Alzheimer’s disease; autophagic flux; neurodegeneration; phosphorylated Aβ; post-translationally modified Aβ; vesicular trafficking; Amyloid beta-Peptides; Green Fluorescent Proteins; Serine; Phosphorylation; Green Fluorescent Proteins/metabolism; Lysosomes/metabolism; Autophagy/physiology; Amyloid beta-Peptides/metabolism; Autophagy; Lysosomes; Molecular Biology; Cell Biology; phosphorylated A beta; post-translationally modified A beta
Abstract :
[en] AD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein.
Disciplines :
Neurology
Author, co-author :
Kapadia, Akshay; Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
Theil, Sandra; Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
Opitz, Sabine; Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany ; Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
Villacampa, Nàdia; Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
Beckert, Hannes; Microscopy core facility, University Hospital Bonn, Bonn, Germany
Schoch, Susanne; Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
HENEKA, Michael ; Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Kumar, Sathish; Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
Walter, Jochen ; Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system.
Alzheimer Forschung Initiative e.V Alzheimer Forschung Initiative e.V Alzheimer Forschung Initiative e.V Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft
Funding text :
The work was supported by the Alzheimer Forschung Initiative e.V. [12854]; Alzheimer Forschung Initiative e.V. [17011]; Alzheimer Forschung Initiative e.V. [T1803]; Deutsche Forschungsgemeinschaft [WA1477/6-6]; Deutsche Forschungsgemeinschaft [WA1477/6-3]. The authors would like to thank T. Bajaj and Dr. N. Gassen (University Clinic Bonn), and Dr. J. Höhfeld (University of Bonn) for sharing GFP-LC3-LC3Δ-RFP and mCherry-GFP-LC3B reporter cDNA constructs, scientific discussions, and result interpretation. The monoclonal antibodies H4B4 and ABL-93c developed by J.T. August was obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa, Department of Biology, Iowa City, IA 52242. We also thank the Microscopy Core Facility, in particular Lydia Maus and Pia Stausberg, of the Medical Faculty at the University of Bonn for providing support and instrumentation funded by the Deutsche Forschungsgemeinschaft, Project Number: 388169927 (Confocal microscope) and 388171357 (Electron microscope).The authors would like to thank T. Bajaj and Dr. N. Gassen (University Clinic Bonn), and Dr. J. Höhfeld (University of Bonn) for sharing GFP-LC3-LC3Δ-RFP and mCherry-GFP-LC3B reporter cDNA constructs, scientific discussions, and result interpretation. The monoclonal antibodies H4B4 and ABL-93c developed by J.T. August was obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa, Department of Biology, Iowa City, IA 52242. We also thank the Microscopy Core Facility, in particular Lydia Maus and Pia Stausberg, of the Medical Faculty at the University of Bonn for providing support and instrumentation funded by the Deutsche Forschungsgemeinschaft, Project Number: 388169927 (Confocal microscope) and 388171357 (Electron microscope).
