r =0.8, R2 = 0.6) and the
prominence of the circadian component (circadianicity) of the Bmal1
signal (r = 0.7, R2 = 0.43), whereas other circadian clock metrics were
poorly associated (Fig. 5b, d). On the other hand, we observed no
significant and rather low associations for ToDMR-values and growth
metrics aswell as forToDMR-values anddrug sensitivitymetrics (Fig. 5c,
e, f). To identify the best associated individual metric and drug, we
integrated all correlations and generated a ranking as shown in Fig. 5g.
For the different metrics, we observed the highest correlation for the
amplitude (r =0.43 ± 0.02,mean± s.e.m.). Among the individual drugs,
adavosertib ranked highest in overall correlation (r =0.39 ± 0.03,
mean± s.e.m.) between ToDMR-values and the different metrics. Rela-
tive average associations between all metrics and ToDMR-values were
predominantly positive, with only five metrics demonstrating inverse
relationships (Supplementary Fig. 5b). Notably, only one drug, pacli-
taxel, displayed average negative associations across all metrics. To
further test the associations between individual cellular parameters
and ToDMR-values, we applied a linear regressionmodel and compared
calculated versus actualToDMR-values of up tofive newcell linemodels
in Bland-Altman plots (Supplementary Fig. 5c, see Supplementary
Data 3 for the complete new dataset). This revealed mean biases of
−0.04, −0.05, and 0.06 between calculated and actual ToDMR-values
for the clock, growth, anddrug sensitivitymetrics, respectively. As also
shown in Supplementary Fig. 5c, mean biases are near zero and most
predicted data points lie within the limits of agreement, which indi-
catesminimal overall bias and good agreement between the predicted
and observed data points.

While linear regression approaches are robust for examining
individual metrics, they do not provide relative information about
which metrics have the most significant impact on ToDMR-values. To
address this, we used dominance analysis and systematically tested all
possible combinations of metrics. By measuring how much each
metric improved the accuracy of the model when added or removed,
we identified the highest contributing ones to the ToDMR-values of the
different drugs. For alpelisib, our analysis identified the amplitude of
Bmal1 signals as the most important factor, accounting for 42% of the

observed ToD sensitivity variability (Fig. 5h). In contrast, paclitaxel and
adavosertib showed the most homogeneous distribution of individual
contributions, with no single metric appearing especially important.
Considering the shares of each determinant combined for all drugs led
to a ranking of determinants as shown in Fig. 5i. Here, we observed the
largest contributions for the Bmal1 amplitude (mean= 21.9%) and
smallest for the Hill coefficient of drug response curves (mean = 9.9%).

In summary, we were able to identify systematic dependencies of
the maximal time-of-day drug sensitivities and different circadian
clock, growth, and drug sensitivity parameters.We have further shown
that the relative importance of the different determinants varies sub-
stantially depending on the specific drug, highlighting the importance
of considering multiple factors in understanding the time-of-day
dependent variability of drug response in a cell model.

Differential impact of core clock genes in shaping time-of-day
sensitivity of cancer models
Beyond a cancer model’s circadian clock, growth, and drug features,
the expression levels of core circadian clock genes are likely to con-
tribute to the time-of-day sensitivity profiles. Thus, we explored the
connection between the expression patterns of 16 essential clock
genes and the maximum range in ToD sensitivity profiles (ToDMR). We
defined core clock genes as those that directly control the
transcriptional-translational feedback loops of the molecular clock
network and whose dysregulation or mutations result in disrupted
circadian rhythms31,32. The selected gene panel displayed distinct
expression patterns across the TNBC cell lines tested (Supplementary
Fig. 6a). To examine potential relationships between core clock genes
and ToDMR-values, we used three different methods, namely linear
correlation analysis, dimensionality reduction by linear discriminant
analysis (LDA) and principal component analysis (PCA) (Fig. 6a).

Linear correlation analysis revealed significant correlations
between ToDMR-values of five tested compounds from our drug panel
and selected core clock genes (Fig. 6b). Focusing on the mitosis inhi-
bitor paclitaxel, we identified particularly strong anticorrelations with
the expression levels of Per3 (r = −0.88, R2 = 0.78) and Dbp (r = −0.72,
R2 = 0.51) (Fig. 6b, c). Yet, the overall correlation between circadian
clock genes and ToDMR-values was relatively weak, which was also
apparent when accumulating absolute correlations per drug or per
metric (Supplementary Fig. 6b). Here, the highest overall correlationof
ToDMR-values were found for cisplatin (r = 0.40 ± 0.21, mean± s.d.),
whilePer2wasmost associatedwithToDMR-values among the circadian
clockgenepanel (r = 0.48 ±0.20,mean± s.d.) (Supplementary Fig. 6b).

