[en] Inflammation within the CNS is a major component of many neurodegenerative diseases. A characteristic feature is the generation of microglia-derived factors that play an essential role in the immune response. IL-1β is a pro-inflammatory cytokine released by activated microglia, able to exacerbate injury at elevated levels. In the presence of caspase-1, pro-IL-1β is cleaved to the mature cytokine following NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. Growing evidence suggests that ceramide plays a critical role in NLRP3 inflammasome assembly, however, the relationship between ceramide and inflammasome activation in microglia remains unknown. Here, we investigated potential mechanistic links between ceramide as a modulator of NLRP3 inflammasome assembly and the resulting secretion of IL-1β using small bioactive enzyme stimulators and inhibitors of ceramide signaling in wild-type and apoptosis-associated speck-like protein containing a CARD knockout (ASC-/- ) primary microglia. To induce the expression of inflammasome components, microglia were primed prior to experiments. Treatment with sodium palmitate (PA) induced de novo ceramide synthesis via modulation of its synthesizing protein serine palmitoyl transferase resulting in increased IL-1β secretion in microglia. Exposure of microglia to the serine palmitoyl transferase-inhibitor l-cycloserine significantly prevented PA-induced IL-1β secretion. Application of the ceramide analogue C2 and the sphingosine-1-phosphate-receptor agonist Fingolimod (FTY720) up-regulated levels of IL-1β and cleaved caspase-1 in wild-type microglia, whereas ASC-/- microglia were unaffected. HPA-12 inhibition of ceramide transport did not affect inflammasome activation. Taken together, our findings reveal a critical role for ceramide as a positive modulator of NLRP3 inflammasome assembly and the resulting release of IL-1β.
Disciplines :
Neurology
Author, co-author :
Scheiblich, Hannah; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn - Medical Center, Bonn, Germany
Schlütter, Anna; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn - Medical Center, Bonn, Germany ; Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
Golenbock, Douglas T; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
Latz, Eicke; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA ; Institute of Innate Immunity, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Martinez-Martinez, Pilar; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
HENEKA, Michael ; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn - Medical Center, Bonn, Germany ; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Activation of the NLRP3 inflammasome in microglia: the role of ceramide.
ZonMw Internationale Stichting Alzheimer Onderzoek
Funding text :
The authors thank Francesco Santarelli for technical assistance, as well as Dr. Simone Crivelli for chemical compound exchange between the groups. This work was supported by the EU framework program JPND to MTH (InCure). PMM was supported by grants from ZonMw Memorabel program (projectnr: 733050105) and by the international foundation for Alzheimer Research (ISAO) (pro-jectnr: 14545). The authors declare that there is no conflict of interest with regard to the experimental part of this study. Michael T. Heneka is handling editor for the Journal of Neurochemistry.
Allan S. M., Tyrrell P. J. and Rothwell N. J. (2005) Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629–640.
Baroja-Mazo A., Martín-Sánchez F., Gomez A. I., Martínez C. M., Amores-Iniesta J., Compan V., Barberà-Cremades M., Yagüe J., Ruiz-Ortiz E. and Antón J. (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748.
Bauernfeind F. G., Horvath G., Stutz A., Alnemri E. S., MacDonald K., Speert D., Fernandes-Alnemri T., Wu J., Monks B. G. and Fitzgerald K. A. (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791.
Betz A. L., Yang G.-Y. and Davidson B. L. (1995) Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J. Cereb. Blood Flow Metab. 15, 547–551.
Bieberich E. (2012) It'sa lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem. Res. 37, 1208–1229.
Block M. L. and Hong J.-S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77–98.
Block M. L., Zecca L. and Hong J.-S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69.
Brinkmann V., Billich A., Baumruker T., Heining P., Schmouder R., Francis G., Aradhye S. and Burtin P. (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897.
Brough D. and Rothwell N. J. (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J. Cell Sci. 120, 772–781.
