Alzheimer's disease; acetylcholinesterase (AChE); genetics; neuroinflammation; single nucleotide polymorphisms (SNPs); Cholinesterase Inhibitors; MicroRNAs; Acetylcholinesterase; Acetylcholine; Acetylcholine/metabolism; Acetylcholinesterase/metabolism; Animals; Cholinesterase Inhibitors/pharmacology; Homeostasis/drug effects; Humans; MicroRNAs/drug effects; MicroRNAs/genetics; Polymorphism, Single Nucleotide/drug effects; Polymorphism, Single Nucleotide/genetics; Homeostasis; Polymorphism, Single Nucleotide; Biochemistry; Cellular and Molecular Neuroscience
Résumé :
[en] Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi-leveled and bidirectional regulation by both proteins and non-coding microRNAs ('CholinomiRs'). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic-based medicine approaches based on genotyping of both coding and non-coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate-specific microRNA-608 within the 3' untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR-608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in-depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Disciplines :
Neurologie
Auteur, co-auteur :
Simchovitz, Alon; Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
HENEKA, Michael ; Department of Neurology, University Bonn, Bonn, Germany
Soreq, Hermona; Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Personalized genetics of the cholinergic blockade of neuroinflammation.
Israel Science Foundation Ministry of Science and Technology, Israel Deutsche Forschungsgemeinschaft Seventh Framework Programme
Subventionnement (détails) :
Work performed by A.S and H.S was supported by The Israel Science Foundation (Grant No. 817/13) and the Israeli Ministry of Science and Technology Grant Number 53140. MTH was supported by a grant from the German Research Council (DFG KFO177, TP8) and by the EU's Seventh Framework Programme InMIND. Michael Heneka is an editor with the Journal of Neurochemistry.Other than that, the authors declare they have no conflict of interests.
Abelson J. F., Kwan K. Y., O'Roak B. J. et al. (2005) Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317–320.
Auton A., Brooks L. D., Durbin R. M. et al. (2015) A global reference for human genetic variation. Nature 526, 68–74.
Bartel D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.
Birks J. (2006) Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst. Rev. CD005593. DOI: 10.1002/14651858.CD005593.
Boudreau R. L., Jiang P., Gilmore B. L., Spengler R. M., Tirabassi R., Nelson J. A., Ross C. A., Xing Y. and Davidson B. L. (2014) Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 81, 294–305.
Bracken C. P., Li X., Wright J. A. et al. (2014) Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040–2056.
Castelli E. C., Moreau P., Oya e Chiromatzo A., Mendes-Junior C. T., Veiga-Castelli L. C., Yaghi L., Giuliatti S., Carosella E. D. and Donadi E. A. (2009) In silico analysis of microRNAS targeting the HLA-G 3’ untranslated region alleles and haplotypes. Hum. Immunol., 70, 1020–1025.
Chen C. Z., Li L., Lodish H. F. and Bartel D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86.
Cui K., Ge X. and Ma H. (2014) Four SNPs in the CHRNA3/5 alpha-neuronal nicotinic acetylcholine receptor subunit locus are associated with COPD risk based on meta-analyses. PLoS ONE 9, e102324.
Edbauer D., Neilson J. R., Foster K. A. et al. (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384.
English B. A., Hahn M. K., Gizer I. R., Mazei-Robison M., Steele A., Kurnik D. M., Stein M. A., Waldman I. D. and Blakely R. D. (2009) Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. J. Neurodev. Disord. 1, 252–263.
Fambrough D. M. (1979) Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165–227.
Fasano A., Visanji N. P., Liu L. W., Lang A. E. and Pfeiffer R. F. (2015) Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14, 625–639.
Filiou M. D., Arefin A. S., Moscato P. and Graeber M. B. (2014) ‘Neuroinflammation’ differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neurogenetics 15, 201–212.
Gill J. M., Saligan L., Woods S. and Page G. (2009) PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr. Care 45, 262–277.
Gill J. M., Saligan L., Lee H., Rotolo S. and Szanton S. (2013) Women in recovery from PTSD have similar inflammation and quality of life as non-traumatized controls. J. Psychosom. Res. 74, 301–306.
Gong J., Zhang J. P., Li B., Zeng C., You K., Chen M. X., Yuan Y. and Zhuang S. M. (2013) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 32, 3071–3079.
Graef S., Schonknecht P., Sabri O. and Hegerl U. (2011) Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology 215, 205–229.
Guo Z., Shao L., Zheng L., Du Q., Li P., John B. and Geller D. A. (2012) miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc. Natl Acad. Sci. USA 109, 5826–5831.
Halle A., Hornung V., Petzold G. C. et al. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865.
Hamburg M. A. and Collins F. S. (2010) The path to personalized medicine. N. Engl. J. Med. 363, 301–304.
Hanin G. and Soreq H. (2011) Cholinesterase-targeting microRNAs identified in silico affect specific biological processes. Front Mol. Neurosci. 4, 28.