SelkoeDJ.Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol. 1994;10(1):373–403. doi: 10.1146/annurev.cb.10.110194.002105
CuelloAC. Intracellular and extracellular Aβ, a tale of two neuropathologies. Brain Pathol. 2005;15(1):66–71. doi: 10.1111/j.1750-3639.2005.tb00101.x
SelkoeDJ, HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608. doi: 10.15252/emmm.201606210
OkazawaH. Intracellular amyloid hypothesis for ultra-early phase pathology of Alzheimer’s disease. Neuropathol. 2021;41:93–98. doi: 10.1111/neup.12738
GourasGK, TampelliniD, TakahashiRH, et al. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol. 2010;119(5):523–541. doi: 10.1007/s00401-010-0679-9
BayerTA, WirthsO. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci. 2010;2:8. doi: 10.3389/fnagi.2010.00008
EimerWA, VassarR. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and caspase-3 activation. Mol Neurodegener. 2013;8(1):2. doi: 10.1186/1750-1326-8-2
UmedaT, TomiyamaT, SakamaN, et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res. 2011;89(7):1031–1042. doi: 10.1002/jnr.22640
RoosTT, GarciaMG, MartinssonI, et al. Neuronal spreading and plaque induction of intracellular Aβ and its disruption of Aβ homeostasis. Acta Neuropathol. 2021;142(4):669–687. doi: 10.1007/s00401-021-02345-9
NixonRA, YangD-S. Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis. 2011;43(1):38–45. doi: 10.1016/j.nbd.2011.01.021
LeeJ-H, YangD-S, GoulbourneCN, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci. 2022;6(6):688–701. doi: 10.1038/s41593-022-01084-8
MalikBR, MaddisonDC, SmithGA, et al. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain. 2019;12(1):100. doi: 10.1186/s13041-019-0504-x
NixonRA, WegielJ, KumarA, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–122. doi: 10.1093/jnen/64.2.113
ColacurcioDJ, PensalfiniA, JiangY, et al. Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of down syndrome and Alzheimer’s disease. Free Radic Biol Med. 2018;114:40–51. doi: 10.1016/j.freeradbiomed.2017.10.001
WhyteLS, LauAA, HemsleyKM, et al. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease?J Neurochem. 2017;140(5):703–717. doi: 10.1111/jnc.13935
GowrishankarS, YuanP, WuY, et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Nat Acad Sci USA. 2015;112(28):E3699–708. doi: 10.1073/pnas.1510329112
NixonRA, CataldoAM, MathewsPM. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res. 2000;25(9/10):1161–1172. doi: 10.1023/A:1007675508413
CataldoAM, HamiltonDJ, BarnettJL, et al. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci. 1996;16(1):186–199. doi: 10.1523/JNEUROSCI.16-01-00186.1996
CataldoAM, NixonRA. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Nat Acad Sci USA. 1990;87(10):3861–3865. doi: 10.1073/pnas.87.10.3861
TakahashiRH, NagaoT, GourasGK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int. 2017;67(4):185–193. doi: 10.1111/pin.12520
NixonRA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31(7):2729–2743. doi: 10.1096/fj.201700359
LaFerlaFM, TroncosoJC, StricklandDK, et al. Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J Clin Invest. 1997;100(2):310–320. doi: 10.1172/JCI119536
MosserS, GerberH, FraeringPC. Identification of truncated C-terminal fragments of the Alzheimer’s disease amyloid protein precursor derived from sequential proteolytic pathways. J Neurochem. 2021;156(6):943–956. doi: 10.1111/jnc.15143
BayerTA, WirthsO. Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol. 2014;127(6):787–801. doi: 10.1007/s00401-014-1287-x
KummerMP, HenekaMT. Truncated and modified amyloid-beta species. Alz Res Therapy. 2014;6(3):28. doi: 10.1186/alzrt258
Becker-PaulyC, PietrzikCU. The Metalloprotease Meprin β is an alternative β-secretase of APP. Front Mol Neurosci. 2016;9:159. doi: 10.3389/fnmol.2016.00159
JangH, ArceFT, RamachandranS, et al. Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s disease and down syndrome. Proc Nat Acad Sci USA. 2010;107(14):6538–6543. doi: 10.1073/pnas.0914251107