To assess the cumulative impact of circadian gene expression on
the strength of time-of-day effects as indicated by the ToDMR-values,
aiming to uncover more complex patterns that might not be explain-
able through linear correlations alone,weproceeded to apply LDAona
drug-by-drug basis. To do so, we first categorized cell models into two
groups based on the median ToDMR-value for each drug. Figure 6d
provides an example using paclitaxel, effectively separating the data
into groups of high and low ToDMR-values. Implementing LDA to
examine the individual linear discriminant components of each circa-
dian clock gene revealed a clear ranking of genes in terms of their
importance in discriminating the cell lines into the two ToDMR groups.
For paclitaxel, the core clock genes Cry2, Dbp, and Per3 were the most
important contributors to the specific discrimination, collectively
accounting for approximately 46% of the discriminative information
(Fig. 6d, right panel). Importantly, the contribution of each gene in
discriminating between ToDMR-response groups varied for the tested
drugs, suggesting that either the drug or the drug targets may interact
differently with the molecular components of the circadian clock
(Supplementary Fig. 6c–i). To explore the circadian clock’s impact on
ToD sensitivity across various drug treatments, we assessed the overall
contribution of each gene by cumulating their effects across all drugs.
This revealed modest overall contributions, with the highest ranking
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Rorβ accounting for 10.5% ± 9.6% (mean± s.d.) of the discriminative
information (Fig. 6e).

While LDA is a powerful method to determine the discriminatory
contribution of the individual core clock genes, PCA allows for iden-
tifying underlying patterns and relationships among the different
genes. For paclitaxel, PCA distributed the cell models well along the
first twoprincipal componentswhich combined explained 73.7%of the

variability among the different ToD sensitivity profiles (Supplementary
Fig. 6j, left panel). Ranking of the PC loadings showed that the degree
of contribution of each circadian clock gene in shaping the PCA out-
come was highly individual. For paclitaxel, Csnk1d was the major
contributor to the ToD sensitivity variability within the first principal
component, while along the second principal component, Clock
ranked as the main contributor (Supplementary Fig. 6j, right panels).

Fig. 5 | Clock and drug sensitivity metrics shape ToD curves. a Computational
approach to investigate how circadian rhythms, cell growth dynamics, and drug
sensitivity factors influence the time-of-day (ToD) drug efficacy.b and c Example of
linear correlations between ToDMR and circadian (b) or drug sensitivity parameters
(c), for 5-FU (n = 10 cellmodels) and cisplatin (n = 5 cell models), respectively. Color
coding of cell models according to tissue origin. The central black line represents
the regression line. Gray-shaded area = 95% CI of the linear regression fit. Model
accuracy is indicated by R2-values. d–f Hierarchical clustering of Pearson correla-
tion coefficients (r) between ToDMR-values of different drugs (rows) and the
respective metric (columns) for clock strength (d, n = 10 cell models), growth
(e, n = 10 cell models) or drug sensitivity (f, n = 5 cell models). r-values ≥0.5 and ≤ -
0.5 are shown. Black rectangles indicate examples shown in (b and c). Significant
pairwise correlations (two-sided test with no adjustments made) are indicated by
stars, where *, and **, denote p-values ≤0.05 and 0.01, respectively. Exact p-values:
Alisertib-AC-Lag = 0.011; Alisertib-Period-2d = 0.004; Doxorubicin-Ridgelength =

0.030; Doxorubicin-AC-Lag = 0.014; Doxorubicin-Period-2d = 0.012; Alpelisib-
Amplitude= 0.002; 5-FU-Circadianicity = 0.044; 5-FU-Amplitude =0.007. Note:
sample size in (d–f) for alpelisib = n-1; and for cisplatin =9. g Bar diagrams ranking
the absolute correlation between ToDMR-values, and eachmetric depicted in (d–f),
ranked by metric (n = 8 drugs) or by drug (n = 14 metrics). Data represents the
mean ± s.e.m. For clarity, one-sided error bars are shown. h Hierarchical clustering
of the dominance analysis matrix showing the individual contribution of the cir-
cadian clock, growth, anddrug sensitivity parameters (columns) inpredicting drug-
dependent ToDMR-values (rows). Colors indicate the percentage contribution, as
detailed in the color bar. See key for d–f for sample sizes (n). iBoxplot of the overall
contribution of cellularmetrics to predict ToDMR-values, corresponding to (h). Box
bounds are defined by the 25th and 75th percentiles. Extending whiskers represent
data points within 1.5 times the interquartile range from lower and upper quartiles.
Red lines denote the data’s median, and white circles themean. Source data for b–i
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51611-3

Nature Communications |         (2024) 15:7205 9

www.nature.com/naturecommunications


Collectively, our findings suggest limited associations between
individual expression levels of core clock genes and the observed
ToD maximum ranges within the examined cell lines. However, we
found interesting relationships when considering the circadian
clock gene panel as a collective, indicating potential connections
between the molecular circadian clock and drug-dependent time-
of-day sensitivity.

