Interrelations of Alzheimer´s disease candidate biomarkers neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and neuroinflammation.
[en] There is growing evidence that promising biomarkers of inflammation in Alzheimer´s disease (AD) and other neurodegenerative diseases correlate strongest to levels of tau or neurofilament, indicating an inflammatory response to neuronal damage or death. To test this hypothesis, we investigated three AD candidate markers (ferritin, fatty acid binding protein 3 (FABP-3), and neurogranin) in interrelation to established AD and inflammatory protein markers. We further aimed to determine if such interrelations would be evident in pathological subjects only or also under non-pathological circumstances. Cerebrospinal fluid levels of the three proteins were quantified in samples from the University Clinic of Bonn (UKB) Department of Neurodegenerative Diseases & Geriatric Psychiatry, Germany. Data were analyzed based on clinical or biomarker-defined stratification of subjects with adjustment for covariates age, sex, and APOE status. Levels of ferritin, FABP-3 and neurogranin were elevated in subjects with pathological levels of t-tau independent of beta-amyloid status. The three markers correlated with each other, tau isoforms, age, and those inflammatory markers previously described as related to neurodegeneration, predominantly sTREM2, macrophage migration inhibitory factor, soluble vascular endothelial growth factor receptor, soluble vascular cell adhesion molecule 1 (sVCAM-1), and C1q. These interrelations existed in subjects with pathological and sub-pathological tau levels, in particular for FABP-3 and neurogranin. Relations to ferritin were independent of absolute levels of tau, too, but showed differing trajectories between pathological and non-pathological subjects. A specific set of inflammatory markers is highly related to markers of neuronal damage such as tau, neurogranin, or FABP-3. These proteins could be used as readouts of the inflammatory response during the neurodegeneration phase of AD.
Disciplines :
Neurology
Author, co-author :
Brosseron, Frederic; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
Kleemann, Kilian; University of Glasgow, Glasgow, UK
Kolbe, Carl-Christian; Institute of Innate Immune, University of Bonn Medical Center, Bonn, Germany
Santarelli, Francesco; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
Castro-Gomez, Sergio ; Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
Tacik, Pawel; Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
Latz, Eicke; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Institute of Innate Immune, University of Bonn Medical Center, Bonn, Germany
Jessen, Frank; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
HENEKA, Michael ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Interrelations of Alzheimer´s disease candidate biomarkers neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and neuroinflammation.
Deutsche Forschungsgemeinschaft Deutsches Zentrum für Neurodegenerative Erkrankungen Helmholtz-Gemeinschaft Deutsche Forschungsgemeinschaft
Funding text :
This work was funded by the German Center for Neurodegenerative Diseases (DZNE e.V.) within the Helmholtz Association and by the German Research Council (DFG, Deutsche Forschungsgemeinschaft KFO177, TP4). FB, CCK, EL and MTH are members of the Cluster of Excellence “Immunosensation.”
Avramovich-Tirosh, Y., Amit, T., Bar-Am, O., Weinreb, O., & Youdim, M. B. H. (2008). Physiological and pathological aspects of Abeta in iron homeostasis via 5’UTR in the APP mRNA and the therapeutic use of iron-chelators. BMC Neuroscience, 9(Suppl 2), S2.
Ayton, S., Diouf, I., Bush, A. I., & Alzheimer’s disease Neuroimaging Initiative. (2018). Evidence that iron accelerates Alzheimer’s pathology: A CSF biomarker study. Journal of Neurology, Neurosurgery and Psychiatry, 89, 456–460.
Ayton, S., Faux, N. G., Bush, A. I., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nature Communications, 6, 6760.
Ayton, S., Faux, N. G., & Bush, A. I. (2017). Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurology, 74, 122–125.
Ayton, S., Wang, Y., Diouf, I., Schneider, J. A., Brockman, J., Morris, M. C., & Bush, A. I. (2019). Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Molecular Psychiatry. https://doi.org/10.1038/s41380-019-0375-7
Becker, H., Gaubitz, M., Domschke, W., & Willeke, P. (2009). Potential role of macrophage migration inhibitory factor in adult-onset Still’s disease. Scandinavian Journal of Rheumatology, 38, 69–71.