RussellCL, KoncarevicS, WardMA. Post-translational modifications in Alzheimer’s disease and the potential for new biomarkers. J Alzheimers Dis. 2014;41(2):345–364. doi: 10.3233/JAD-132312
KumarS, Rezaei-GhalehN, TerwelD, et al. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J. 2011;30(11):2255–2265. doi: 10.1038/emboj.2011.138
KumarS, WirthsO, StüberK, et al. Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol. 2016;131(4):525–537. doi: 10.1007/s00401-016-1546-0
KumarS, LemereCA, WalterJ. Phosphorylated Aβ peptides in human down syndrome brain and different Alzheimer’s-like mouse models. Acta Neuropathol Commun. 2020;8(1):118. doi: 10.1186/s40478-020-00959-w
JoshiP, RiffelF, KumarS, et al. TREM2 modulates differential deposition of modified and non-modified Aβ species in extracellular plaques and intraneuronal deposits. Acta Neuropathol Commun. 2021;9(1):168. doi: 10.1186/s40478-021-01263-x
KumarS, KapadiaA, TheilS, et al. Novel phosphorylation-state specific antibodies reveal differential deposition of Ser26 phosphorylated Aβ species in a mouse model of Alzheimer’s disease. Front Mol Neurosci. 2020;13:619639. doi: 10.3389/fnmol.2020.619639
KumarS, SinghS, HinzeD, et al. Phosphorylation of amyloid-β peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J Biol Chem. 2012;287(11):8641–8651. doi: 10.1074/jbc.M111.279133
PasternakSH, CallahanJW, MahuranDJ. The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimer’s Disease. 2004;6(1):53–65. doi: 10.3233/JAD-2004-6107
MarshallKE, VadukulDM, StarasK, et al. Misfolded amyloid-β-42 impairs the endosomal–lysosomal pathway. Cell Mol Life Sci. 2020;77(23):5031–5043. doi: 10.1007/s00018-020-03464-4
KaizukaT, MorishitaH, HamaY, et al. An autophagic flux probe that releases an internal control. Mol Cell. 2016;64(4):835–849. doi: 10.1016/j.molcel.2016.09.037
N’DiayeE-N, KajiharaKK, HsiehI, et al. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 2009;10(2):173–179. doi: 10.1038/embor.2008.238
TienNT, KaracaI, TamboliIY, et al. Trehalose alters subcellular trafficking and the metabolism of the Alzheimer-associated amyloid precursor protein. J Biol Chem. 2016;291(20):10528–10540. doi: 10.1074/jbc.M116.719286
KlionskyDJ, Abdel-AzizAK, AbdelfatahS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1. Autophagy. 2021;17(1):1–382. doi: 10.1080/15548627.2020.1797280
NodaNN, FujiokaY. Atg1 family kinases in autophagy initiation. Cell Mol Life Sci. 2015;72(16):3083–3096. doi: 10.1007/s00018-015-1917-z
WongP-M, PuenteC, GanleyIG, et al. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 2013;9(2):124–137. doi: 10.4161/auto.23323
GanleyIG, Du LamH, WangJ, et al. ULK1·ATG13·FIP200 complex mediates mTOR Signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–12305. doi: 10.1074/jbc.M900573200
ZhengL, Cedazo-MinguezA, HallbeckM, et al. Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener. 2012;1(1):19. doi: 10.1186/2047-9158-1-19
CuelloAC, CannevaF. Impact of intracellular β-amyloid in transgenic animals and cell models. Neurodegener Dis. 2008;5(3–4):146–148. doi: 10.1159/000113686
BoonBDC, BulkM, JonkerAJ, et al. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer’s disease. Acta Neuropathol. 2020;140(6):811–830. doi: 10.1007/s00401-020-02198-8
KnoblochM, KonietzkoU, KrebsDC, et al. Intracellular Aβ and cognitive deficits precede β-amyloid deposition in transgenic arcAβ mice. Neurobiol Aging. 2007;28(9):1297–1306. doi: 10.1016/j.neurobiolaging.2006.06.019
CruzJC, KimD, MoyLY, et al. p25/Cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid β in vivo. J Neurosci. 2006;26(41):10536–10541. doi: 10.1523/JNEUROSCI.3133-06.2006
GlabeC. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci. 2001;17(2):137–145. doi: 10.1385/JMN:17:2:137
CataldoAM, PetanceskaS, TerioNB, et al. Aβ localization in abnormal endosomes: association with earliest Aβ elevations in AD and down syndrome. Neurobiol Aging. 2004;25(10):1263–1272. doi: 10.1016/j.neurobiolaging.2004.02.027
