[en] Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder and is characterized by the formation of cellular inclusions inside neurons that are rich in an abnormal form of the protein α-synuclein (α-syn). Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of signaling transduction pathways. Here, we studied activation of primary microglia isolated from wild-type mouse by distinct α-syn forms and their clearance. Internalization of α-syn monomers and oligomers efficiently activated the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome via TLR2 and TLR5 ligation, thereby acting on different signaling checkpoints. We found that primary microglia effectively engulf α-syn but hesitate in its degradation. NLRP3 inhibition by the selective inhibitor CRID3 sodium salt and NLRP3 deficiency improved the overall clearance of α-syn oligomers. Together, these data show that distinct α-syn forms exert different microglial NLRP3 inflammasome activation properties, thereby compromising its degradation, which can be prevented by NLRP3 inhibition.
Disciplines :
Neurology
Author, co-author :
Scheiblich, Hannah ; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany ; German Center for Neurodegenerative Diseases, Bonn, Germany
Bousset, Luc ; Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France, and
Schwartz, Stephanie; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
Griep, Angelika; German Center for Neurodegenerative Diseases, Bonn, Germany
Latz, Eicke ; Institute of Innate Immunity, University of Bonn Medical Center, Bonn, Germany
Melki, Ronald; Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France, and
HENEKA, Michael ; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany, michael.heneka@ukbonn.de ; German Center for Neurodegenerative Diseases, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies.
Publication date :
15 October 2021
Journal title :
Journal of Immunology
ISSN :
0022-1767
eISSN :
1550-6606
Publisher :
American Association of Immunologists, United States
EU Joint Programme - Neurodegenerative Disease Research Gemeinnützige Hertie-Stiftung Deutsche Forschungsgemeinschaft Centre National de la Recherche Scientifique Fondation pour la Recherche Médicale EU Joint Programme - Neurodegenerative Disease Research
Funding text :
This work was supported by the EU Joint Programme on Neurodegenerative Disease Research (JPND-SYNACTION-ANR-15-JPWG-0012-03) and by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy EXC2151-390873048. H.S. received funding from the Gemeinnutzige Hertie Stiftung (Hertie-Stiftung) under the Hertie Network of excellence in clinical neuroscience. R.M. and L.B. were supported by the CNRS, the EU Joint Programme on Neurodegenerative Disease Research (JPND-SYNACTION-ANR-15-JPWG-0012-03 and TransPath-ND-ANR-17-JPCD-0002-02), and the Fondation pour la Recherche Médicale (Contract DEQ. 20160334896).
Shahmoradian, S. H., A. J. Lewis, C. Genoud, J. Hench, T. E. Moors, P. P. Navarro, D. Castaño-Dıez, G. Schweighauser, A. Graff-Meyer, K. N. Goldie, et al. 2019. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22: 1099-1109.
Spillantini, M. G., M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert. 1997. a-synuclein in Lewy bodies. Nature 388: 839-840.
Weinreb, P. H., W. Zhen, A. W. Poon, K. A. Conway, and P. T. Lansbury, Jr. 1996. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35: 13709-13715.
Shrivastava, A. N., V. Redeker, N. Fritz, L. Pieri, L. G. Almeida, M. Spolidoro, T. Liebmann, L. Bousset, M. Renner, C. Lena, et al. 2015. a-synuclein assemblies sequester neuronal a3-Na1/K1-ATPase and impair Na1 gradient. EMBO J. 34: 2408-2423.
DeWitt, D. C., and E. Rhoades. 2013. a-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers. Biochemistry 52: 2385-2387.
Faustini, G., F. Bono, A. Valerio, M. Pizzi, P. Spano, and A. Bellucci. 2017. Mitochondria and a-synuclein: friends or foes in the pathogenesis of Parkinson’s disease? Genes (Basel) 8: 377.
Gribaudo, S., P. Tixador, L. Bousset, A. Fenyi, P. Lino, R. Melki, J.-M. Peyrin, and A. L. Perrier. 2019. Propagation of a-synuclein strains within human reconstructed neuronal network. Stem Cell Reports 12: 230-244.
Martınez, J. H., F. Fuentes, V. Vanasco, S. Alvarez, A. Alaimo, A. Cassina, F. Coluccio Leskow, and F. Velazquez. 2018. Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Arch. Biochem. Biophys. 651: 1-12.
Cooper, A. A., A. D. Gitler, A. Cashikar, C. M. Haynes, K. J. Hill, B. Bhullar, K. Liu, K. Xu, K. E. Strathearn, F. Liu, et al. 2006. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313: 324-328.
