Article (Scientific journals)
DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery.
Diaw, Sokhna Haissatou; DELCAMBRE, Sylvie; Much, Christoph et al.
2024In Neurogenetics, 25 (2), p. 141 - 147
Peer Reviewed verified by ORBi
 

Files


Full Text
s10048-024-00752-0 (1).pdf
Publisher postprint (895.82 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Dystonia; Expression; Fibroblasts; THAP1; qPCR; Biomarkers; DNA-Binding Proteins; Apoptosis Regulatory Proteins; THAP1 protein, human; Nuclear Proteins; Humans; Male; Female; Dystonia/genetics; Adult; Mutation; Gene Expression Profiling/methods; Middle Aged; Cells, Cultured; Gene Expression/genetics; Nuclear Proteins/genetics; Nuclear Proteins/metabolism; Transcriptome; Fibroblasts/metabolism; Biomarkers/metabolism; DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism; Apoptosis Regulatory Proteins/genetics; Gene Expression; Gene Expression Profiling; Genetics; Genetics (clinical); Cellular and Molecular Neuroscience
Abstract :
[en] Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (ATF4, CLN3, EIF2A, RRM1, YY1), genes involved in G protein-coupled receptor signaling (BDKRB2, LPAR1), and a gene linked to apoptosis and DNA replication/repair (CRADD), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (STXBP1, TOR1A) unveiled differences in expression patterns between MMCs and controls. Notably, the genes CUEDC2, DRD4, ECH1, and SIX2 were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.
Disciplines :
Genetics & genetic processes
Author, co-author :
Diaw, Sokhna Haissatou;  Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
DELCAMBRE, Sylvie ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Molecular and Functional Neurobiology > Team Anne GRÜNEWALD
Much, Christoph;  Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
Ott, Fabian;  Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
Kostic, Vladimir S;  Institute of Neurology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
Gajos, Agata;  Department of Extrapyramidal Diseases, Medical University of Lodz, Lodz, 90-647, Poland
Münchau, Alexander;  Institute of Systems Motor Science, University of Lübeck, 23562, Lübeck, Germany
Zittel, Simone;  Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Busch, Hauke;  Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
GRÜNEWALD, Anne  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
Klein, Christine;  Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
Lohmann, Katja ;  Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany. katja.lohmann@uni-luebeck.de
External co-authors :
yes
Language :
English
Title :
DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery.
Publication date :
April 2024
Journal title :
Neurogenetics
ISSN :
1364-6745
eISSN :
1364-6753
Publisher :
Springer Science and Business Media Deutschland GmbH, United States
Volume :
25
Issue :
2
Pages :
141 - 147
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR14429377 - Reduced Penetrance In Hereditary Movement Disorders: Elucidating Mechanisms Of Endogenous Disease Protection, 2020 (01/07/2020-30/06/2023) - Anne Grünewald
Funders :
Deutsche Forschungsgemeinschaft
Luxembourgish Research Fund
Funding text :
This work was supported by research grants from the German Research Foundation (FOR2488. LO1555/9 − 2) and the Luxembourgish Research Fund (INTER/DFG/19/14429377).
Available on ORBilu :
since 21 May 2024

Statistics


Number of views
120 (1 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenAlex citations
 
1
WoS citations
 
1

Bibliography


Similar publications



Contact ORBilu