Discussion
While the fundamental role of the circadian clock in influencing dis-
ease progression and treatment response is widely recognized22,33,34,
our understanding of the underlying biological mechanisms remains
fragmented. Approaches that enable the precise study of drug per-
turbations and treatment responses within controlled circadian-timed
environments play apivotal role in advancingour understandingof the
effects regulated by the circadian clock. To date, there has been a
notable absence of standardized methodologies for the comprehen-
sive exploration of the chronotherapeutic potential of drugs and
cancermodels. In thiswork,wepresent an integrative approach for the
high-throughput quantification of time-of-day response profiles and
the elucidation of circadian, growth, and drug sensitivity factors that
shape these profiles (Fig. 1). This innovative method holds significant
promise for advancing biological discovery, offering a robust platform

to explore the intricate interplay between circadian rhythms, cellular
growth, and drug timing efficacy.

Despite the general expectation that the circadian clock is likely
dysregulated in highly transformed cancers19,33, our approach reveals
robust rhythms in numerous cancer cell models (Fig. 2). Furthermore,
our assessment of circadian rhythms in non-malignant epithelial cells,
luminal breast cancer cells, and osteosarcoma cells aligns with prior
research28,35–37, underscoring the versatility of our approach in eluci-
dating circadian clock properties across various cancer and tis-
sue types.

Among these, we focused on triple-negative breast cancer, a
highly aggressive and heterogeneous subtype, representing about 15%
of diagnosed breast tumors. Current therapies are ineffective, with
cytotoxic chemotherapy still being an integral part of treatment
despite limited efficacy and severe side effects38. Our investigation into
the growthdynamics anddrug responses ofmultipleTNBCcellmodels
has generated a diverse array of metrics. Notably, our results indicate
that our set of drug sensitivitymetrics, namely theGR50,GEC50,GRAOC,
GRinf, and theHill coefficient, exhibitmilder correlations to each other,
which is in agreement with recent studies39. This challenges the con-
ventional binary classification of sensitive versus resistant models and
suggests that drug sensitivity rankings are rather drug-dependent and
sensitivity metric-specific (Fig. 3).

Fig. 6 | Gene expression analysis unveils diverse roles of circadian genes in
determining time-of-day patterns. a Approach to identify the role of core clock
genes in determining the strength of time-of-day (ToD) drug sensitivity.
b Hierarchical clustering of Spearman rank correlation coefficients between drug-
dependent ToDMR-values (rows) and core clock genes (columns). Black boxes indi-
cate examples shown in (c). Statistical significance of the correlations are indicated
as stars, where * and **, denote p-values ≤0.05 and0.01, respectively. Exactp-values:
Paclitaxel-Per3=0.002; Paclitaxel -Dbp =0.030; Cisplatin-Dbp =0.021; Torin2-Dbp =
0.036; 5-FU-Per2=0.050; Alpelisib-Bmal1 =0.021; Alpelisib-Per2=0.047. Cisplatin
and alpelisib: n= 8 cell lines, else n= 9 cell lines. c Example of linear correlation
analysis between paclitaxel ToDMR-values and Per3 or Dbp expression levels mea-
sured as log2(TPM). Color-coded data points indicate different cancer cell models.
The gray continuous line indicates the normal distribution fit of the samples. Gray-

shaded area = 95% CI of the linear regression fit. Model accuracy is indicated by R2-
values. Top and lateral histograms indicate the count of samples along the range of
gene expression, and ToDMR-values, respectively. n= 9 cell lines. d Linear dis-
criminant analysis (LDA)onmedian-basedbinarizedToDMR-values for paclitaxel. Cell
models with ToDMR-values below or above the median (M) are colored in blue and
red, respectively (middle and left panel). The contribution to the obtained dis-
criminative information is shown in percentage for each of the circadian clock genes
(right panel). e Boxplot showing the mean-based ranking of overall discriminative
contributions of each circadian clock gene across all tested drugs. n= 8 drugs. Box
bounds are defined by the 25th and 75th percentiles. Extending whiskers represent
data points within 1.5 times the interquartile range from lower and upper quartiles.
Red lines denote the data’s median, and white circles the mean. Source data for b–e
are provided as a Source Data file.
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By implementing our screening approach for the profiling of drug
sensitivities across different times of the day, we generated approxi-
mately 80 distinct time-of-day sensitivity profiles, unveiling a wide
range of sensitivity variations across drugs and cell line models (Fig. 4
and Supplementary Fig. 4). We then ranked models by their time-of-
day sensitivity and observed up to 30% response differences
throughout the day for the top scoring models. We further detected
substantial variation in time-of-day sensitivity among the panel of
drugs tested, revealing time-of-day dependent drug effects. Consistent
with previous findings, we show time-of-day dependent variability in
responses to the DNA synthesis inhibitors 5-FU22,23,40 and
doxorubicin22,41 as well as to the DNA intercalator cisplatin22,41. Fur-
thermore, we have introduced a chronotherapeutic index, which
gauges the relative advantages of adopting a circadian-based drug
schedule. Various non-malignant cell models may be employed for
calculating this index, tailored to the particular disease model under
investigation. For example, fibroblast models, whose strong circadian
rhythms have been described in several works42–44, are expected to
show unique relationships with cancer models in terms of sensitivity
patterns at different times of the day.

