COVID-19; SARS-CoV-2; cognition; lung; magnetic resonance imaging; neuropsychology; postacute COVID-19 syndrome; Medicine (all); General Medicine
Résumé :
[en] [en] BACKGROUND: There is a dearth of information about "brain fog," characterized by concentration, word-finding, or memory problems, which has been listed in the new World Health Organization provisional classification "U09.9 Post-COVID-19 Condition." Moreover, the extent to which these symptoms may be associated with neurological, pulmonary, or psychiatric difficulties is unclear.
OBJECTIVE: This ongoing cohort study aims to carefully assess neurocognitive function in the context of the neurological, psychiatric, and pulmonary sequelae of SARS-CoV-2 infection among patients with asymptomatic/mild and severe cases of COVID-19 after remission, including actively recruited healthy controls.
METHODS: A total of 150 participants will be included in this pilot study. The cohort will comprise patients who tested positive for SARS-CoV-2 infection with either an asymptomatic course or a mild course defined as no symptoms except for olfactory and taste dysfunction (n=50), patients who tested positive for SARS-CoV-2 infection with a severe disease course (n=50), and a healthy control group (n=50) with similar age and sex distribution based on frequency matching. A comprehensive neuropsychological assessment will be performed comprising nuanced aspects of complex attention, including language, executive function, verbal and visual learning, and memory. Psychiatric, personality, social and lifestyle factors, sleep, and fatigue will be evaluated. Brain magnetic resonance imaging, neurological and physical assessment, and pulmonological and lung function examinations (including body plethysmography, diffusion capacity, clinical assessments, and questionnaires) will also be performed. Three visits are planned with comprehensive testing at the baseline and 12-month visits, along with brief neurological and neuropsychological examinations at the 6-month assessment. Blood-based biomarkers of neurodegeneration will be quantified at baseline and 12-month follow-up.
RESULTS: At the time of submission, the study had begun recruitment through telephone and in-person screenings. The first patient was enrolled in the study at the beginning of April 2021. Interim data analysis of baseline information is expected to be complete by December 2021 and study completion is expected at the end of December 2022. Preliminary group comparisons indicate worse word list learning, short- and long-delayed verbal recall, and verbal recognition in both patient cohorts compared with those of the healthy control group, adjusted for age and sex. Initial volumetric comparisons show smaller grey matter, frontal, and temporal brain volumes in both patient groups compared with those of healthy controls. These results are quite robust but are neither final nor placed in the needed context intended at study completion.
CONCLUSIONS: To the best of our knowledge, this is the first study to include objective and comprehensive longitudinal analyses of neurocognitive sequelae of COVID-19 in an extreme group comparison stratified by disease severity with healthy controls actively recruited during the pandemic. Results from this study will contribute to the nascent literature on the prolonged effects of COVID-19 on neurocognitive performance via our coassessment of neuroradiological, neurological, pulmonary, psychiatric, and lifestyle factors.
TRIAL REGISTRATION: International Clinical Trials Registry Platform DRKS00023806; https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00023806.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30259.
Disciplines :
Neurologie
Auteur, co-auteur :
Widmann, Catherine N ; Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany ; German Center for Neurodegenerative Diseases, Bonn, Germany
Wieberneit, Michelle ; Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
Bieler, Luzie ; Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
Bernsen, Sarah ; German Center for Neurodegenerative Diseases, Bonn, Germany ; Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
Gräfenkämper, Robin ; Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany ; Department of Psychiatry, University of Bonn Medical Center, Bonn, Germany
Brosseron, Frederic ; German Center for Neurodegenerative Diseases, Bonn, Germany
Schmeel, Carsten ; Department of Neuroradiology, University of Bonn Medical Center, Bonn, Germany
Tacik, Pawel ; German Center for Neurodegenerative Diseases, Bonn, Germany ; Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
Skowasch, Dirk ; Department of Cardiology, Pneumology and Angiology, Internal Medicine II, University of Bonn Medical Center, Bonn, Germany
Radbruch, Alexander ; Department of Neuroradiology, University of Bonn Medical Center, Bonn, Germany
HENEKA, Michael ; German Center for Neurodegenerative Diseases, Bonn, Germany ; Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Longitudinal Neurocognitive and Pulmonological Profile of Long COVID-19: Protocol for the COVIMMUNE-Clin Study.
