[en] Increasing evidence suggests that both synaptic loss and neuroinflammation constitute early pathologic hallmarks of Alzheimer's disease. A downstream event during inflammatory activation of microglia and astrocytes is the induction of nitric oxide synthase type 2, resulting in an increased release of nitric oxide and the post-translational S-nitrosylation of protein cysteine residues. Both early events, inflammation and synaptic dysfunction, could be connected if this excess nitrosylation occurs on synaptic proteins. In the long term, such changes could provide new insight into patho-mechanisms as well as biomarker candidates from the early stages of disease progression. This study investigated S-nitrosylation in synaptosomal proteins isolated from APP/PS1 model mice in comparison to wild type and NOS2-/- mice, as well as human control, mild cognitive impairment and Alzheimer's disease brain tissues. Proteomics data were obtained using an established protocol utilizing an isobaric mass tag method, followed by nanocapillary high performance liquid chromatography tandem mass spectrometry. Statistical analysis identified the S-nitrosylation sites most likely derived from an increase in nitric oxide (NO) in dependence of presence of AD pathology, age and the key enzyme NOS2. The resulting list of candidate proteins is discussed considering function, previous findings in the context of neurodegeneration, and the potential for further validation studies.
Disciplines :
Neurology
Author, co-author :
Wijasa, Teodora Stella; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Sylvester, Marc ; Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
Brocke-Ahmadinejad, Nahal; Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
Schwartz, Stephanie; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Santarelli, Francesco; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Gieselmann, Volkmar; Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
Klockgether, Thomas; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurology, University of Bonn, Bonn, Germany
Brosseron, Frederic; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
HENEKA, Michael ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Quantitative proteomics of synaptosome S-nitrosylation in Alzheimer's disease.
This work was supported in the frame of the BIOMARKAPD (01ED1203B) project within the EU Joint Programs for Neurodegenerative Diseases Research (JPND), the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2011-278850 (INMiND) and the EU-IMI program n° 115568 (AETIONOMY). Michael T. Heneka is a member of the Cluster of Excellence “Immunosensation”. The Banner Sun Health Research Institute Brain and Body Donation Program is supported by the National Institute of Neurological Disorders and Stroke, U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders; National Institute on Aging, P30 AG19610 Arizona Alzheimer’s Disease Core Center; Arizona Department of Health Services, Arizona Alzheimer’s Consortium; Arizona Biomedical Research Commission, Arizona Parkinson's Disease Consortium; Michael J. Fox Foundation for Parkinson’s Research. Thanks to Dr. Elizabeth Campbell and Dr. Roisin McManus for proofreading the article. MTH holds editorship at the Journal of Neurochemistry. All experiments were conducted in compliance with the ARRIVE guidelines.This work was supported in the frame of the BIOMARKAPD (01ED1203B) project within the EU Joint Programs for Neurodegenerative Diseases Research (JPND), the European Union's Seventh Framework Programme (FP7/2007‐2013) under grant agreement n° HEALTH‐F2‐2011‐278850 (INMiND) and the EU‐IMI program n° 115568 (AETIONOMY). Michael T. Heneka is a member of the Cluster of Excellence “Immunosensation”. The Banner Sun Health Research Institute Brain and Body Donation Program is supported by the National Institute of Neurological Disorders and Stroke, U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders; National Institute on Aging, P30 AG19610 Arizona Alzheimer’s Disease Core Center; Arizona Department of Health Services, Arizona Alzheimer’s Consortium; Arizona Biomedical Research Commission, Arizona Parkinson's Disease Consortium; Michael J. Fox Foundation for Parkinson’s Research. Thanks to Dr. Elizabeth Campbell and Dr. Roisin McManus for proofreading the article. MTH holds editorship at the Journal of Neurochemistry.
Agostinho P., Cunha R. A. and Oliveira C. (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’ s disease. Curr. Pharm. Des. 16, 2766–2778.
Ahmad S. (1995) Oxidative stress from environmental pollutants. Arch Insect Biochem Physiol. 29, 135–157.
Akila Parvathy Dharshini S., Taguchi Y. -H. and Michael Gromiha M. (2019) Exploring the selective vulnerability in Alzheimer disease using tissue specific variant analysis. Genomics 111, 936–949.
Akiyama H., Tooyama I., Kawamata T., Ikeda K. and McGeer P. L. (1993) Morphological diversities of CD44 positive astrocytes in the cerebral cortex of normal subjects and patients with Alzheimer’s disease. Brain Res. 632, 249–259.
Al-Gubory K. H. (2014) Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online 29, 17–31.
Amal H., Gong G., Gjoneska E., Lewis S. M., Wishnok J. S., Tsai L.-H. and Tannenbaum S. R. (2019) S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl. Psychiatry 9, 1–12.