Delving into the molecular mechanisms that potentially govern
time-of-day sensitivity, our method has unraveled key relationships
between circadian clock dynamics, growth patterns, and drug sensi-
tivities, all of which significantly impact time-of-day drug responses. It
is noteworthy that the specific contribution of these parameters varies
depending on the drug under consideration, underscoring the multi-
factorial nature of time-of-day dependent variability in drug reactions
(Fig. 5). Aiming to simplify the circadian analysis and to provide an
overarching view of circadian clock dynamics, we initially combined
Bmal1- and Per2-signals in Fig. 2. However, separate evaluations of the
circadian genes, as presented in Supplementary Fig. 1e and f, proved
crucial to elucidate the significant impact of oscillatory Bmal1
dynamics on ToDMR-values.

In an exploratory approach, we identified limited associations
between expression levels of core circadian clock genes and ToD
sensitivities (Fig. 6). This may hint at a more complex role of the
molecular circadian clock network in this context, where distinct
associations might be masked by high redundancy and interconnec-
tion between core clock genes. In addition, our results could indicate a
discrete role of the cell cycle in shaping our observed ToD sensitivity
profiles45–47, which also invites for further research in that context.

Assessing the cumulative impact of circadian gene expression on
ToDMR-values, we found differential contributions of each circadian
gene in discriminating between high and low ToD-dependent sensi-
tivity based on the drug tested. To investigate whether this observa-
tion underlies variations in the expression levels of the drug targets,
follow-up explorations involving e.g., mRNA or protein quantification
techniques performed at different times of the day could be con-
ducted in future studies focusing on themolecularmechanismsofToD
sensitivity.

Given their recognized influence on pharmacodynamics22,33,34, our
study primarily focused on circadian rhythms. Nevertheless, our mul-
tiresolution analysis of Bmal1 and Per2 oscillatory signals uncovered
distinct alternate rhythms of shorter and longer periods, as illustrated
in Fig. 2i, j. The significant impact of independent 12-h ultradian
rhythms on stress responses has been previously documented for
mammalian cells48 and constitutes an interesting field for future
research in the scope of our time-of-day drug sensitivity profiles.

Despite employing a robust method to introduce luciferase
reporters and validating several circadian results, as well as using
population-based recordings of non-clonal cell lines, our approach
does not rule out the potential impact of random reporter insertions
on circadian clock estimation. Moreover, while our findings are pri-
marily based on in vitro models and are not directly applicable to
treatment recommendations, our framework can be directly applied to

model organisms of higher complexity, such as 3D patient-derived
organoids and animalmodelswhere the circadian clock canbe tracked.

Altogether, we provide a comprehensive method to determine
optimal drug treatment times for complex diseases and to identify the
cell subtypes that will most benefit from a time-of-day based treat-
ment. Leveraging innovative experimental and computational techni-
ques our approach further elucidates the specific biological features
that shape time-of-day response profiles, thereby advancing our
understanding of the cellular mechanisms that drive time-of-day sen-
sitivity. As a result, our method provides tools to uncover the cellular
mechanisms that govern time-of-day sensitivity, paving the way for
new biological discoveries.

Methods
Experimental methods
Cell culture. HCC1143, HCC1806, HCC1937, HCC38, and MDAMB468
cells were obtained from the American Type Culture Collection.
BT549, CAL51, MDAMB231, MDAMB436, and SUM149PT cells were
kindly provided by the Sorger lab (Harvard Medical School, Ludwig
Cancer Center, Boston, USA). MCF10A and MCF7 cells were kindly
gifted by the Brugge lab (Harvard Medical School, Ludwig Cancer
Center, Boston, USA). GIMEN and SH-SY5Y cells were provided by the
Schulte lab (Universitätsklinikum Tübingen, Clinic for Pediatrics and
Adolescent Medicine, Thübingen, Germany) and the U-2 OS reporter
cell lines by theKramer lab (Charité, Institute forMedical Immunology,
Berlin, Germany). MCF10A cells were maintained according to the
Brugge lab’s media recipe based on DMEM/F12 media (Gibco,
11320033) supplemented with 5% horse serum (Gibco, 26050088),
20 ng/ml EGF (Peprotech, AF-100-15), 0.5mg/ml Hydrocortisone
(Sigma, 50-23-7), 100 ng/ml Cholera Toxin (Sigma, 9012-63-9), 10 µg/
ml Insulin (Sigma, I1882) and 1% penicillin-streptomycin (Pen-Strep,
Gibco, 15140122). All other cell lines were maintained in RPMI 1640
(Gibco, 11875-093) supplemented with 10% fetal bovine serum (FBS)
(Gibco, A5256701) and 1% Pen-Strep. For bioluminescence recordings
and long-term imaging, cells were cultured in FluoroBrite DMEM
medium (Gibco, A1896701) supplemented with 10% FBS, 300mg
L-Glutamine (Gibco, 25030024) and 1% Pen-Strep. Cells were kept at
37 °C in a humidified 5% CO2 environment and regularly tested for
mycoplasma.