Bereczki, E., Bogstedt, A., Höglund, K., Tsitsi, P., Brodin, L., Ballard, C., … Aarsland, D. (2017). Synaptic proteins in CSF relate to Parkinson’s disease stage markers. NPJ Parkinson's Disease, 3, 7.
Bettcher, B. M., Johnson, S. C., Fitch, R., Casaletto, K. B., Heffernan, K. S., Asthana, S., … Kramer, J. H. (2018). Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. Journal of Alzheimer's Disease, 62, 385–397. https://doi.org/10.3233/JAD-170602
Biasiotto, G., Di Lorenzo, D., Archetti, S., & Zanella, I. (2016). Iron and Neurodegeneration: Is ferritinophagy the link? Molecular Neurobiology, 53, 5542–5574. https://doi.org/10.1007/s12035-015-9473-y
Bjerke, M., Kern, S., Blennow, K., Zetterberg, H., Waern, M., Börjesson-Hanson, A., … Skoog, I. (2016). Cerebrospinal fluid fatty acid-binding protein 3 is related to dementia development in a population-based sample of older adult women followed for 8 years. Journal of Alzheimer's Disease, 49, 733–741. https://doi.org/10.3233/JAD-150525
Bjerke, M., Zetterberg, H., Edman, Å., Blennow, K., Wallin, A., & Andreasson, U. (2011). Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. Journal of Alzheimer's Disease, 27, 665–676. https://doi.org/10.3233/JAD-2011-110566
Blennow, K., & Zetterberg, H. (2018). The past and the future of Alzheimer’s disease fluid biomarkers. Journal of Alzheimer's Disease, 62, 1125–1140.
Brosseron, F., Kolbe, C.-C., Santarelli, F., Carvalho, S., Antonell, A., … Latz, E. (2019). Multicenter Alzheimer’s and Parkinson’s disease immune biomarker verification study. Alzheimer's and Dementia, 16(2), 292–304.
Brosseron, F., Traschütz, A., Widmann, C. N., Kummer, M. P., Tacik, P., Santarelli, F., … Heneka, M. T. (2018). Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimer's Research and Therapy, 10, 25.
Bulk, M., van der Weerd, L., Breimer, W., Lebedev, N., Webb, A., Goeman, J. J., … Bossoni, L. (2018). Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Scientific Reports, 8, 6898.
Cahill, C. M., Lahiri, D. K., Huang, X., & Rogers, J. T. (2009). Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochimica Et Biophysica Acta, 1790, 615–628.
Chiasserini, D., Biscetti, L., Eusebi, P., Salvadori, N., Frattini, G., Simoni, S., … Parnetti, L. (2017). Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimer's Research & Therapy, 9, 52. https://doi.org/10.1186/s13195-017-0276-4
Daru, J., Colman, K., Stanworth, S. J., De La Salle, B., Wood, E. M., & Pasricha, S.-R. (2017). Serum ferritin as an indicator of iron status: What do we need to know? American Journal of Clinical Nutrition, 106, 1634S–1639S. https://doi.org/10.3945/ajcn.117.155960
De Vos, A., Jacobs, D., Struyfs, H., Fransen, E., Andersson, K., Portelius, E., … Vanmechelen, E. (2015). C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimer's & Dementia, 11, 1461–1469. https://doi.org/10.1016/j.jalz.2015.05.012
Díez-Guerra, F. J. (2010). Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life, 62, 597–606. https://doi.org/10.1002/iub.357
Diouf, I., Fazlollahi, A., Bush, A. I., Ayton, S., & Alzheimer’s Disease Neuroimaging Initiative. (2019). Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying β-amyloid pathology. Neurobiology of Diseases, 124, 335–339.