Hanin G., Shenhar-Tsarfaty S., Yayon N. et al. (2014) Competing targets of microRNA-608 affect anxiety and hypertension. Hum. Mol. Genet. 23, 4569–4580.
Hariharan M., Scaria V. and Brahmachari S. K. (2009) dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinformatics 10, 108.
Harold D., Macgregor S., Patterson C. E. et al. (2006) A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer's disease. Pharmacogenet. Genomics 16, 75–77.
Hasin Y., Avidan N., Bercovich D., Korczyn A., Silman I., Beckmann J. S. and Sussman J. L. (2004) A paradigm for single nucleotide polymorphism analysis: the case of the acetylcholinesterase gene. Hum. Mutat. 24, 408–416.
Heneka M. T., Sastre M., Dumitrescu-Ozimek L. et al. (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128, 1442–1453.
Heneka M. T., Kummer M. P., Stutz A. et al. (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678.
Heneka M. T., Kummer M. P. and Latz E. (2014) Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477.
Heneka M. T., Carson M. J., El Khoury J. et al. (2015a) Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405.
Heneka M. T., Fink A. and Doblhammer G. (2015b) Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 78, 284–294.
Heneka M. T., Golenbock D. T. and Latz E. (2015c) Innate immunity in Alzheimer's disease. Nat. Immunol. 16, 229–236.
Heppner F. L., Ransohoff R. M. and Becher B. (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372.
Hsu S. D., Tseng Y. T., Shrestha S. et al. (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 42, D78–D85.
in t’ Veld B. A., Ruitenberg A., Hofman A., Launer L. J., vanDuijn C. M., Stijnen T., Breteler M. M. and Stricker B. H. (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med., 345, 1515–1521.
Kapeller J., Houghton L. A., Monnikes H. et al. (2008) First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 17, 2967–2977.
Kawashima K. and Fujii T. (2004) Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci. 9, 2063–2085.
Kertesz M., Iovino N., Unnerstall U., Gaul U. and Segal E. (2007) The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284.
Khella H. W., Bakhet M., Allo G. et al. (2013) miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 34, 2231–2239.
Krol J., Loedige I. and Filipowicz W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610.
Kummer M. P., Schwarzenberger R., Sayah-Jeanne S., Dubernet M., Walczak R., Hum D. W., Schwartz S., Axt D. and Heneka M. T. (2015) Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol. Neurobiol. 51, 661–671.
Lau P., Bossers K., Janky R. et al. (2013) Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol. Med. 5, 1613–1634.
Lee K. U., Lee J. H., Lee D. Y. et al. (2015) The effect of choline acetyltransferase genotype on Donepezil treatment response in patients with Alzheimer's disease. Clin. Psychopharmacol. Neurosci. 13, 168–173.
Lehmann J. M., Lenhard J. M., Oliver B. B., Ringold G. M. and Kliewer S. A. (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410.
Liang Y., Salas R., Marubio L., Bercovich D., De Biasi M., Beaudet A. L. and Dani J. A. (2005) Functional polymorphisms in the human beta4 subunit of nicotinic acetylcholine receptors. Neurogenetics 6, 37–44.
Lin T., Simchovitz A., Shenhar-Tsarfaty S. et al. (2016) Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction. Transl. Psychiatry 6, e801.
Loewenstein-Lichtenstein Y., Schwarz M., Glick D., Norgaard-Pedersen B., Zakut H. and Soreq H. (1995) Genetic predisposition to adverse consequences of anti-cholinesterases in ‘atypical’ BCHE carriers. Nat. Med. 1, 1082–1085.
Lu B., Kwan K., Levine Y. A. et al. (2014) alpha7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol. Med. 20, 350–358.
Luo X., Kranzler H. R., Zuo L., Wang S., Blumberg H. P. and Gelernter J. (2005) CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum. Mol. Genet. 14, 2421–2434.
Mann J., Chu D. C., Maxwell A., Oakley F., Zhu N. L., Tsukamoto H. and Mann D. A. (2010) MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology, 138, 705–714, 714 e701-704.
Mariathasan S., Weiss D. S., Newton K. et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232.
Martinelli-Boneschi F., Giacalone G., Magnani G. et al. (2013) Pharmacogenomics in Alzheimer's disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol. Aging 34, 1711, e1717–1713.
Martinon F., Burns K. and Tschopp J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426.
McGeer P. L., McGeer E. G., Suzuki J., Dolman C. E. and Nagai T. (1984) Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 34, 741–745.
Mobascher A., Diaz-Lacava A., Wagner M. et al. (2016) Association of common polymorphisms in the nicotinic acetylcholine receptor Alpha4 subunit gene with an electrophysiological endophenotype in a large population-based sample. PLoS ONE 11, e0152984.
Nadorp B. and Soreq H. (2014) Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders. Front Mol. Neurosci. 7, 9.
Olofsson P. S., Steinberg B. E., Sobbi R. et al. (2016) Blood pressure regulation by CD4 + lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34, 1066–1071.