Angel T. E., Jacobs J. M., Smith R. P., et al. (2012) Cerebrospinal fluid proteome of patients with acute Lyme disease. J. Proteome Res. 11, 4814–4822.
Asaki C., Usuda N., Nakazawa A., Kametani K. and Suzuki T. (2003) Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res. 972, 168–176.
Bai Z., Stamova B., Xu H., et al. (2014) Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis. Assoc. Disord. 28, 226–233.
Bateman A., Martin M. J., O’Donovan C., et al. (2015) UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D212.
Beach T. G., Adler C. H., Sue L. I., et al. (2015) Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35, 354–389.
Besson F. L., La Joie R., Doeuvre L., et al. (2015) Cognitive and brain profiles associated with current neuroimaging biomarkers of preclinical Alzheimer’s disease. J. Neurosci. Off. J. Soc. Neurosci. 35, 10402–10411.
Beyer N., Coulson D. T. R., Heggarty S., Ravid R., Irvine G. B., Hellemans J. and Johnston J. A. (2009) ZnT3 mRNA levels are reduced in Alzheimer’s disease post-mortem brain. Mol. Neurodegener. 4, 53.
Blonder J. and Veenstra T. D. (2007) Computational prediction of proteotypic peptides. Expert Rev Proteomics. Expert Rev Proteomics 4, 351–354.
Boyd-Kimball D., Castegna A., Sultana R., Poon H. F., Petroze R., Lynn B. C., Klein J. B. and Butterfield D. A. (2005) Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer’s disease. Brain Res. 1044, 206–15.
Breuer K., Foroushani A. K., Laird M. R., Chen C., Sribnaia A., Lo R., Winsor G. L., Hancock R. E. W., Brinkman F. S. L. and Lynn D. J. (2013) InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucl. Acids Res. 41, 1228–1233.
Brunner C., Lassmann H., Waehneldt T. and Matthieu J. M. (1989) Differential ultrastructural localization of myelin basic pro- tein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rats. J. Neurochem. 52, 296–304.
Bubber P., Haroutunian V., Fisch G., Blass J. P. and Gibson G. E. (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann. Neurol. 57, 695–703.
Bult C. J., Eppig J. T., Kadin J. A., Richardson J. E. and Blake J. A. and the members of the Mouse Genome Database Group (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36, D724–728.
Cai H., Cong W., Ji S., Rothman S., Maudsley S. and Martin B. (2012) Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res. 9, 5–17.
Carbajosa G., Malki K., Lawless N., et al. (2018) Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain. Neurobiol. Aging 69, 151–166.
Chang R. Y. K., Nouwens A. S., Dodd P. R. and Etheridge N. (2013) The synaptic proteome in Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 9, 499–511.
Chen Y.-J., Ku W.-C., Lin P.-Y., Chou H.-C., Khoo K.-H. and Chen Y.-J. (2010) S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome. J. Proteome Res. 9, 6417–6439.
Chen X., Guan T., Li C., Shang H., Cui L., Li X.-M. and Kong J. (2012) SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI). J. Neuroinflammation 9, 237–237.
Cole T. B., Wenzel H. J., Kafer K. E., Schwartzkroin P. A. and Palmiter R. D. (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl Acad. Sci. USA 96, 1716–1721.
Colton C. A., Wilcock D. M., Wink D. A., Davis J., Van W. E. and Vitek M. P. (2008) The Effects of NOS2 gene deletion on mice expressing mutated human AβPP. J. Alzheimer Dis. 15, 571–587.
D’Aniello A., Fisher G., Migliaccio N., Cammisa G., D’Aniello E. and Spinelli P. (2005) Amino acids and transaminases activity in ventricular CSF and in brain of normal and Alzheimer patients. Neurosci. Lett. 388, 49–53.
Davies C. A. A., Mann D. M. A. M., Sumpter P. Q. Q. and Yates P. O. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78, 151–164.
DeKosky S. T. and Scheff W. (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitve severity. Ann. Neurol. 27, 457–464.
Deng Y., Yao L., Chau L., et al. (2003) N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int. J. Cancer 106, 342–347.
Ditzen C., Tang N., Jastorff A. M., et al. (2012) Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology 37, 1013–1025.
Doulias P.-T., Greene J. L., Greco T. M., Tenopoulou M., Seeholzer S. H., Dunbrack R. L. and Ischiropoulos H. (2010) Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl Acad. Sci. USA 107, 16958–16963.
Dudoit S., Laan M. J. and van der Laan Mark J. (2004) Multiple testing. Part I. Single-step procedures for control of general type I error rates. Stat. Appl. Genet. Mol. Biol. 3, 1–69.
