Eprint first made available on ORBilu (E-prints, Working papers and Research blog)
Gaussian process regression + deep neural network autoencoder for probabilistic surrogate modeling in nonlinear mechanics of solids
DESHPANDE, Saurabh; RAPPEL, Hussein; Hobbs, Mark et al.
2024
 

Files


Full Text
Autoencoder_GP_paper.pdf
Author preprint (3.71 MB) Creative Commons License - Attribution
Download
Annexes
mybibfile.bib
(146.36 kB) Creative Commons License - Attribution
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Deep Neural Networks; Surrogate Modeling; Gaussian Process; Autoencoders; Uncertainty Quantification; Finite Element Method
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
DESHPANDE, Saurabh  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
RAPPEL, Hussein;  University of Exeter [GB] > Faculty of Environment, Science and Economy
Hobbs, Mark;  Rolls-Royce plc > Future Methods
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Lengiewicz, Jakub;  PAN - Polish Academy of Sciences [PL] > Institute of Fundamental Technological Research
Language :
English
Title :
Gaussian process regression + deep neural network autoencoder for probabilistic surrogate modeling in nonlinear mechanics of solids
Publication date :
2024
Focus Area :
Computational Sciences
FnR Project :
FNR14782078 - Quantum-continuum Bridging, 2020 (01/09/2021-31/08/2024) - Stéphane Bordas
Name of the research project :
R-AGR-3325 - H2020-MSCA-ITN-2017-764644-RAINBOW - BORDAS Stéphane
R-AGR-3446 - H2020-MSCA-IF-MOrPhEM - part UL - LENGIEWICZ Jakub
Available on ORBilu :
since 24 May 2024

Statistics


Number of views
138 (21 by Unilu)
Number of downloads
308 (12 by Unilu)

Bibliography


Similar publications



Contact ORBilu