Pavlov V. A., Parrish W. R., Rosas-Ballina M., Ochani M., Puerta M., Ochani K., Chavan S., Al-Abed Y. and Tracey K. J. (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23, 41–45.
Picciotto M. R., Higley M. J. and Mineur Y. S. (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129.
Reale M., Iarlori C., Gambi F. et al. (2004) Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J. Neuroimmunol. 148, 162–171.
Rodriguez-Diaz R., Dando R., Jacques-Silva M. C. et al. (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17, 888–892.
Rosas-Ballina M., Olofsson P. S., Ochani M. et al. (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101.
Russo P., Kisialiou A., Moroni R., Prinzi G. and Fini M. (2015) Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer's disease. Curr. Drug Targets. [Epub ahead of print]
Saba R., Medina S. J. and Booth S. A. (2014) A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum. Mutat. 35, 1233–1248.
Saresella M., La Rosa F., Piancone F. et al. (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Mol. Neurodegener. 11, 23.
Saunders M. A., Liang H. and Li W. H. (2007) Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300–3305.
Scarr E., Craig J. M., Cairns M. J. et al. (2013) Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl. Psychiatry 3, e230.
Schedel A., Thornton S., Schloss P., Kluter H. and Bugert P. (2011) Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler. Thromb. Vasc. Biol. 31, 928–934.
Schlaepfer I. R., Hoft N. R., Collins A. C. et al. (2008) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol. Psychiatry 63, 1039–1046.
Shaked I., Meerson A., Wolf Y., Avni R., Greenberg D., Gilboa-Geffen A. and Soreq H. (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973.
Shaltiel G., Hanan M., Wolf Y., Barbash S., Kovalev E., Shoham S. and Soreq H. (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct. Funct. 218, 59–72.
Simchovitz A., Soreq L. and Soreq H. (2016) Transcriptome profiling in Parkinson's leukocytes: from early diagnostics to neuroimmune therapeutic prospects. Curr. Opin. Pharmacol. 26, 102–109.
Simon D. J., Madison J. M., Conery A. L., Thompson-Peer K. L., Soskis M., Ruvkun G. B., Kaplan J. M. and Kim J. K. (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133, 903–915.
Soreq H. (2015) Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci. 38, 448–458.
Soreq H. and Seidman S. (2001) Acetylcholinesterase–new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302.
Tili E., Michaille J. J., Cimino A. et al. (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089.
Wang J. C., Hinrichs A. L., Stock H. et al. (2004) Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum. Mol. Genet. 13, 1903–1911.
Wang G., van der Walt J. M., Mayhew G., Li Y. J., Zuchner S., Scott W. K., Martin E. R. and Vance J. M. (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am. J. Hum. Genet. 82, 283–289.
Wang J., Tan L., Wang H. F., Tan C. C., Meng X. F., Wang C., Tang S. W. and Yu J. T. (2015) Anti-inflammatory drugs and risk of Alzheimer's disease: an updated systematic review and meta-analysis. J. Alzheimers Dis. 44, 385–396.
Wessler I., Roth E., Deutsch C., Brockerhoff P., Bittinger F., Kirkpatrick C. J. and Kilbinger H. (2001) Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br. J. Pharmacol. 134, 951–956.
Wilson C. B., McLaughlin L. D., Nair A., Ebenezer P. J., Dange R. and Francis J. (2013) Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 8, e76146.
Wojtowicz E. E., Lechman E. R., Hermans K. G. et al. (2016) Ectopic miR-125a expression induces long-term repopulating stem cell capacity in mouse and human hematopoietic progenitors. Cell Stem Cell. 19, 383–396
Xiao B., Gu S. M., Li M. J. et al. (2015) Rare SNP rs12731181 in the miR-590-3p target site of the prostaglandin F2alpha receptor gene confers risk for essential hypertension in the han chinese population. Arterioscler. Thromb. Vasc. Biol. 35, 1687–1695.
Xiao T., Jiao B., Zhang W., Tang B. and Shen L. (2016) Effect of the CYP2D6 and APOE polymorphisms on the efficacy of Donepezil in patients with Alzheimer's disease: a systematic review and meta-analysis. CNS Drugs. 30, 899–907
Yang S., Gao Y., Liu G., Li J., Shi K., Du B., Si D. and Yang P. (2015) The human ATF1 rs11169571 polymorphism increases essential hypertension risk through modifying miRNA binding. FEBS Lett. 589, 2087–2093.
Zhang L. M., Zhang X. P., Chen Y. Q. and Ye W. (2015) Association of CHRNA4 gene rs1044396 and rs1044397 polymorphisms with Parkinson's disease symptoms and smoking. Genet. Mol. Res. 14, 5112–5122.
Zhang X., Li Q., Wang L., Liu Z. J. and Zhong Y. (2016) Cdc42-Dependent Forgetting Regulates Repetition Effect in Prolonging Memory Retention. Cell Rep. 16, 817–825.
Zimmerman G., Shaltiel G., Barbash S. et al. (2012) Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFkappaB pathway. Transl. Psychiatry 2, e78.