Generation of reporter cell lines. To produce lentivirus carrying
constitutive red-fluorescent nuclear reporters, HEK293T cells at 80%
confluence were transfected with a mix of 1.8μg gag/pol packaging
plasmid (Addgene #14887), 0.7μg pRev packaging plasmid (Addgene
#12253), 0.3μg VSV-G envelope plasmid (Addgene #14888) and 3.2μg
of a plasmid with a EF1α-mKate2-NLS sequence. Lentivirus expressing
eitherBmal1- or Per2-promoter driven luciferase reporterwas produced
by transfecting HEK293T cells with 6 µg psPAX2 (Addgene #12260),
3.6 µg pMD2G (Addgene #12259) and 8.4 µg lentiviral expression plas-
mid (pAB-mBmal1:Luc-Puro or plenti6-mPer2:Luc-Blast, respectively).
Transfections were conducted using Lipofectamine 3000 (Invitrogen,
L3000015) according to themanufacturer’s instructions, andmediawas
replaced by RMPI 1640 medium supplemented with 10mM HEPES
(Gibco, 15630080) before adding the transfection mixture. Lentiviral
supernatant was collected after 48 h and 72 h and passed through a
0.45μm filter (Millipore, HAWP04700). For lentiviral transduction,
receiver cells at 70% confluence were incubated with a mix of 1ml
lentivirus-containing supernatant, 8μg/ml protamine sulfate (Sigma,
P4020), and 10μMHEPES for 6 h. Ensuing, cells were washed with PBS
(Gibco, 10010-015) and cultured in their regular culture medium for
2 days before starting antibiotic selection of transduced cells. To select
for transduced cells, cells were grown in a medium containing 5μg/ml
blasticidin (Adooq, A21608) or 2μg/ml puromycin (Gibco, A1113803)
according to the resistance cassette on the lentiviral expressionplasmid
until non-transduced control cells died. Details about the generation of
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the U-2 OS Cry1-sKO, U-2 OS Cry2-sKO, and U-2 OS Cry1/Cry2-dKO cell
lines can be found in the original publication by Börding et al.28.

Bioluminescence recordings. Cells expressing Bmal1- or Per2-pro-
moter driven luciferase reporters were seeded in 35-mmdishes (Nunc)
to reach approximate confluence on the following day. To account for
potentially different phases of single-cell circadian clocks in cell
populations, we collectively reset the circadian clocks by administer-
ing a standard dose of 1 µM dexamethasone49,50 (Sigma, D4902, dis-
solved in EtOH). After 30min incubation, cells were washed once with
PBS, and an imaging medium supplemented with 250μM D-Luciferin
(Abmole, M9053) was added. To avoid evaporation of the media
throughout the bioluminescence recordings, the dishes were sealed
with parafilm as described in Finger et al.49. Luminescence intensity
was monitored at 10-min intervals for 5 days in an incubator-
embedded luminometer (LumiCycle, Actimetrics). Bioluminescence
recordings were conducted using two biological replicates. For each
individual experiment, three, in some cases only two, technical repli-
cates were assessed. MCF10A cells have been tested on a single day
using three technical replicates.

Long-term live-cell imaging. All live-cell imaging experiments were
performed with cells expressing the fluorescent mKate2-NLS nuclear
reporter, seeded in 48-well plates (Falcon) at a density that saturates at
unperturbed growth conditions towards the end of each experiment.
Long-term live-cell imaging was conducted using an incubator-
embedded Incucyte live-cell widefield microscope (Essen
BioScience). Cells were imaged in the brightfield and for nuclei seg-
mentation and cell counting in the red channel (excitation:
567–607 nm, emission: 622–704 nm). Images were analyzed by frame-
by-frame nuclei counting with the in-built Incucyte software and
results were further processed in MATLAB. For experiments that
involved drug treatments, cells were seeded 1 day before starting the
live recordings, and imageswere taken using a 4xmagnification lens in
2 fields-of-views per well every 1–2 h for a total duration of 4–6 days.
Two independent plates per condition were assayed in a single
experiment. For drug response experiments with cisplatin, a single
plate per condition was assayed in a single experiment, imaged in 9
fields-of-views perwell using a 10xmagnification lens. For experiments
capturing unperturbed growth dynamics, 300–1000 cells, corre-
sponding to ~ 10% confluency, were seeded 2 days before starting the
live recordings. Using a 10xmagnification lens, 9 images per well were
acquired in 1–2 h intervals for a total duration of 4 days.

