[en] Microglia are the brain's resident immune cells. Under physiological conditions, they participate in a myriad of processes mainly involved in housekeeping functions that promote tissue homeostasis. However, the triggering of an immune response is a common feature in neurodegenerative disorders. This shift in microglia cells toward a chronically activated phenotype contributing to neuronal dysfunction and cell death is of great interest nowadays. In this chapter, we review the implications of microglia activation in different neurodegenerative disorders.
Disciplines :
Oncologie
Auteur, co-auteur :
Tejera, Darío; Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany ; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany. Michael.heneka@ukbonn.de ; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany. Michael.heneka@ukbonn.de
Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477. https://doi.org/10.1038/nri3705
Gyoneva S, Davalos D, Biswas D et al (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62:1345–1360. https://doi.org/10.1002/glia.22686
Venegas C, Kumar S, Franklin BS et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361. https://doi.org/10.1038/nature25158
Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90. https://doi.org/10. 1002/glia.22350
Block ML, Zecca L, Hong J (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. https://doi.org/10.1038/nrn2038
Baron R, AA B, Nemirovsky A et al (2014) Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer’s disease. Aging Cell:1–12. https://doi. org/10.1111/acel.12210
Grabert K, Michoel T, Karavolos MH et al (2016) Microglial brain region—dependent diversity and selective regional sensitivities to aging. Nat Neurosci. https://doi.org/10. 1038/nn.4222
Tejera D, Heneka MT (2016) Microglia in Alzheimer’s disease: the good, the bad and the ugly. Curr Alzheimer Res:370–380
Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170
Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10. 1126/science.1194637
Goldmann T, Wieghofer P, Jordão MJC et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7):797–805. https://doi. org/10.1038/ni.3423
Thion MS, Low D, Silvin A et al (2017) Micro-biome influences prenatal and adult microglia in a sex-specific manner. Cell:500–516. https://doi.org/10.1016/j.cell.2017.11.042
Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. https://doi.org/10.1038/nn1472
Gyoneva S, Swanger SA, Zhang J et al (2016) Altered motility of plaque-associated microglia in a model of Alzheimer’s disease. Neuroscience. https://doi.org/10.1016/j.neurosci ence.2016.05.061
Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. https://doi.org/10.1371/jour nal.pbio.1000527
Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi. org/10.1016/j.neuron.2012.03.026
Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458
Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030
Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 2236:471–474
Hickman SE, Kingery ND, Ohsumi TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. https://doi.org/10.1038/nn.3554
Butovsky O, Jedrychowski MP, Moore CS et al (2013) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17. https://doi.org/10.1038/nn.3599
Keren-shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease article a unique microglia type associated with restricting development of Alzheimer’s disease. Cell:1–15. https://doi.org/10. 1016/j.cell.2017.05.018
Wendeln A-C, Degenhardt K, Kaurani L et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338. https://doi.org/10.1038/s41586-018-0023-4
Joseph J, Cole G, Head E, Ingram D (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29:12795–12801
Park J, Wetzel I, Marriott I et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. https://doi.org/10.1038/s41593-018-0175-4
Liu S, Liu Y, Hao W et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107. https://doi.org/10.4049/jimmunol.1101121
Birch AM, Katsouri L, Sastre M (2014) Modulation of inflammation in transgenic models of Alzheimer’s disease. J Neuroinflammation 11:25. https://doi.org/10.1186/1742-2094-11-25
Vanaja SK, Rathinam VAK, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–315. https://doi. org/10.1016/j.tcb.2014.12.009
Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a cas-pase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247. https://doi.org/10.1038/ni.1703
Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825. https://doi.org/10.1111/j.1462-5822.2006.00751. x
Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97. https://doi.org/10.1038/nrn3638
Lu A, Magupalli VG, Ruan J et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206. https://doi.org/10.1016/j. cell.2014.02.008
Masumoto J, Taniguchi S, Ayukawa K et al (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274:33835–33838
Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. https://doi.org/10. 1038/ni.1636
Cassel SL, Joly S, Sutterwala FS (2009) The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21:194–198. https://doi.org/10.1016/j.smim.2009.05. 002
Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. https://doi.org/10. 1038/nri3452
Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8. https://doi.org/10.1002/jnr.20093
Mackenzie IR (2000) Anti-inflammatory drugs and Alzheimer-type pathology in aging. Neurology 54:732–734
Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. https://doi.org/10.1056/NEJMoa1211851
Bradshaw EM, Chibnik LB, Keenan BT et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. https://doi. org/10.1038/nn.3435
Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. https://doi.org/10.1016/j.cell.2015. 01.049
Weggen S, Eriksen JL, Das P et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216. https://doi. org/10.1038/35102591
Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. https://doi.org/10. 1038/nature11729
Asai H, Ikezu S, Tsunoda S et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18. https://doi.org/10.1038/nn.4132
Askew K, Li K, Olmos-Alonso A et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405. https://doi.org/10.1016/j.celrep.2016.12.041
Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar abeta42 hot-spots around plaques around plaques. Nat Commun:1–14. https://doi.org/10.1038/ncomms7176
Bisht K, Sharma KP, Lecours C et al (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia. https://doi.org/10.1002/glia.22966
Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905. https://doi.org/10.1007/s00702-017-1686-y
Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85. https://doi.org/10.1016/j.arr. 2017.12.007
Lecours C, Bordeleau M, Cantin L et al (2018) Microglial implication in Parkinson’s disease: loss of beneficial physiological roles or gain of inflammatory functions? Front Cell Neurosci 12:1–8. https://doi.org/10.3389/fncel. 2018.00282
Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 462:453–462. https://doi.org/10.1002/glia
Sampson TR, Debelius JW, Thron T et al (2015) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12. https://doi.org/10.1016/J.CELL.2016.11. 018
Hickman S, Izzy S, Sen P et al (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369. https://doi.org/10.1038/s41593-018-0242-x
MacKenzie IRA, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4. https://doi.org/10.1007/s00401-009-0612-2
van Langenhove T, van der Zee J, van Broec-khoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817–828. https://doi.org/10.3109/07853890.2012.665471
Paolicelli RC, Jawaid A, Henstridge CM et al (2017) TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron:1–12. https://doi.org/10. 1016/j.neuron.2017.05.037
Chang MC, Srinivasan K, Friedman BA et al (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214(9):2611–2628. https://doi.org/10.1084/jem.20160999
Arrant AE, Onyilo VC, Unger DE, Roberson ED (2018) Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci 38:3081–3017. https://doi.org/10.1523/JNEUROSCI.3081-17.2018
Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front Aging Neurosci 9:68. https://doi.org/10.3389/fnagi.2017.00068
Lu C-H, Macdonald-Wallis C, Gray E et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–2257. https://doi.org/10.1212/WNL.0000000000001642
Talbot K (2002) Motor neurone disease. Post-grad Med J 78:513–519
Frakes AE, Ferraiuolo L, Haidet-Phillips AM et al (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023. https://doi.org/10.1016/j. neuron.2014.01.013
Brettschneider J, Toledo JB, Van Deerlin VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7:e39216. https://doi.org/10.1371/journal.pone.0039216
Zhao W, Beers DR, Henkel JS et al (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58:231–243. https://doi.org/10.1002/glia. 20919