[en] The deposition of aggregated amyloid-β peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer's disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-β formation. We tested whether downregulation of ADAM10 activity by its secreted endogenous inhibitor secreted-frizzled-related protein 1 (SFRP1) is a common trait of sporadic AD. We demonstrate that SFRP1 is significantly increased in the brain and cerebrospinal fluid of patients with AD, accumulates in APs and binds to amyloid-β, hindering amyloid-β protofibril formation. Sfrp1 overexpression in an AD-like mouse model anticipates the appearance of APs and dystrophic neurites, whereas its genetic inactivation or the infusion of α-SFRP1-neutralizing antibodies favors non-amyloidogenic APP processing. Decreased Sfrp1 function lowers AP accumulation, improves AD-related histopathological traits and prevents long-term potentiation loss and cognitive deficits. Our study unveils SFRP1 as a crucial player in AD pathogenesis and a promising AD therapeutic target.
Disciplines :
Neurology
Author, co-author :
Esteve, Pilar ; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain. pesteve@cbm.csic.es ; CIBER de Enfermedades Raras, Madrid, Spain. pesteve@cbm.csic.es
Rueda-Carrasco, Javier ; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain ; CIBER de Enfermedades Raras, Madrid, Spain
Inés Mateo, María; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain ; CIBER de Enfermedades Raras, Madrid, Spain
Martin-Bermejo, María Jesús; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain ; CIBER de Enfermedades Raras, Madrid, Spain
Draffin, Jonathan; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
Pereyra, Guadalupe; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain ; CIBER de Enfermedades Raras, Madrid, Spain
Sandonís, África; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain ; CIBER de Enfermedades Raras, Madrid, Spain
Crespo, Inmaculada; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
Moreno, Inmaculada; Unidad de Inmunología Microbiana, Área de Inmunología, CNM, Instituto de Salud Carlos III, Madrid, Spain
Aso, Ester; Neuropathology Institute, Bellvitge Biomedical Research Institute, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
Garcia-Esparcia, Paula; Neuropathology Institute, Bellvitge Biomedical Research Institute, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
Gomez-Tortosa, Estrella; Department of Neurology, Fundación Jiménez Díaz, Madrid, Spain
Fortea, Juan; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain ; Department of Neurology, Institut Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Barcelona, Spain
Alcolea, Daniel; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain ; Department of Neurology, Institut Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Barcelona, Spain
Lleo, Alberto ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain ; Department of Neurology, Institut Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Barcelona, Spain
HENEKA, Michael ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Valpuesta, José M ; Centro Nacional de Biotecnología, CNB-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
Esteban, José A ; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
Ferrer, Isidro; Neuropathology Institute, Bellvitge Biomedical Research Institute, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
Domínguez, Mercedes; Unidad de Inmunología Microbiana, Área de Inmunología, CNM, Instituto de Salud Carlos III, Madrid, Spain
Bovolenta, Paola ; Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain. pbovolenta@cbm.csic.es ; CIBER de Enfermedades Raras, Madrid, Spain. pbovolenta@cbm.csic.es
We are in debt to I. Torres-Aleman, Instituto Cajal-CSIC, for donating a breeding pair of APP;PS1 mice and to J. Avila, C. Dotti, M.L. Toribio, S. Knafo and E. Palomer (CBMSO) for their advice during the course of this study. We also acknowledge the generosity of M.L. de Ceballos, Instituto Cajal-CSIC, and M. Llorens, CBMSO, for sharing some tissue samples and C. Bovolenta (MolMed) for advice on lentiviral production. We thank O. Lancho and M.L. Toribio for the Sfrp1 lentiviral construct and M. Guerra of the CBMSO EM facilities for help with TEM. We wish to thank C. Dotti, J. Garcia de Yébenes, S.R. de Cordoba (CIB-CSIC), C. Bovolenta and M. Nieto (CNB, CSIC) for critical reading the manuscript. This work was supported by grants from the Spanish MINECO (nos. BFU2013-43213-P and BFU2016-75412-R with FEDER support), the Fundación Tatiana Perez de Guzman el Bueno and CIBERER with grants to P.B. and P.E., and grant no. FIS PI11/3035 to A.L. J.R.C. (grant no. BES-2011-047189), M.I.M. (no. BES-2014-068797) and G.P. (no. BES-2017-080318) were supported by FPI fellowships from the MINECO. We also acknowledge a CBMSO Institutional grant from the Fundación Ramon Areces.
Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).
Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Prim. 1, 15056 (2015).
Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (NY) 4, 195–214 (2018).
Benilova, I., Karran, E. & De Strooper, B. The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).
Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).
Fowler, S. W. et al. Genetic modulation of soluble abeta rescues cognitive and synaptic impairment in a mouse model of alzheimer’s disease. J. Neurosci. 34, 7871–7885 (2014).
Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).
Jorissen, E. et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J. Neurosci. 30, 4833–4844 (2010).
Lichtenthaler, S. F. Alpha-secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116, 10–21 (2011).
Suh, J. et al. ADAM10 missense mutations potentiate beta-amyloid accumulation by impairing prodomain chaperone function. Neuron 80, 385–401 (2013).
Kim, M. et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate alfa-secretase activity. Hum. Mol. Genet 18, 3987–3996 (2009).