Dose-response curves. Drug stock solutions (100–10mM) were pre-
pared in DMSO and preserved at − 20 °C. Cisplatin (Sigma, 232120)
stock solution of 3.33mM was prepared in 0.9% NaCl and stored at
room temperature. For dose-response assays, a serial 5–6 point log4
dilution of each drug was freshly prepared in its solvent prior to
treatment. Following concentration ranges were tested: 100–0.1 µM
for 5-fluorouracil (5-FU, Sigma, 03738-100MG), alpelisib (Biozol, TGM-
T1921-10MG) and olaparib (Adooq, A10111); 10–0.01 µM for torin2
(Sigma, SML1224-5MG) and alisertib (Hölzel, S1133-5); 10–0.04 µM for
adavosertib (Biocat, T2077-5mg-TM); 1–0.004 µM for doxorubicin
(Hölzel, A14403-100); and 0.4–0.0004 µM for paclitaxel (Hölzel,
M1970-50mg). Cisplatin was tested in a serial 10-point log2 dilution
with doses ranging from 70–0.14 µM. Compounds were added to the
cells one day after cell seeding in a drug-media mixture of 9% of the
total well volume. Solvent-only treated control cells were assayed
along the treated conditions. Each tested condition contained equal
amounts of the solvent. Cell growthwasmonitoredby live-cell imaging
for at least 4 days as described above.

Time-of-day treatments. Cells were seeded and allowed to attach
overnight. The next day, live recordings commenced as described

earlier. We performed independent resetting steps every 4 h over an
8-h period, creating distinct cell populations at 0, 4, or 8 h of circadian
time. Subsequently, we administered the same drug concentration,
which corresponded to the estimated half-maximal effective con-
centration, at either 32 or 48hours after the initial resetting step. This
allowed us to simultaneously test six different circadian stages (0, 4, 8,
16, 20, and 24 h). Drug concentrations were determined separately for
each cell line and drug combination. For cisplatin, the treatments we
performedwere slightly different, using 4 independent resetting steps
every 3 h over a 9-h period followedby drug treatments 32 or 48h post
initial resetting. In all cases, cell growth was continuously monitored
through long-term live-cell imaging for a total of 6 days.

Computational methods
Time-series analysis of circadian signals
Detrending. Raw time-series data were detrended by applying a sinc
filter with a 48-h cut-off period using the open-source software pack-
age pyBOAT27 (v0.9.1) within the Anaconda Navigator (v1.10.0).

Amplitude envelope and normalization. Continuous amplitude
envelope calculation was obtained using continuous wavelet trans-
form implemented in pyBOAT with a time window of 48 h. The
amplitude normalization was done by taking the inverse of the
envelope of the detrended signal as described in Mönke G, et al.27.

Autocorrelation analysis. Periodicity data was assessed by calculating
its autocorrelation and abscissa at the secondpeak using the ‘autocorr’
and ‘findpeaks’ MATLAB functions51 from the detrended time series.

Continuous wavelet transform. The main oscillatory component,
known as the ridge component, was obtained using a wavelet-based
spectral analysis from amplitude-normalized and detrended signals.
For the ridge detection, we used both an adaptable threshold and a
fixed threshold. The adaptable threshold was based on each signal’s
half-maximal spectral power and was implemented for the “period”
and “phase difference” metrics shown in Fig. 2 and Fig. S1. The
instantaneous phase difference between the Bmal1 and Per2 signals
was calculated using the MATLAB ‘atan2’ function (Supplementary
Fig. 1a) and for the polar histogram representation, we deployed the
‘polarhistogram’ function and the ‘Circular Statistics Toolbox’
(v1.21.9.0. by Philipp Behrens) fromMATLAB (Supplementary Fig. 1b).
For the analysis of “amplitudes” and “ridge lengths” shown in Fig. 2 and
thedeterminants for time-of-day sensitivity shown in Fig. 5, themetrics
of the main oscillatory component were derived using a fixed-ridge
threshold of 40. This ridge threshold value was chosen as it offered a
well-balanced threshold suitable for comparing signals of varying
strengths.