Date de publication/diffusion :
11 novembre 2021
Titre du périodique :
JMIR Research Protocols
eISSN :
1929-0748
Maison d'édition :
JMIR Publications Inc., Canada
Volume/Tome :
10
Fascicule/Saison :
11
Pagination :
e30259
Peer reviewed :
Peer reviewed vérifié par ORBi
Subventionnement (détails) :
We gratefully acknowledge the help of Sybille Fallert-Ouattara, Carmen Sachtleben, Katrin Klatt, Anke Niggemann, Carolin Eckhardt, Luzie Lerche, Johanna Raßbach, Anna Spieker, and Pia Strater for their support in preparing this study. This research was funded by a grant from the German Ministry of Health for the Umbrella Project “COVIMMUNE-Untersuchungen zur Funktion des Immunsystems und dem Krankheitsverlauf von COVID-19” (grant number 01K/20343). The German Ministry of Health had no role in the design and preparation, review, or approval of the manuscript, or in the decision to submit the manuscript for publication.
Logue JK, Franko NM, McCulloch DJ, McDonald D, Magedson A, Wolf CR, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open 2021 Feb 01;4(2):e210830 [FREE Full_text] [doi: 10.1001/jamanetworkopen.2021.0830] [Medline: 33606031]
Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 "long haulers". Ann Clin Transl Neurol 2021 May;8(5):1073-1085. [doi: 10.1002/acn3.51350] [Medline: 33755344]
Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 2020 Oct;129:98-102 [FREE Full_text] [doi: 10.1016/j.jpsychires.2020.06.022] [Medline: 32912598]
Shi C, Kang L, Yao S, Ma Y, Li T, Liang Y, et al. The MATRICS Consensus Cognitive Battery (MCCB): Co-norming and standardization in China. Schizophr Res 2015 Dec;169(1-3):109-115 [FREE Full_text] [doi: 10.1016/j.schres.2015.09.003] [Medline: 26441005]
Ferrucci R, Dini M, Groppo E, Rosci C, Reitano MR, Bai F, et al. Long-lasting cognitive abnormalities after COVID-19. Brain Sci 2021 Feb 13;11(2):235 [FREE Full_text] [doi: 10.3390/brainsci11020235] [Medline: 33668456]
Amato MP, Portaccio E, Goretti B, Zipoli V, Ricchiuti L, De Caro MF, et al. The Rao's Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler 2006 Dec;12(6):787-793. [doi: 10.1177/1352458506070933] [Medline: 17263008]
Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 2020 Nov;16(11):636-644 [FREE Full_text] [doi: 10.1038/s41582-020-0398-3] [Medline: 32839585]
Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther 2020 Jun 04;12(1):69 [FREE Full_text] [doi: 10.1186/s13195-020-00640-3] [Medline: 32498691]
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 2021 May;8(5):416-427 [FREE Full_text] [doi: 10.1016/S2215-0366(21)00084-5] [Medline: 33836148]
Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol 2020 Sep;19(9):767-783 [FREE Full_text] [doi: 10.1016/S1474-4422(20)30221-0] [Medline: 32622375]
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020 May;20(5):533-534 [FREE Full_text] [doi: 10.1016/S1473-3099(20)30120-1] [Medline: 32087114]
COVID-19 SUFTE, as O, 2021 I. COVID-19 situation update for the EU/EEA, as of 18 October 2021. European Center for Disease Control. URL: https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea [accessed 2021-30-07]
Tsori Y, Granek R. Epidemiological model for the inhomogeneous spatial spreading of COVID-19 and other diseases. PLoS One 2021;16(2):e0246056 [FREE Full_text] [doi: 10.1371/journal.pone.0246056] [Medline: 33606684]
Chen R, Wang K, Yu J, Howard D, French L, Chen Z, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol 2020;11:573095. [doi: 10.3389/fneur.2020.573095] [Medline: 33551947]
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020 Nov;19(11):919-929 [FREE Full_text] [doi: 10.1016/S1474-4422(20)30308-2] [Medline: 33031735]
Liu J, Tan B, Wu S, Gui Y, Suo J, Li Y. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol 2021 Mar;93(3):1304-1313 [FREE Full text] [doi: 10.1002/jmv.26570] [Medline: 33002209]
Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe 2020 Nov;1(7):e290-e299 [FREE Full_text] [doi: 10.1016/S2666-5247(20)30144-0] [Medline: 33015653]
Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 2007 Apr;204(2):733-740. [doi: 10.1016/j.expneurol.2007.01.003] [Medline: 17306796]
Bowyer JF, Sarkar S, Burks SM, Hess JN, Tolani S, O'Callaghan JP, et al. Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 2020 Mar;77:181-192 [FREE Full_text] [doi: 10.1016/j.neuro.2020.01.014] [Medline: 32014511]