Cutler R. G., Kelly J., Storie K., Pedersen W. A., Tammara A., Hatanpaa K., Troncoso J. C. and Mattson M. P. (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. 101, 2070–2075.
Dasgupta S., Adams J. and Hogan E. (2007) Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice. Neurochem. Res. 32, 2217–2224.
Franchi L., Eigenbrod T. and Núñez G. (2009) Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796.
Geekiyanage H. and Chan C. (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer's disease. J. Neurosci. 31, 14820–14830.
Giulian D. and Baker T. J. (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178.
Griffin W., Sheng J., Royston M., Gentleman S., McKenzie J., Graham D., Roberts G. and Mrak R. (1998) Glial-neuronal interactions in Alzheimer's disease: the potential role of a ‘cytokine cycle’in disease progression. Brain Pathol. 8, 65–72.
Guo H., Callaway J. B. and Ting J. P. (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687.
Gustin A., Kirchmeyer M., Koncina E., Felten P., Losciuto S., Heurtaux T., Tardivel A., Heuschling P. and Dostert C. (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS ONE 10, e0130624.
Halle A., Hornung V., Petzold G. C., Stewart C. R., Monks B. G., Reinheckel T., Fitzgerald K. A., Latz E., Moore K. J. and Golenbock D. T. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865.
Han X., M Holtzman D., W McKeel D., Kelley J. and Morris J. C. (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis. J. Neurochem. 82, 809–818.
Hanada K. (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30.
Hanada K., Kumagai K., Tomishige N. and Yamaji T. (2009) CERT-mediated trafficking of ceramide. Biochim. Biophys. Acta 1791, 684–691.
Hanisch U.-K. and Kettenmann H. (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394.
He X., Huang Y., Li B., Gong C.-X. and Schuchman E. H. (2010) Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiol. Aging 31, 398–408.
Heneka M. T., Kummer M. P., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., Griep A., Axt D., Remus A. and Tzeng T.-C. (2013) NLRP3 is activated in Alzheimer/'s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678.
Heneka M. T., Kummer M. P. and Latz E. (2014) Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477.
Heneka M. T., Golenbock D. T. and Latz E. (2015) Innate immunity in Alzheimer's disease. Nat. Immunol. 16, 229–236.
Jakobs C., Bartok E., Kubarenko A., Bauernfeind F. and Hornung V. (2013) Immunoblotting for active caspase-1. Inflammasome Methods Protoc. 1040, 103–115.
Janssen S., Schlegel C., Gudi V., Prajeeth C. K., Skripuletz T., Trebst C. and Stangel M. (2015) Effect of FTY720-phosphate on the expression of inflammation-associated molecules in astrocytes in vitro. Mol. Med. Rep. 12, 6171–6177.
Kågedal K., Ming Z., Svensson I. and Brunk U. T. (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343.
Kim S. H., Smith C. J. and Van Eldik L. J. (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production. Neurobiol. Aging 25, 431–439.
Lamkanfi M. and Dixit V. M. (2012) Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28, 137–161.
Listenberger L. L., Ory D. S. and Schaffer J. E. (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895.
Liu L. and Chan C. (2014) The role of inflammasome in Alzheimer's disease. Ageing Res. Rev. 15, 6–15.
Liu L., Martin R. and Chan C. (2013) Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol. Aging 34, 540–550.
Lucas S., Rothwell N. J. and Gibson R. M. (2006) The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147, S232–S240.
Luheshi N. M., Giles J. A., Lopez-Castejon G. and Brough D. (2012) Sphingosine regulates the NLRP3-inflammasome and IL-1β release from macrophages. Eur. J. Immunol. 42, 716–725.
Maceyka M. and Spiegel S. (2014) Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67.
Marchesini N. and Hannun Y. A. (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol. 82, 27–44.
Menaldino D. S., Bushnev A., Sun A., Liotta D. C., Symolon H., Desai K., Dillehay D. L., Peng Q., Wang E. and Allegood J. (2003) Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol. Res. 47, 373–381.