Multiresolution analysis. Detrended time-series data were decom-
posed into a set of different wavelet details Dj representing distinct
disjoint frequency bands and a final smooth using a discrete wavelet
transform-based multiresolution analysis52. The algorithm has been
implemented using the ‘PyWavelets’ python package53, with a db20
wavelet of the Daubechies wavelet family as previously described in
Myung, Schmal and Hong et al.54. Since each wavelet detail Dj repre-
sents a period range between 2jΔt and 2j+1Δt (for j = 1, 2, 3,…) we down-
sampled the time series from a Δt = 10min to a Δt = 30min sampling
frequency to obtain a circadian period band between 16–32 h for fur-
ther analysis. Since the MRA decomposes the variance of the detren-
ded signal with respect to the different disjoint period bands, it can be
used to determine the rhythmicity of the signal in the circadian period
range55.

Global circadian strength. To calculate the global circadian
strength (GCS) of a cell line model i, the autocorrelation peak value
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(peak), the wavelet-based continuous ridge length (ridge), and the
discrete circadianicity component (circadianicity) were normalized
to the respective maximum (max) value measured among all
tested cell line models and averaged according to the following
equation:

GCSi =mean
peaki

peakmax
,

ridgei
ridgemax

,
circadianicityi

circadianicitymax

� �
ð1Þ

Statistical analysis. Linear regression model fitting of Bmal1 and Per2
circadianicity components obtained by MRA was done with the ‘fitlm’

MATLAB function. Significant variances in circadian parameters
betweenwild-typeU-2OS cells and bothCry1-sKO andCry1/2-dKO cells
were calculatedwith aone-wayANOVAandTukey’s post-hoc test using
the ‘anova1’ and ‘multcompare’ MATLAB functions.

Multi-parametric analysis of growth dynamics
Growth data obtained from long-term live-cell imaging was smoothed
using a robust local regression approach of weighted linear least
squares and a 2nd degree polynomial model (‘rloess’ MATLAB func-
tion). Doubling times of smoothed cell numbers or confluency were
calculated according to the following equation:

Doubling time tð Þ= t � log 2ð Þ
log y0=yt

� � ð2Þ

where t refers to the timeof assessment, in our case 96 h, and y0 refers
to the cell number at timepoint 0. To calculate the exponential growth
rate k per unit of time t, we normalized cell numbers to the initial
timepoint 0 (y0) and fitted an exponential function to the growth
curves:

Growth tð Þ= y0 � eðk�tÞ ð3Þ

Exponential function fitting was done with the MATLAB ‘fit’
function51. Linear regressionmodel fitting to different combinations of
growth parameters was done with the ‘fitlm’ MATLAB function.

Estimation of drug sensitivity parameters
Drug response data obtained from long-term live-cell imaging was
smoothed using a robust local regression approach of weighted linear
least squares and a 2nd degree polynomial model (‘rloess’ MATLAB
function). Following the method established by Hafner et al.30, we
computed the growth rate inhibition (GR) at time t and for each dose c
as follows:

GR c, tð Þ= 2kðc,tÞ=kð0Þ � 1 ð4Þ

where k c, tð Þ is the growth rate under drug treatment and k 0ð Þ is the
growth rate of untreated cells. Drug response parameters were
retrieved by fitting the dose-dependent GR-values to a sigmoid curve
using the following equation:

GR cð Þ= GRinf +
1� GRinf

1 + ðc=GEC50ÞhGR
ð5Þ

where the fitted parameters are as described in Hafner et al.30. Stan-
dard EC50-values were calculated by fitting final nucleus counts, nor-
malized to the respective count of the control, to the following
sigmoidal function:

f cð Þ = Emin +
1� Emin

1 + ðc=EC50Þh
ð6Þ

where Emin corresponds to theminimum response, restricted to values
between 0 and 1, and h is the hill slope of the response curve, con-
strained to 0.5–10. Sigmoidal function fitting steps were done with the
MATLAB functions ‘fit’ (GR metrics) or ‘lsqnonlin’ (EC50 value)51. Hier-
archical clustering analysis was implemented with the MATLAB ‘clus-
tergram’ function using an Euclidian distance and average linkage
method51. To account for the different tested dose ranges across drugs
for clustering, GEC50-values were normalized to the dose at GRinf.
Pearson’s linear correlation coefficients across drug sensitivity metrics
were computed using theMATLAB ‘corr’ function. For the comparison
of cellular growth dynamics to drug doses evoking the maximum
tested effect, we chose growth curves corresponding to the doses
closest to the determined GRinf-values.