Thayanidhi, N., J. R. Helm, D. C. Nycz, M. Bentley, Y. Liang, and J. C. Hay. 2010. a-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 21: 1850-1863.
Flavin, W. P., L. Bousset, Z. C. Green, Y. Chu, S. Skarpathiotis, M. J. Chaney, J. H. Kordower, R. Melki, and E. M. Campbell. 2017. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathol. 134: 629-653.
Martinez-Vicente, M., and M. Vila. 2013. Alpha-synuclein and protein degradation pathways in Parkinson’s disease: a pathological feed-back loop. Exp. Neurol. 247: 308-313.
Colonna, M., and O. Butovsky. 2017. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 35: 441-468.
Heneka, M. T., M. P. Kummer, and E. Latz. 2014. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14: 463-477.
Croisier, E., L. B. Moran, D. T. Dexter, R. K. B. Pearce, and M. B. Graeber. 2005. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J. Neuroinflammation 2: 14.
Gerhard, A., N. Pavese, G. Hotton, F. Turkheimer, M. Es, A. Hammers, K. Eggert, W. Oertel, R. B. Banati, and D. J. Brooks. 2006. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21: 404-412.
McGeer, P. L., S. Itagaki, B. E. Boyes, and E. G. McGeer. 1988. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285-1291.
Allan, S. M., P. J. Tyrrell, and N. J. Rothwell. 2005. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5: 629-640.
Lamkanfi, M., and V. M. Dixit. 2012. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28: 137-161.
Codolo, G., N. Plotegher, T. Pozzobon, M. Brucale, I. Tessari, L. Bubacco, and M. de Bernard. 2013. Triggering of inflammasome by aggregated a-synuclein, an inflammatory response in synucleinopathies. PLoS One 8: e55375.
Heneka, M. T., R. M. McManus, and E. Latz. 2018. Inflammasome signalling in brain function and neurodegenerative disease. [Published erratum appears in 2019 Nat. Rev. Neurosci. 20: 187.] Nat. Rev. Neurosci. 19: 610-621.
Wang, S., Y.-H. Yuan, N.-H. Chen, and H.-B. Wang. 2019. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int. Immunopharmacol. 67: 458-464.
Gordon, R., E. A. Albornoz, D. C. Christie, M. R. Langley, V. Kumar, S. Mantovani, A. A. B. Robertson, M. S. Butler, D. B. Rowe, L. A. O’Neill, et al. 2018. Inflammasome inhibition prevents a-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10: eaah4066.
Liu, X., and N. Quan. 2018. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front. Neurol. 9: 8.
Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.
Broz, P., and V. M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16: 407-420.
Guo, H., J. B. Callaway, and J. P.-Y. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21: 677-687.
Christgen, S., D. E. Place, and T.-D. Kanneganti. 2020. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res. 30: 315-327.
Bousset, L., L. Pieri, G. Ruiz-Arlandis, J. Gath, P. H. Jensen, B. Habenstein, K. Madiona, V. Olieric, A. B€ockmann, B. H. Meier, and R. Melki. 2013. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun. 4: 2575.
Peelaerts, W., L. Bousset, A. Van der Perren, A. Moskalyuk, R. Pulizzi, M. Giugliano, C. Van den Haute, R. Melki, and V. Baekelandt. 2015. a-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522: 340-344.
Giulian, D., and T. J. Baker. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6: 2163-2178.
Ghee, M., R. Melki, N. Michot, and J. Mallet. 2005. PA700, the regulatory complex of the 26S proteasome, interferes with a-synuclein assembly. FEBS J. 272: 4023-4033.
Jakobs, C., E. Bartok, A. Kubarenko, F. Bauernfeind, and V. Hornung. 2013. Immunoblotting for active caspase-1. Methods Mol. Biol. 1040: 103-115.
Pieri, L., K. Madiona, and R. Melki. 2016. Structural and functional properties of prefibrillar a-synuclein oligomers. Sci. Rep. 6: 24526.
Cremades, N., S. W. Chen, and C. M. Dobson. 2017. Structural characteristics of a-synuclein oligomers. Int. Rev. Cell Mol. Biol. 329: 79-143.
Lashuel, H. A., B. M. Petre, J. Wall, M. Simon, R. J. Nowak, T. Walz, and P. T. Lansbury, Jr. 2002. a-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322: 1089-1102.