Edison, P., & Brooks, D. J. (2018). Role of Neuroinflammation in the trajectory of Alzheimer’s disease and in vivo quantification using PET. Journal of Alzheimer's Disease, 64, S339–S351. https://doi.org/10.3233/JAD-179929
Finazzi, D., & Arosio, P. (2014). Biology of ferritin in mammals: An update on iron storage, oxidative damage and neurodegeneration. Archives of Toxicology, 88, 1787–1802. https://doi.org/10.1007/s00204-014-1329-0
Goozee, K., Chatterjee, P., James, I., Shen, K., Sohrabi, H. R., Asih, P. R., Dave, P. et al (2018). Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β load. Molecular Psychiatry, 23, 1807–1812.
Guo, L.-H., Alexopoulos, P., & Perneczky, R. (2013). Heart-type fatty acid binding protein and vascular endothelial growth factor: Cerebrospinal fluid biomarker candidates for Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience, 263, 553–560.
Hampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., … Lista, S. (2020). A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer's disease. Frontiers in Immunology, 11, 456. https://doi.org/10.3389/fimmu.2020.00456
Harari, O., Cruchaga, C., Kauwe, J. S. K., Ainscough, B. J., Bales, K., Pickering, E. H., … Goate, A. M. (2014). Phosphorylated tau-Aβ42 ratio as a continuous trait for biomarker discovery for early-stage Alzheimer’s disease in multiplex immunoassay panels of cerebrospinal fluid. Biological Psychiatry, 75, 723–731.
Hellwig, K., Kvartsberg, H., Portelius, E., Andreasson, U., Oberstein, T. J., Lewczuk, P., … Spitzer, P. (2015). Neurogranin and YKL-40: Independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimer's Research & Therapy, 7, 74. https://doi.org/10.1186/s13195-015-0161-y
Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14, 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Höglund, K., Kern, S., Zettergren, A., Börjesson-Hansson, A., Zetterberg, H., Skoog, I., & Blennow, K. (2017). Preclinical amyloid pathology biomarker positivity: Effects on tau pathology and neurodegeneration. Translational Psychiatry, 7, e995. https://doi.org/10.1038/tp.2016.252
Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Frisoni, G. B., … Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87, 539–547. https://doi.org/10.1212/WNL.0000000000002923
Janelidze, S., Hertze, J., Zetterberg, H., Landqvist, W. M., Santillo, A., Blennow, K., & Hansson, O. (2016). Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer’s disease. Annals of Clinical and Translational Neurology, 3, 12–20.
Kester, M. I., Teunissen, C. E., Crimmins, D. L., Herries, E. M., Ladenson, J. H., Scheltens, P., … Fagan, A. M. (2015). Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurology., 72, 1275–1280. https://doi.org/10.1001/jamaneurol.2015.1867
Kolodziej, M. A., Proemmel, P., Quint, K., & Strik, H. M. (2014). Cerebrospinal fluid ferritin–unspecific and unsuitable for disease monitoring. Neurologia I Neurochirurgia Polska, 48, 116–121.
Kvartsberg, H., Duits, F. H., Ingelsson, M., Andreasen, N., Öhrfelt, A., Andersson, K., … Blennow, K. (2015). Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimer's & Dementia, 11, 1180–1190. https://doi.org/10.1016/j.jalz.2014.10.009
Kvartsberg, H., Portelius, E., Andreasson, U., Brinkmalm, G., Hellwig, K., Lelental, N., … Lewczuk, P. (2015). Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimer's Research & Therapy, 7, 40. https://doi.org/10.1186/s13195-015-0124-3
Kwiatek-Majkusiak, J., Dickson, D. W., Tacik, P., Aoki, N., Tomasiuk, R., Koziorowski, D., & Friedman, A. (2015). Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer’s disease. Acta Neurobiologiae Experimentalis, 75, 391–398.