KaracaI, TamboliIY, GlebovK, et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. J Biol Chem. 2014;289(24):16761–16772. doi: 10.1074/jbc.M113.535500
TamboliIY, HampelH, TienNT, et al. Sphingolipid storage affects autophagic metabolism of the amyloid precursor protein and promotes Abeta generation. J Neurosci. 2011;31:1837–1849. doi: 10.1523/JNEUROSCI.2954-10.2011
SannerudR, EsselensC, EjsmontP, et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell. 2016;166(1):193–208. doi: 10.1016/j.cell.2016.05.020
Andrés-BenitoP, CarmonaM, PirlaMJ, et al. A national survey evaluating the impact of the COVID-19 pandemic on students pursuing careers in neurosurgery. Neurosci. 2021;2(4):320–333. doi: 10.1016/j.neuroscience.2021.10.023
WalterJ, SchnölzerM, PyerinW, et al. Induced release of cell surface protein kinase yields CK1- and CK2-like enzymes in tandem. J Biol Chem. 1996;271(1):111–119. doi: 10.1074/jbc.271.1.111
WalterJ, CapellA, HungAY, et al. Ectodomain phosphorylation of β-amyloid precursor protein at two distinct cellular locations. J Biol Chem. 1997;272(3):1896–1903. doi: 10.1074/jbc.272.3.1896
WalterJ, SchindzielorzA, HartungB, et al. Phosphorylation of the β-amyloid precursor protein at the cell surface by ectocasein kinases 1 and 2. J Biol Chem. 2000;275(31):23523–23529. doi: 10.1074/jbc.M002850200
NilssonP, SaidoTC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. BioEssays. 2014;36(6):570–578. doi: 10.1002/bies.201400002
WangC, TelpoukhovskaiaMA, BahrBA, et al. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr Opin Neurobiol. 2018;48:52–58. doi: 10.1016/j.conb.2017.09.005
van AckerZP, BretouM, AnnaertW. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegeneration. 2019;14(1):20. doi: 10.1186/s13024-019-0323-7
SharoarMG, HuX, MaX-M, et al. Sequential formation of different layers of dystrophic neurites in Alzheimer’s brains. Mol Psychiatry. 2019;24(9):1369–1382. doi: 10.1038/s41380-019-0396-2
DitarantoK, TekirianTL, YangAJ. Lysosomal membrane damage in soluble Aβ-mediated cell death in Alzheimer’s disease. Neurobiol Dis. 2001;8(1):19–31. doi: 10.1006/nbdi.2000.0364
ZaretskyDV, ZaretskaiaMV. Intracellular ion changes induced by the exposure to beta-amyloid can be explained by the formation of channels in the lysosomal membranes. Biochim Biophys Acta, Mol Cell Res. 2021;1869(1):119145. doi: 10.1016/j.bbamcr.2021.119145
ZaretskyD, ZaretskaiaM, MolkovY. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci Lett. 2022;770:136338. doi: 10.1016/j.neulet.2021.136338
Rezaei-GhalehN, AmininasabM, KumarS, et al. Phosphorylation modifies the molecular stability of β-amyloid deposits. Nat Commun. 2016;7(1):11359. doi: 10.1038/ncomms11359
ZhangX, GarbettK, VeeraraghavaluK, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012;32(25):8633–8648. doi: 10.1523/JNEUROSCI.0556-12.2012
CoenK, FlannaganRS, BaronS, et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Bio. 2012;198(1):23–35. doi: 10.1083/jcb.201201076
NeelyKM, GreenKN, LaFerlaFM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J Neurosci. 2011;31:2781–2791. doi: 10.1523/JNEUROSCI.5156-10.2010
OikawaN, WalterJ. Presenilins and γ-secretase in membrane proteostasis. Cells. 2019;8(3):209. doi: 10.3390/cells8030209
PericA, AnnaertW. Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction?Acta Neuropathol. 2015;129(3):363–381. doi: 10.1007/s00401-014-1379-7
WahleT, ThalDR, SastreM, et al. GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J Neurosci. 2006;26:12838–12846. doi: 10.1523/JNEUROSCI.1982-06.2006
KumarS, WirthsO, TheilS, et al. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol. 2013;125(5):699–709. doi: 10.1007/s00401-013-1107-8
KumarS, WalterJ. Phosphorylation of amyloid beta (Aβ) peptides–a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging. 2011;3(8):803–812. doi: 10.18632/aging.100362