Time-of-day sensitivity evaluation
Drug response data of time-of-day treatment experiments was
smoothed using a moving average (‘smoothdata’ MATLAB function).
Final nucleus counts were normalized to the nucleus count at the
respective time of treatment. ToD response data from U-2 OS WT and
Cry1/2-dKO cell lines were obtained from confluency readouts in the
brightfield channel. Time-of-day response curves were generated from
the relative final responses of each treatment timepoint to the final
response at timepoint 0 and interpolated using the ‘smoothing spline’
function in MATLAB. The smoothing parameter was set to 0.7. The
maximum range across smoothed time-of-day responses (ToDMR) was
calculated by subtraction of the minimum from themaximum relative
response. To assess whether the smoothing of response data intro-
duces artifacts into ToDMR estimates, we performed linear regression
analysis between ToDMR-values from raw and spline smoothed data
using the ‘fitlm’ MATLAB function and confirmed a high positive cor-
relation (Supplementary Fig. 7a). ToDMR-values were clustered as
described for the drug sensitivity parameters, withmissing data points
substituted by values from the closest relevant column, adhering to
the ‘nearest-neighbor’ principle. Polar histograms of the treatment
times with maximum and minimum benefit were generated using the
‘polarhistogram’ MATLAB function with ‘probability’ normalization to
depict each bar’s height as the fraction of observations within its bin
relative to the total observations.

Correlation and shapley value regression analysis
Linear regressions of cell-intrinsic features and drug-dependent ToD
sensitivity have been obtained using the ‘stats’ and ‘optimize’modules
of the ‘SciPy’ and the ‘uncertainties’ package of the Python program-
ming language. Predictions of ToDMR-values from new data was based
on fitting a linear regression model to the original data that was
associated with Pearson correlation coefficients ≥0.5, utilizing the
‘fitlm’MATLAB function. Bland-Altman plots comparing predicted and
actual ToDMR-values were generated using the ‘Bland-Altman and
Correlation Plot’ package (v1.12.0.0) from MATLAB Central File
Exchange (2017, Ran Klein). Live-imaging data yielding growth, drug
sensitivity, and ToD sensitivity metrics from the new cell lines utilized
for the predictions were based on the confluency readout due to the
unviability of nuclear reporter cell lines formostmodels.Only the drug
sensitivitymetrics forMCF7werebasedonnuclear counts. The relative
importance of the different parameters in a multiple linear regression
model is obtained by Shapley value regression via the Python ‘dom-
inance-analysis’ package.

Circadian clock gene expression analysis
Gene expression data of circadian clock genes were obtained from the
Cancer Cell Line Encyclopedia Dependency Map (CCLE DepMap,
https://sites.broadinstitute.org/ccle/datasets, Q4 of 2022)56. Circadian
clock genes of the individual breast cancer cell lines were clustered
using the ‘clustermap’ plotting function of ‘seaborn’with the euclidian
distance metric and complete linkage method. Spearman rank

Article https://doi.org/10.1038/s41467-024-51611-3

Nature Communications |         (2024) 15:7205 13

https://sites.broadinstitute.org/ccle/datasets
www.nature.com/naturecommunications


correlation coefficients of circadian clock genes and drug-specific ToD
sensitivity values were computed using the Spearman rank correlation
algorithm of the ‘SciPy stats’ Python language module and hier-
archically clustered with the correlation distance metric and single
linkage method. Regression plots were obtained using the ‘jointplot’
plotting function from ‘seaborn’, showing drug-specific correlation
between the ToD sensitivities and gene expression of each cell line,
including their distribution, squared spearman rank correlation coef-
ficient, p-value, and a confidence interval of 95%.

Supervised and unsupervised dimensionality reduction
Supervised dimensionality reduction by linear discriminant analysis
was performed with the ‘LinearDiscriminantAnalysis’ function of the
‘sklearn discriminant_analysis’ Python language module. The default
parameters were retained, using the exact full singular value decom-
position solver and 1 component. Median-based binarization of the
drug-dependent ToD sensitivity values was used as a target, and the
resulting linear discriminant vector was plotted using random y-axis
units to avoid overlapping of the data points. The robustness of the
discriminative information from the LDA was tested using a leave-one-
out cross-validation (LOOCV) strategy (Supplementary Fig. 7b).
LOOCV was conducted using the ‘model_selection’ module from
‘sklearn’ in Python (v3.9.7) and implemented via the PyCharm Com-
munity Edition IDE (v2021.2.2). The contribution to the obtained dis-
criminative information is shown in percentage for each of the
circadian clock genes. Unsupervised dimensionality reduction by
principal component analysis (PCA) was performed with the ‘PCA’
function of the ‘sklearndecomposition’Python languagemodule using
the exact full singular value decomposition solver and number of
components equivalent to the sample size of the corresponding drug.
Further analysis of themost informative PCA componentswas done by
drawing the biplots of the first two principal components and showing
the loadings of each circadian clock gene for both components.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental rawdata anddata tables generated in this study have
been deposited in the Figshare database under the identifier https://
figshare.com/projects/Time-of-Day-Drug-Response/180916. Source
data are provided in this paper.

Code availability
All code used for thedata analysis in thiswork (inMATLABandPython)
is publicly available through the dataset repository Zenodo under the
identifier https://zenodo.org/doi/10.5281/zenodo.11656060.
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