Mencarelli C. and Martinez–Martinez P. (2013) Ceramide function in the brain: when a slight tilt is enough. Cell. Mol. Life Sci. 70, 181–203.
Mencarelli C., Bode G. H., Losen M., Kulharia M., Molenaar P. C., Veerhuis R., Steinbusch H. W., De Baets M. H., Nicolaes G. A. and Martinez-Martinez P. (2012) Goodpasture antigen-binding protein/ceramide transporter binds to human serum amyloid P-component and is present in brain amyloid plaques. J. Biol. Chem. 287, 14897–14911.
Nakamura Y., Matsubara R., Kitagawa H., Kobayashi S., Kumagai K., Yasuda S. and Hanada K. (2003) Stereoselective synthesis and structure − activity relationship of novel ceramide trafficking inhibitors. (1 R, 3 R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide and its analogues. J. Med. Chem. 46, 3688–3695.
Patil S. and Chan C. (2005) Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neurosci. Lett. 384, 288–293.
Patil S., Melrose J. and Chan C. (2007) Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur. J. Neurosci. 26, 2131–2141.
Płóciennikowska A., Hromada-Judycka A., Borzęcka K. and Kwiatkowska K. (2015) Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 72, 557–581.
Ponnusamy S., Meyers-Needham M., Senkal C. E., Saddoughi S. A., Sentelle D., Selvam S. P., Salas A. and Ogretmen B. (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol. 6, 1603–1624.
Ranaivo H. R. and Wainwright M. S. (2010) Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313, 222–231.
Ranaivo H. R., Craft J. M., Hu W., Guo L., Wing L. K., Van Eldik L. J. and Watterson D. M. (2006) Glia as a therapeutic target: selective suppression of human amyloid-β-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J. Neurosci. 26, 662–670.
Ransohoff R. M. and Perry V. H. (2009) Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145.
Relton J. K. and Rothwell N. J. (1992) Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res. Bull. 29, 243–246.
Simi A., Tsakiri N., Wang P. and Rothwell N. J. (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem. Soc. Trans. 35, 1122–1126.
Smith J. A., Das A., Ray S. K. and Banik N. L. (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 87, 10–20.
Snodgrass R. G., Huang S., Choi I.-W., Rutledge J. C. and Hwang D. H. (2013) Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. J. Immunol. 191, 4337–4347.
Takeuchi O. and Akira S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805–820.
Tehranian R., Andell-Jonsson S., Beni S. M., Yatsiv I., Shohami E., Bartfai T., Lundkvist J. and Iverfeldt K. (2002) Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J. Neurotrauma 19, 939–951.
Tracy L. M., Bergqvist F., Ivanova E. V., Jacobsen K. T. and Iverfeldt K. (2013) Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response. J. Mol. Neurosci. 51, 805–812.
Vandanmagsar B., Youm Y.-H., Ravussin A., Galgani J. E., Stadler K., Mynatt R. L., Ravussin E., Stephens J. M. and Dixit V. D. (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188.
Vezzani A., Moneta D., Conti M., Richichi C., Ravizza T., De Luigi A., De Simoni M., Sperk G., Andell-Jonsson S. and Lundkvist J. (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl Acad. Sci. 97, 11534–11539.
Wang W.-Y., Tan M.-S., Yu J.-T. and Tan L. (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann. Transl. Med. 3, 136.
Wen H., Gris D., Lei Y., Jha S., Zhang L., Huang M. T.-H., Brickey W. J. and Ting J. P. (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415.
Yasuda S., Kitagawa H., Ueno M., Ishitani H., Fukasawa M., Nishijima M., Kobayashi S. and Hanada K. (2001) A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis. J. Biol. Chem. 276, 43994–44002.
Zhao S., Yang Y. and Song J. (2004) Ceramide induces caspase-dependent and-independent apoptosis in A-431 cells. J. Cell. Physiol. 199, 47–56.