Hellstrom IC, Danik M, Luheshi GN, Williams S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 2005;15(5):656-664. [doi: 10.1002/hipo.20086] [Medline: 15889405]
Deng X, Ai W, Lei D, Luo X, Yan X, Li Z. Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience 2012 May 03;209:161-170. [doi: 10.1016/j.neuroscience.2012.02.022] [Medline: 22395112]
Hiramoto RN, Rogers CF, Demissie S, Hsueh CM, Hiramoto NS, Lorden JF, et al. Psychoneuroendocrine immunology: site of recognition, learning and memory in the immune system and the brain. Int J Neurosci 1997 Dec;92(3-4):259-285. [doi: 10.3109/00207459708986405] [Medline: 9522270]
Iwashyna TJ. Trajectories of recovery and dysfunction after acute illness, with implications for clinical trial design. Am J Respir Crit Care Med 2012 Aug 15;186(4):302-304 [FREE Full_text] [doi: 10.1164/rccm.201206-1138ED] [Medline: 22896591]
Lage C, González-Suárez A, Alcalde-Hierro MP, Sampedro-González MI, Villanueva-Eguaras Á, Sánchez-Crespo MR, et al. Major surgery affects memory in individuals with cerebral amyloid-β pathology. J Alzheimers Dis 2021;79(2):863-874. [doi: 10.3233/JAD-191229] [Medline: 33361588]
Semmler A, Widmann CN, Okulla T, Urbach H, Kaiser M, Widman G, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry 2013 Jan;84(1):62-69. [doi: 10.1136/jnnp-2012-302883] [Medline: 23134661]
Widmann CN, Sinning J, Ghanem A, Brosseron F, Heneka M, Wagner M. [P2-088]: Chronic and acute systemic inflammation and long-term cognitive decline. Alzheimers Dement 2017 Jul 01;13(7S Part 13):P640-P640. [doi: 10.1016/j.jalz.2017.06.737]
Calsavara AJC, Nobre V, Barichello T, Teixeira AL. Post-sepsis cognitive impairment and associated risk factors: A systematic review. Aust Crit Care 2018 Jul;31(4):242-253. [doi: 10.1016/j.aucc.2017.06.001] [Medline: 28645546]
Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme JF. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005 Feb 15;171(4):340-347. [doi: 10.1164/rccm.200406-763OC] [Medline: 15542793]
Amtliche Bekanntmachungen Ordnung zur Sicherung guter wissenschaftlicher Praxis an der Rheinischen Friedrich-Wilhelms-Universität Bonn. Rheinischen Friedrich-Wilhelms-Universität Bonn. 2020 Sep 21. URL: https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/handle/20.500.11811/8928/Amtl.%20Bek.%2021013. pdf?sequence=1&isAllowed=y [accessed 2020-09-02]
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent 2014;81(3):14-18. [Medline: 25951678]
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance). Publication Office of the European Union. 2016. URL: http://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1 [accessed 2021-08-25]
Benedict RH, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test - Revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 2010 Aug 09;12(1):43-55. [doi: 10.1076/clin.12.1.43.1726]
Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017 Feb;60:1-12 [FREE Full_text] [doi: 10.1016/j.bbi.2016.03.010] [Medline: 26995317]
Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019 Feb 14;25(2):270-276 [FREE Full_text] [doi: 10.1038/s41591-018-0297-y] [Medline: 30643288]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018 Mar;14(3):133-150 [FREE Full_text] [doi: 10.1038/nrneurol.2017.188] [Medline: 29377008]
Tomaszewski Farias S, Mungas D, Harvey DJ, Simmons A, Reed BR, Decarli C. The measurement of everyday cognition: development and validation of a short form of the Everyday Cognition scales. Alzheimers Dement 2011 Nov;7(6):593-601 [FREE Full_text] [doi: 10.1016/j.jalz.2011.02.007] [Medline: 22055976]
Siegrist P, Maercker A. Deutsche Fassung der Short Screening Scale for DSM-IV Posttraumatic Stress Disorder. Aktueller Stand der Validierung (English: German Version of the Short Screening Scale for DSM-IV Posttraumatic Stress Disorder. Current Status of Validation). Trauma Gewalt 2010 Aug;156(6):208-213 [FREE Full_text]
Wilson RS, Arnold SE, Schneider JA, Kelly JF, Tang Y, Bennett DA. Chronic psychological distress and risk of Alzheimer's disease in old age. Neuroepidemiology 2006;27(3):143-153. [doi: 10.1159/000095761] [Medline: 16974109]
Gerhard U. Zeitschrift für Klinische Psychologie und Psychotherapie. Göttingen: Hogrefe; Apr 1999:145-146.