Labzin, L. I., Heneka, M. T., & Latz, E. (2018). Innate immunity and neurodegeneration. Annual Review of Medicine, 69, 437–449. https://doi.org/10.1146/annurev-med-050715-104343
Lehallier, B., Essioux, L., Gayan, J., Alexandridis, R., Nikolcheva, T., Wyss-Coray, T., … Alzheimer’s Disease Neuroimaging Initiative. (2016). Combined plasma and cerebrospinal fluid signature for the prediction of midterm progression from mild cognitive impairment to Alzheimer disease. JAMA Neurology, 73, 203–212. https://doi.org/10.1001/jamaneurol.2015.3135
Li, X., Liu, Y., Zheng, Q., Yao, G., Cheng, P., Bu, G., … Zhang, Y. (2013). Ferritin light chain interacts with PEN-2 and affects γ-secretase activity. Neuroscience Letters, 548, 90–94.
Lista, S., Toschi, N., Baldacci, F., Zetterberg, H., Blennow, K., Kilimann, I., … Hampel, H. (2017). Cerebrospinal fluid neurogranin as a biomarker of neurodegenerative diseases: A cross-sectional study. Journal of Alzheimer's Disease, 59, 1327–1334. https://doi.org/10.3233/JAD-170368
Llano, D. A., Bundela, S., Mudar, R. A., Devanarayan, V., & Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2017). A multivariate predictive modeling approach reveals a novel CSF peptide signature for both Alzheimer’s disease state classification and for predicting future disease progression. PLoS One, 12, e0182098. https://doi.org/10.1371/journal.pone.0182098
Lopes, K. O., Sparks, D. L., & Streit, W. J. (2008). Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia, 56, 1048–1060. https://doi.org/10.1002/glia.20678
Masaldan, S., Bush, A. I., Devos, D., Rolland, A. S., & Moreau, C. (2019). Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine, 133, 221–233.
Masaldan, S., Clatworthy, S. A. S., Gamell, C., Meggyesy, P. M., Rigopoulos, A.-T., Haupt, S., … Cater, M. A. (2018). Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biology, 14, 100–115. https://doi.org/10.1016/j.redox.2017.08.015
Matsui, Y., Satoh, K., Mutsukura, K., Watanabe, T., Nishida, N., Matsuda, H., … Kataoka, Y. (2010). Development of an ultra-rapid diagnostic method based on heart-type fatty acid binding protein levels in the CSF of CJD patients. Cellular and Molecular Neurobiology, 30, 991–999. https://doi.org/10.1007/s10571-010-9529-5
Mattsson, N., Insel, P. S., Palmqvist, S., Portelius, E., Zetterberg, H., Weiner, M., … Alzheimer’s Disease Neuroimaging Initiative. (2016). Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Molecular Medicine, 8, 1184–1196.
McCarthy, R. C., Sosa, J. C., Gardeck, A. M., Baez, A. S., Lee, C.-H., & Wessling-Resnick, M. (2018). Inflammation-induced iron transport and metabolism by brain microglia. Journal of Biological Chemistry, 293, 7853–7863.
Melah, K. E., Lu, S.-F., Hoscheidt, S. M., Alexander, A. L., Adluru, N., Destiche, D. J., … Bendlin, B. B. (2016). cerebrospinal fluid markers of Alzheimer’s Disease Pathology And Microglial Activation Are Associated With Altered White Matter Microstructure In Asymptomatic Adults at risk for Alzheimer’s disease. Journal of Alzheimer's Disease, 50, 873–886. https://doi.org/10.3233/JAD-150897
Moullé, V. S. F., Cansell, C., Luquet, S., & Cruciani-Guglielmacci, C. (2012). The multiple roles of fatty acid handling proteins in brain. Frontiers in Physiology, 3, 385.
Namaste, S. M., Rohner, F., Huang, J., Bhushan, N. L., Flores-Ayala, R., Kupka, R., Mei, Z. et al (2017). Adjusting ferritin concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. American Journal of Clinical Nutrition, 106, 359S–371S.
