Article (Périodiques scientifiques)
Docimological Quality Analysis of LLM-Generated Multiple Choice Questions in Computer Science and Medicine
GREVISSE, Christian; PAVLOU, Maria Angeliki; SCHNEIDER, Jochen
2024In SN Computer Science, 5
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
_s42979-024-02963-6.pdf
Postprint Éditeur (2.42 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automatic question generation; Large language models; Multiple choice questions; Generative pre-trained transformer; Moodle
Résumé :
[en] Assessment is an essential part of education, both for teachers who assess their students as well as learners who may evaluate themselves. Multiple-choice questions (MCQ) are one of the most popular types of knowledge assessment, e.g., in medical education, as they can be automatically graded and can cover a wide range of learning items. However, the creation of high-quality MCQ items is a time-consuming task. The recent advent of Large Language Models (LLM), such as Generative Pre-trained Transformer (GPT), caused a new momentum for automatic question generation solutions. Still, evaluating generated questions according to the best practices for MCQ item writing is needed to ensure docimological quality. In this article, we propose an analysis of the quality of LLM-generated MCQs. We employ zero-shot approaches in two domains, namely computer science and medicine. In the former, we make use of 3 GPT-based services to generate MCQs. In the latter, we developed a plugin for the Moodle learning management system that generates MCQs based on learning material. We compare the generated MCQs against common multiple-choice item writing guidelines. Among the major challenges, we determined that while LLMs are certainly useful in generating MCQs more efficiently, they sometimes create broad items with ambiguous keys or implausible distractors. Human oversight is also necessary to ensure instructional alignment between generated items and course contents. Finally, we propose solutions for AQG developers.
Disciplines :
Sciences informatiques
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GREVISSE, Christian  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) > Medical Education
PAVLOU, Maria Angeliki  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) > Medical Education
SCHNEIDER, Jochen ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Medical Translational Research
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Docimological Quality Analysis of LLM-Generated Multiple Choice Questions in Computer Science and Medicine
Date de publication/diffusion :
10 juin 2024
Titre du périodique :
SN Computer Science
ISSN :
2662-995X
eISSN :
2661-8907
Maison d'édition :
Springer Nature, Singapore, Singapour
Titre particulier du numéro :
Advances in Applied Informatics
Volume/Tome :
5
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 10 juin 2024

Statistiques


Nombre de vues
181 (dont 31 Unilu)
Nombre de téléchargements
8 (dont 7 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
12
citations OpenAlex
 
12

Bibliographie


Publications similaires



Contacter ORBilu