Hultsch DF, Hertzog C, Small BJ, Dixon RA. Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging? Psychol Aging 1999;14(2):245-263. [doi: 10.1037/0882-7974.14.2.245]
Plassman BL, Williams JW, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 2010 Aug 03;153(3):182-193 [FREE Full_text] [doi: 10.7326/0003-4819-153-3-201008030-00258] [Medline: 20547887]
Baumgart M, Snyder H, Carrillo M, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement 2015 Jun;11(6):718-726 [FREE Full text] [doi: 10.1016/j.jalz.2015.05.016] [Medline: 26045020]
Cacioppo JT, Hawkley LC. Perceived social isolation and cognition. Trends Cogn Sci 2009 Oct;13(10):447-454 [FREE Full_text] [doi: 10.1016/j.tics.2009.06.005] [Medline: 19726219]
Li Y, Xu J, Liu Y, Zhu J, Liu N, Zeng W, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci 2017 Apr;20(4):559-570. [doi: 10.1038/nn.4517] [Medline: 28263300]
Mueller CA, Grassinger E, Naka A, Temmel AFP, Hummel T, Kobal G. A self-administered odor identification test procedure using the "Sniffin' Sticks". Chem Senses 2006 Jul;31(6):595-598. [doi: 10.1093/chemse/bjj064] [Medline: 16754696]
Besser G, Liu DT, Renner B, Mueller CA. Self-administered testing of odor threshold and discrimination using Sniffin' Sticks-reviving the “Odor-Curves-On-Paper” method. Chem Percept 2019 Apr 4;13(1):71-77. [doi: 10.1007/s12078-019-09263-x]
Ramont L, Thoannes H, Volondat A, Chastang F, Millet M, Maquart F. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005;43(11):1215-1217. [doi: 10.1515/CCLM.2005.210] [Medline: 16232088]
Walter M, Wiltfang J, Vogelgsang J. Pre-analytical sampling and storage conditions of amyloid-β peptides in venous and capillary blood. J Alzheimers Dis 2020;78(2):529-535. [doi: 10.3233/JAD-200777] [Medline: 33016918]
O'Connell GC, Alder ML, Webel AR, Moore SM. Neuro biomarker levels measured with high-sensitivity digital ELISA differ between serum and plasma. Bioanalysis 2019 Nov;11(22):2087-2094 [FREE Full_text] [doi: 10.4155/bio-2019-0213] [Medline: 31829739]
Jahn T, Heßler J. Handbook Cognitive Functions Dementia, Short description CRD Version 2. 2nd edition. Mödling, Jänner: Schuhfried GmbH; 2019:1-82.