Nnah, I. C., & Wessling-Resnick, M. (2018). Brain iron homeostasis: A focus on microglial iron. Pharmaceuticals, 11(4), 129–https://doi.org/10.3390/ph11040129
Olsson, B., Hertze, J., Ohlsson, M., Nägga, K., Höglund, K., Basun, H., … Hansson, O. (2013). Cerebrospinal fluid levels of heart fatty acid binding protein are elevated prodromally in Alzheimer’s disease and vascular dementia. Journal of Alzheimer's Disease, 34, 673–679. https://doi.org/10.3233/JAD-121384
Olsson, B., Lautner, R., Andreasson, U., Öhrfelt, A., Portelius, E., Bjerke, M., … Zetterberg, H. (2016). CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. The Lancet Neurology, 15, 673–684. https://doi.org/10.1016/S1474-4422(16)00070-3
Ondruschka, B., Schuch, S., Pohlers, D., Franke, H., & Dreßler, J. (2018). Acute phase response after fatal traumatic brain injury. International Journal of Legal Medicine, 132, 531–539.
Palmqvist, S., Insel, P. S., Stomrud, E., Janelidze, S., Zetterberg, H., Brix, B., … Hansson, O. (2019). Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Molecular Medicine, 11, e11170. https://doi.org/10.15252/emmm.201911170
Pankhurst, Q., Hautot, D., Khan, N., & Dobson, J. (2008). Increased levels of magnetic iron compounds in Alzheimer’s disease. Journal of Alzheimer's Disease, 13, 49–52. https://doi.org/10.3233/JAD-2008-13105
Patton, S. M., Wang, Q., Hulgan, T., Connor, J. R., Jia, P., Zhao, Z., … Kallianpur, A. R. (2017). Cerebrospinal fluid (CSF) biomarkers of iron status are associated with CSF viral load, antiretroviral therapy, and demographic factors in HIV-infected adults. Fluids and Barriers of the CNS, 14, 11. https://doi.org/10.1186/s12987-017-0058-1
Pereira, J. B., Westman, E., Hansson, O., & Alzheimer’s Disease Neuroimaging Initiative. (2017). Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiology of Aging, 58, 14–29.
Polati, R., Castagna, A., Bossi, A. M., Alberio, T., De Domenico, I., Kaplan, J., … Girelli, D. (2012). Murine macrophages response to iron. Journal of Proteomics, 76, 10–27. https://doi.org/10.1016/j.jprot.2012.07.018.
Portelius, E., Zetterberg, H., Skillbäck, T., Törnqvist, U., Andreasson, U., Trojanowski, J. Q., … Mattsson, N. (2015). Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer’s disease. Brain, 138, 3373–3385. https://doi.org/10.1093/brain/awv267
Racine, A. M., Merluzzi, A. P., Adluru, N., Norton, D., Koscik, R. L., Clark, L. R., … Johnson, S. C. (2019). Association of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of neurodegeneration, inflammation and Alzheimer’s disease in late-middle-aged adults. Brain Imaging and Behavior, 13, 41–52. https://doi.org/10.1007/s11682-017-9732-9
Rogers, J. T., Bush, A. I., Cho, H.-H., Smith, D. H., Thomson, A. M., Friedlich, A. L., … Cahill, C. M. (2008). Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochemical Society Transactions, 36, 1282–1287. https://doi.org/10.1042/BST0361282
Rogers, J. T., Venkataramani, V., Washburn, C., Liu, Y., Tummala, V., Jiang, H., … Cahill, C. M. (2016). A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. Journal of Neurochemistry, 138, 479–494. https://doi.org/10.1111/jnc.13671
Ross, A. C. (2017). Impact of chronic and acute inflammation on extra- and intracellular iron homeostasis. American Journal of Clinical Nutrition, 106, 1581S–1587S. https://doi.org/10.3945/ajcn.117.155838
Russell, N. H., Black, R. T., Lee, N. N., Doperalski, A. E., Reeves, T. M., & Phillips, L. L. (2019). Time-dependent hemeoxygenase-1, lipocalin-2 and ferritin induction after non-contusion traumatic brain injury. Brain Research, 1725, 146466. https://doi.org/10.1016/j.brainres.2019.146466
Sanfilippo, C., Forlenza, O., Zetterberg, H., & Blennow, K. (2016). Increased neurogranin concentrations in cerebrospinal fluid of Alzheimer’s disease and in mild cognitive impairment due to AD. Journal of Neural Transmission 1996, 123, 1443–1447.