Duits F. H., Brinkmalm G., Teunissen C. E., Brinkmalm A., Scheltens P., Van der Flier W. M., Zetterberg H. and Blennow K. (2018) Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 10, 5.
Eden E., Navon R., Steinfeld I., Lipson D. and Yakhini Z. (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.
Faraco G., Wijasa T. S., Park L., Moore J., Anrather J. and Iadecola C. (2014) Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 34, 1–9.
Fiandaca M. S., Mapstone M. E., Cheema A. K. and Federoff H. J. (2014) The critical need for defining preclinical biomarkers in Alzheimer ’ s disease. Alzheimers Dement. 10, S196–S212.
Forrest M. S., Lan Q., Hubbard A. E., et al. (2005) Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113, 801–807.
Forrester M. T., Thompson J. W., Foster M. W., Nogueira L., Moseley M. A. and Stamler J. S. (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 27, 557–559.
Förstermann U. and Sessa W. C. (2012) Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837.
Garcia-Esparcia P., Sideris-Lampretsas G., Hernandez-Ortega K., Grau-Rivera O., Sklaviadis T., Gelpi E. and Ferrer I. (2017) Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model. Am. J. Neurodegener. Dis. 6, 15–25.
Ghosh A. and Giese K. P. (2015) Calcium/calmodulin-dependent kinase II and Alzheimer’s disease. Mol. Brain 8, 78.
Guebel D. V. and Torres N. V. (2016) Sexual dimorphism and aging in the human hyppocampus: identification, validation, and impact of differentially expressed genes by factorial microarray and network analysis. Front. Aging Neurosci. 8, 229.
Hammerschmidt T., Kummer M. P., Terwel D., et al. (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol. Psychiatry 73, 454–63.
Heise C., Gardoni F., Culotta L., Luca M., di Verpelli C.andSala C. (2014) Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Front. Cell Neurosci. 8., 1–8.
Heneka M. T. and Feinstein D. L. (2001) Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol. 114, 8–18.
Heneka M. T., Carson M. J., Khoury J. E., et al. (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.
Hong G.-S., Heun R., Jessen F., Popp J., Hentschel F., Kelemen P., Schulz A., Maier W. and Kölsch H. (2009) Gene variations in GSTM3 are a risk factor for Alzheimer’s disease. Neurobiol Aging 30, 691–696.
Iizuka A., Sengoku K., Iketani M., Nakamura F., Sato Y., Matsushita M., Nairn A. C., Takamatsu K., Goshima Y. and Takei K. (2007) Calcium-induced synergistic inhibition of a translational factor eEF2 in nerve growth cones. Biochem. Biophys. Res. Commun. 353, 244–250.
Kaddurah-Daouk R., Zhu H., Sharma S., et al. (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry. 3, e244.
Kim S. H., Vlkolinsky R., Cairns N., Fountoulakis M. and Lubec G. (2001) The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer’s disease. Life Sci. 68, 2741–2750.
Kohr M. J., Aponte A. M., Sun J., Wang G., Murphy E., Gucek M. and Steenbergen C. (2011) Characterization of potential S-nitrosylation sites in the myocardium. Am. J. Physiol. Heart Circ. Physiol. 300, H1327–1335.
Kohr M. J., Aponte A., Sun J., Gucek M., Steenbergen C. and Murphy E. (2012) Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ. Res. 111, 1308–1312.
Kummer M. P., Hermes M., Delekarte A., et al. (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71, 833–44.
Kurita H., Okuda R., Yokoo K., Inden M. and Hozumi I. (2016) Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation. Biochem Biophys Res Commun. 479, 853–859.
Kuster B., Schirle M., Mallick P. and Aebersold R. (2005) Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol. 6, 577–583.
Lee S. M. Y., Tsui S. K. W., Chan K. K., Garcia-Barcelo M., Waye M. M. Y., Fung K. P., Liew C. C. and Lee C. Y. (1998) Chromosomal mapping, tissue distribution and cDNA sequence of Four-and-a-half LIM domain protein 1 (FHL1). Gene 216, 163–170.
Lee S. M., Li H. Y., Ng E. K., et al. (1999) Characterization of a brain-specific nuclear LIM domain protein (FHL1B) which is an alternatively spliced variant of FHL1. Gene 237, 253–263.
Lee J.-Y., Cho E., Seo J.-W., Hwang J. J. and Koh J.-Y. (2012a) Article navigation alteration of the cerebral zinc pool in a mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 71, 211–222.
Lee T. Y., Chen Y. J., Lu C. T., Ching W. C., Teng Y. C., Huang H. and Da Chen Y. J. (2012b) dbSNO: A database of cysteine S-nitrosylation. Bioinformatics 28, 2293–2295.
Li X., Alafuzoff I., Soininen H., Winblad B. and Pei J.-J. (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J. 272, 4211–4220.