Esteve, P. et al. Secreted frizzled-related proteins are required for Wnt/beta-catenin signalling activation in the vertebrate optic cup. Development 138, 4179–4184 (2011).
Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E. & Lopez-Rios, J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121, 737–746 (2008).
Esteve, P. et al. SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat. Neurosci. 14, 562–569 (2011).
Esteve, P., Crespo, I., Kaimakis, P., Sandonis, A. & Bovolenta, P. Sfrp1 modulates cell-signaling events underlying telencephalic patterning, growth and differentiation. Cereb. Cortex 29, 1059–1074 (2019).
Marcos, S. et al. Secreted frizzled related proteins modulate pathfinding and fasciculation of mouse retina ganglion cell axons by direct and indirect mechanisms. J. Neurosci. 35, 4729–4740 (2015).
Blalock, E. M. et al. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl Acad. Sci. USA 101, 2173–2178 (2004).
Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).
Simon, M. J. & Iliff, J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta 1862, 442–451 (2016).
Tammineni, P., Ye, X., Feng, T., Aikal, D. & Cai, Q. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons. eLife 6, e21776 (2017).
Biere, A. L. et al. Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J. Biol. Chem. 271, 32916–32922 (1996).
Jan, A., Hartley, D. M. & Lashuel, H. A. Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer’s disease research. Nat. Protoc. 5, 1186–1209 (2010).
Upadhaya, A. R., Lungrin, I., Yamaguchi, H., Fandrich, M. & Thal, D. R. High-molecular weight Abeta oligomers and protofibrils are the predominant Abeta species in the native soluble protein fraction of the AD brain. J. Cell Mol. Med. 16, 287–295 (2012).
Ahmed, M. et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010).
Bieschke, J. et al. Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat. Chem. Biol. 8, 93–101 (2011).
Sot, B. et al. The chaperonin CCT inhibits assembly of alpha-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci. Rep. 7, 40859 (2017).
Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004).
Guo, Q. et al. Amyloid precursor protein revisited: neuron-specific expression and highly stable nature of soluble derivatives. J. Biol. Chem. 287, 2437–2445 (2012).
Malinverno, M. et al. Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J. Neurosci. 30, 16343–16355 (2010).
Guenette, S., Strecker, P. & Kins, S. APP protein family signaling at the synapse: insights from intracellular APP-binding proteins. Front. Mol. Neurosci. 10, 87 (2017).
Gowrishankar, S. et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc. Natl Acad. Sci. USA 112, E3699–E3708 (2015).
Ferrer, I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog. Neurobiol. 97, 38–51 (2012).
Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S. & Shimono, A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133, 989–999 (2006).
Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat. Commun. 6, 6176 (2015).
Colombo, A. et al. Constitutive alpha- and beta-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines. Neurobiol. Dis. 49, 137–147 (2013).
Esteve, P. & Bovolenta, P. The advantages and disadvantages of sfrp1 and sfrp2 expression in pathological events. Tohoku J. Exp. Med. 221, 11–17 (2010).
Epis, R. et al. Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer’s disease. Brain 133, 3323–3335 (2010).
Serneels, L. et al. gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324, 639–642 (2009).
Wang, Y. et al. Lessons from anti-amyloid-beta immunotherapies in Alzheimer disease: aiming at a moving target. Neurodegener. Dis. 17, 242–250 (2017).
Li, Q. et al. Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, 5527–5532 (2017).
Selkoe, D. J. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).
Song, W. M. & Colonna, M. The identity and function of microglia in neurodegeneration. Nat. Immunol. 19, 1048–1058 (2018).
Kuhn, P. H. et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 5, e12748 (2016).
Saftig, P. & Lichtenthaler, S. F. The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog. Neurobiol. 135, 1–20 (2015).
Godyn, J., Jonczyk, J., Panek, D. & Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharm. Rep. 68, 127–138 (2016).
St-Amour, I., Cicchetti, F. & Calon, F. Immunotherapies in Alzheimer’s disease: too much, too little, too late or off-target? Acta Neuropathol. 131, 481–504 (2016).
Boada, M. et al. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-beta concentrations and cognition outcomes in Alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial. J. Alzheimers Dis. 56, 129–143 (2017).
Endres, K. & Fahrenholz, F. Upregulation of the alpha-secretase ADAM10–risk or reason for hope? FEBS J. 277, 1585–1596 (2010).
Vojdani, A. & Vojdani, E. Amyloid-beta 1-42 cross-reactive antibody prevalent in human sera may contribute to intraneuronal deposition of A-beta-P-42. Int J. Alzheimers Dis. 2018, 1672568 (2018).
Barrachina, M., Castano, E. & Ferrer, I. TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 49, 276–284 (2006).
Agostini, F. et al. Prion protein accumulation in lipid rafts of mouse aging brain. PLoS One 8, e74244 (2013).
Sherman, M. A. & Lesne, S. E. Detecting abeta*56 oligomers in brain tissues. Methods Mol. Biol. 670, 45–56 (2011).
Biesiadecki, B. J. & Jin, J. P. A high-throughput solid-phase microplate protein-binding assay to investigate interactions between myofilament proteins. J. Biomed. Biotechnol. 2011, 421701 (2011).
Uren, A. et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).
Zhong, X. et al. Regulation of secreted Frizzled-related protein-1 by heparin. J. Biol. Chem. 282, 20523–20533 (2007).
Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286 (2014).
Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res Methods 41, 1149–1160 (2009).