Shioda, N., Yabuki, Y., Kobayashi, Y., Onozato, M., Owada, Y., & Fukunaga, K. (2014). FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity. Journal of Biological Chemistry, 289, 18957–18965.
Spotorno, N., Acosta-Cabronero, J., Stomrud, E., Lampinen, B., Strandberg, O. T., van Westen, D., & Hansson, O. (2020). Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain, 143, 1341–1349.
Steinacker, P., Mollenhauer, B., Bibl, M., Cepek, L., Esselmann, H., Brechlin, P., … Trenkwalder, C. (2004). Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neuroscience Letters, 370, 36–39.
Sun, X., Dong, C., Levin, B., Crocco, E., Loewenstein, D., Zetterberg, H., … Alzheimer’s Disease Neuroimaging Initiative. (2016). APOE ε4 carriers may undergo synaptic damage conferring risk of Alzheimer’s disease. Alzheimer's & Dementia, 12, 1159–1166.
Sweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2018). Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews. Neurology, 14, 133–150.
Tarawneh, R., D’Angelo, G., Crimmins, D., Herries, E., Griest, T., Fagan, A. M., … Holtzman, D. M. (2016). Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurology, 73, 561–571. https://doi.org/10.1001/jamaneurol.2016.0086
Thomsen, M. S., Andersen, M. V., Christoffersen, P. R., Jensen, M. D., Lichota, J., & Moos, T. (2015). Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiology of Diseases, 81, 108–118.
Thorsell, A., Bjerke, M., Gobom, J., Brunhage, E., Vanmechelen, E., Andreasen, N., … Blennow, K. (2010). Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Research, 1362, 13–22. https://doi.org/10.1016/j.brainres.2010.09.073
Thumser, A. E., Moore, J. B., & Plant, N. J. (2014). Fatty acid binding proteins: Tissue-specific functions in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 17, 124–129.
Trombetta, B. A., Carlyle, B. C., Koenig, A. M., Shaw, L. M., Trojanowski, J. Q., Wolk, D. A., … Arnold, S. E. (2018). The technical reliability and biotemporal stability of cerebrospinal fluid biomarkers for profiling multiple pathophysiologies in Alzheimer’s disease. PLoS One, 13, e0193707. https://doi.org/10.1371/journal.pone.0193707
Venkataramani, V., Doeppner, T. R., Willkommen, D., Cahill, C. M., Xin, Y., Ye, G., … Rogers, J. T. (2018). Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin. Journal of Neurochemistry, 147, 831–848. https://doi.org/10.1111/jnc.14580
Wang, L., & Alzheimer’s Disease Neuroimaging Initiative. (2019). Association of cerebrospinal fluid Neurogranin with Alzheimer’s disease. Aging Clinical and Experimental Research, 31, 185–191.
Wang, P., Wu, Q., Wu, W., Li, H., Guo, Y., Yu, P., … Chang, Y.-Z. (2017). Mitochondrial ferritin deletion exacerbates β-amyloid-induced neurotoxicity in mice. Oxidative Medicine and Cellular Longevity, 2017, 1020357.
Wellington, H., Paterson, R. W., Portelius, E., Törnqvist, U., Magdalinou, N., Fox, N. C., … Zetterberg, H. (2016). Increased CSF neurogranin concentration is specific to Alzheimer disease. Neurology, 86, 829–835. https://doi.org/10.1212/WNL.0000000000002423
Wellington, H., Paterson, R. W., Suárez-González, A., Poole, T., Frost, C., Sjöbom, U., Slattery, C. F. et al (2018). CSF neurogranin or tau distinguish typical and atypical Alzheimer disease. Ann. Clin. Transl. Neurol., 5, 162–171.
Xu, H., Wang, Y., Song, N., Wang, J., Jiang, H., & Xie, J. (2017). New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson’s disease. Frontiers in Molecular Neuroscience, 10, 455.
Zheng, Y., Gao, L., Wang, D., & Zang, D. (2017). Elevated levels of ferritin in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Acta Neurologica Scandinavica, 136, 145–150.