Shrivastava, A. N., L. Bousset, M. Renner, V. Redeker, J. Savistchenko, A. Triller, and R. Melki. 2020. Differential membrane binding and seeding of distinct a-synuclein fibrillar polymorphs. Biophys. J. 118: 1301-1320.
Fernandes-Alnemri, T., J. Wu, J.-W. Yu, P. Datta, B. Miller, W. Jankowski, S. Rosenberg, J. Zhang, and E. S. Alnemri. 2007. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14: 1590-1604.
Heneka, M. T., M. P. Kummer, A. Stutz, A. Delekate, S. Schwartz, A. Vieira-Saecker, A. Griep, D. Axt, A. Remus, T.-C. Tzeng, et al. 2013. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493: 674-678.
Lecours, C., M. Bordeleau, L. Cantin, M. Parent, T. D. Paolo, and M.-E. Tremblay. 2018. Microglial implication in Parkinson’s disease: loss of beneficial physiological roles or gain of inflammatory functions? Front. Cell. Neurosci. 12: 282.
Panicker, N., S. Sarkar, D. S. Harischandra, M. Neal, T.-I. Kam, H. Jin, H. Saminathan, M. Langley, A. Charli, M. Samidurai, et al. 2019. Fyn kinase regulates misfolded a-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 216: 1411-1430.
Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.
Cao, S., D. G. Standaert, and A. S. Harms. 2012. The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia. J. Neuroinflammation 9: 259.
Harms, A. S., S. Cao, A. L. Rowse, A. D. Thome, X. Li, L. R. Mangieri, R. Q. Cron, J. J. Shacka, C. Raman, and D. G. Standaert. 2013. MHCII is required for a-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33: 9592-9600.
Kim, C., D.-H. Ho, J.-E. Suk, S. You, S. Michael, J. Kang, S. Joong Lee, E. Masliah, D. Hwang, H.-J. Lee, and S.-J. Lee. 2013. Neuron-released oligomeric a-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4: 1562.
Thome, A. D., D. G. Standaert, and A. S. Harms. 2015. Fractalkine Signaling Regulates the Inflammatory Response in an a-Synuclein Model of Parkinson Disease. PLoS One 10: e0140566.
Letiembre, M., Y. Liu, S. Walter, W. Hao, T. Pfander, A. Wrede, W. Schulz-Schaeffer, and K. Fassbender. 2009. Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol. Aging 30: 759-768.
Beraud, D., M. Twomey, B. Bloom, A. Mittereder, V. Ton, K. Neitzke, S. Chasovskikh, T. R. Mhyre, and K. A. Maguire-Zeiss. 2011. a-Synuclein alters Toll-like receptor expression. Front. Neurosci. 5: 80.
Gustot, A., J. I. Gallea, R. Sarroukh, M. S. Celej, J.-M. Ruysschaert, and V. Raussens. 2015. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem. J. 471: 323-333.
Doorn, K. J., T. Moors, B. Drukarch, W. Dj. van de Berg, P. J. Lucassen, and A.-M. van Dam. 2014. Microglial phenotypes and Toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol. Commun. 2: 90.
El-Agnaf, O. M. A., S. A. Salem, K. E. Paleologou, L. J. Cooper, N. J. Fullwood, M. J. Gibson, M. D. Curran, J. A. Court, D. M. A. Mann, S. Ikeda, et al. 2003. a-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J. 17: 1945-1947.
Mollenhauer, B., J. J. Locascio, W. Schulz-Schaeffer, F. Sixel-D€oring, C. Trenkwalder, and M. G. Schlossmacher. 2011. a-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10: 230-240.
Emmanouilidou, E., K. Melachroinou, T. Roumeliotis, S. D. Garbis, M. Ntzouni, L. H. Margaritis, L. Stefanis, and K. Vekrellis. 2010. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30: 6838-6851.
Cuervo, A. M., L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer. 2004. Impaired degradation of mutant a-synuclein by chaperone-mediated autophagy. Science 305: 1292-1295.
Snyder, H., K. Mensah, C. Theisler, J. Lee, A. Matouschek, and B. Wolozin. 2003. Aggregated and monomeric a-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278: 11753-11759.
Lee, H.-J., J.-E. Suk, E.-J. Bae, and S.-J. Lee. 2008. Clearance and deposition of extracellular a-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372: 423-428.
Hickman, S. E., E. K. Allison, and J. El Khoury. 2008. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28: 8354-8360.
Jin, L., S. Batra, and S. Jeyaseelan. 2017. Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J. Immunol. 198: 1253-1262.