Lekeu F, Magis D, Marique P, Delbeuck X, Bechet S, Guillaume B, et al. The California Verbal Learning Test and other standard clinical neuropsychological tests to predict conversion from mild memory impairment to dementia. J Clin Exp Neuropsychol 2010 Feb;32(2):164-173. [doi: 10.1080/13803390902889606] [Medline: 19459119]
Negrini F, Ferrario I, Mazziotti D, Berchicci M, Bonazzi M, de Sire A, et al. Neuropsychological features of severe hospitalized coronavirus disease 2019 patients at clinical stability and clues for postacute rehabilitation. Arch Phys Med Rehabil 2021 Jan;102(1):155-158 [FREE Full_text] [doi: 10.1016/j.apmr.2020.09.376] [Medline: 32991870]
Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS One 2021;16(2):e0246590 [FREE Full text] [doi: 10.1371/journal.pone.0246590] [Medline: 33556127]
Rass V, Beer R, Schiefecker AJ, Kofler M, Lindner A, Mahlknecht P, et al. Neurological outcome and quality of life 3 months after COVID-19: A prospective observational cohort study. Eur J Neurol 2021 Oct;28(10):3348-3359 [FREE Full_text] [doi: 10.1111/ene.14803] [Medline: 33682276]
Mcloughlin BC, Miles A, Webb TE, Knopp P, Eyres C, Fabbri A, et al. Functional and cognitive outcomes after COVID-19 delirium. Eur Geriatr Med 2020 Oct;11(5):857-862 [FREE Full_text] [doi: 10.1007/s41999-020-00353-8] [Medline: 32666303]
Writing Committee for the COMEBAC Study Group, Morin L, Savale L, Pham T, Colle R, Figueiredo S, et al. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 2021 Apr 20;325(15):1525-1534 [FREE Full_text] [doi: 10.1001/jama.2021.3331] [Medline: 33729425]
Miskowiak KW, Johnsen S, Sattler SM, Nielsen S, Kunalan K, Rungby J, et al. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol 2021 May;46:39-48 [FREE Full_text] [doi: 10.1016/j.euroneuro.2021.03.019] [Medline: 33823427]
Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine 2021 Sep;39:101044 [FREE Full_text] [doi: 10.1016/j.eclinm.2021.101044] [Medline: 34316551]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 Feb 15;395(10223):497-506 [FREE Full_text] [doi: 10.1016/S0140-6736(20)30183-5] [Medline: 31986264]
Manzano GS, McEntire CRS, Martinez-Lage M, Mateen FJ, Hutto SK. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID-19: systematic review and meta-synthesis. Neurol Neuroimmunol Neuroinflamm 2021 Nov;8(6):e1080 [FREE Full_text] [doi: 10.1212/NXI.0000000000001080] [Medline: 34452974]
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 2020 Aug;296(2):E119-E120 [FREE Full_text] [doi: 10.1148/radiol.2020201187] [Medline: 32228363]
Hernández-Fernández F, Sandoval Valencia H, Barbella-Aponte RA, Collado-Jiménez R, Ayo-Martín Ó, Barrena C, et al. Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain 2020 Oct 01;143(10):3089-3103 [FREE Full_text] [doi: 10.1093/brain/awaa239] [Medline: 32645151]
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 2020 May;19(5):383-384 [FREE Full_text] [doi: 10.1016/S1474-4422(20)30109-5] [Medline: 32246917]
Duan K, Premi E, Pilotto A, Cristillo V, Benussi A, Libri I, et al. Alterations of frontal-temporal gray matter volume associate with clinical measures of older adults with COVID-19. Neurobiol Stress 2021 May;14:100326 [FREE Full_text] [doi: 10.1016/j.ynstr.2021.100326] [Medline: 33869679]
Qin Y, Wu J, Chen T, Li J, Zhang G, Wu D, et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest 2021 Apr 15;131(8):e147329. [doi: 10.1172/JCI147329] [Medline: 33630760]
Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, et al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 2020 Aug;25:100484 [FREE Full_text] [doi: 10.1016/j.eclinm.2020.100484] [Medline: 32838240]
Granja C, Amaro A, Dias C, Costa-Pereira A. Outcome of ICU survivors: a comprehensive review. The role of patient-reported outcome studies. Acta Anaesthesiol Scand 2012 Oct 04;56(9):1092-1103. [doi: 10.1111/j.1399-6576.2012.02686.x] [Medline: 22471617]
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021 Aug 12;385(7):585-594 [FREE Full_text] [doi: 10.1056/NEJMoa2108891] [Medline: 34289274]