Lisman J., Schulman H. and Cline H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190.
Mak T. and Saunders M. (2006) The Immune Response - 1st ed.
Mallick P., Schirle M., Chen S. S., et al. (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol 25, 125–131.
Mayer R. L., Schwarzmeier J. D., Gerner M. C., et al. (2018) Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol. Cell. Proteomics MCP 17, 290–303.
Meier M., Tokarz J., Haller F., Mindnich R. and Adamski J. (2009) Human and zebrafish hydroxysteroid dehydrogenase like 1 (HSDL1) proteins are inactive enzymes but conserved among species. Chem. Biol. Interact. 178, 197–205.
Meraz-Ríos M. A., Toral-Rios D., Franco-Bocanegra D., Villeda-Hernández J. and Campos-Peña V. (2013) Inflammatory process in Alzheimer’s Disease. Front. Integr. Neurosci. 7, 59–59.
Mitchelmore C., Büchmann-Møller S., Rask L., West M. J., Troncoso J. C. and Jensen N. A. (2004) NDRG2: a novel Alzheimer’s disease associated protein. Neurobiol Dis. 16, 48–58.
Mukherjee S. N., Sykacek P., Roberts S. J. and Gurr S. J. (2003) Gene ranking using bootstrapped p-values. Sigkdd Explor. 5, 14–14.
Nakamura T., and Lipton S. A. (2016) Protein s-nitrosylation as a therapeutic target for neurodegenerative diseases. Sci Trends Pharmacol 37, 73–84.
Nakamura T., Tu S., Akhtar M. W., Sunico C. R., Okamoto S.-I., and Lipton S. (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78, 596–614.
Nichols N. R., Agolley D., Zieba M. and Bye N. (2005) Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res. Brain Res. Rev. 48, 287–301.
Nilsson T., Mann M., Aebersold R., Iii J. R. Y., Bairoch A. and Bergeron J. J. M. (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat. Publ. Group 7, 681–685.
Paige J. S., Xu G., Stancevic B. and Jaffrey S. R. (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem. Biol. 15, 1307–1316.
Papuć E., Kurys-Denis E., Krupski W., Tatara M. and Rejdak K. (2015) Can antibodies against glial derived antigens be early biomarkers of hippocampal demyelination and memory loss in Alzheimer’s disease? Journal of Alzheimer’s Disease 48, 115–121.
Polisetty R. V., Gautam P., Sharma R., et al. (2012) LC-MS/MS analysis of differentially expressed glioblastoma membrane proteome reveals altered calcium signaling and other protein groups of regulatory functions. Mol. Cell. Prot. 11,1–15.
du Prel J.-B., Hommel G., Röhrig B. and Blettner M. (2009) Confidence interval or p-value?: part 4 of a series on evaluation of scientific publications. Dtsch. Arzteblatt Int. 106, 335–339.
Rong X.-F., Sun Y.-N., Liu D.-M., Yin H.-J., Peng Y., Xu S.-F., Wang L. and Wang X.-L. (2017) The pathological roles of NDRG2 in Alzheimer’s disease, a study using animal models and APPwt-overexpressed cells. CNS Nerusci Ther 23, 667–679.
Rose A. J., Kiens B. and Richter E. A. (2006) Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J. Physiol. 574, 889–903.
Roszkowska M., Skupien A., Wójtowicz T., et al. (2016) CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Mol. Biol. Cell 27, 4055–4066.
Sabatelli P., Castagnaro S., Tagliavini F., et al. (2014) Aggresome-autophagy involvement in a sarcopenic patient with rigid Spine syndrome and a p. C150R mutation in FHL1 gene. Front. Aging Neurosci. 6, 215.
Scheving R. (2013) S-nitrosylation in Neuropathic pain and Autophagy.
Schmitt F. A., Nelson P. T., Abner E., et al. (2012) University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures, and neuropathology. Curr. Alzheimer Res. 9, 724–733.
Schwammle V., Leon I. R. and Jensen O. N. (2013) Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates. J. Proteome Res. 12, 3874–3883.
Scott H., Pow D. V., Tannenberg A. E. G. and Dodd P. R. (2002) Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J. Neurosci 22, RC206.
Seneviratne U., Nott A., Bhat V. B., Ravindra K. C., Wishnok J. S., Tsai L.-H. and Tannenbaum S. R. (2016) S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc. Natl Acad. Sci. USA 113, 4152–4157.
Sethi M. K. and Zaia J. (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer’s disease. Anal. Bioanal. Chem. 409, 379–394.
Shi Q. and Gibson G. E. (2011) Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J. Neurochem. 118, 440–448.
Shi Z.-Q., Sunico C. R., McKercher S. R., Cui J., Feng G.-S., Nakamura T. and Lipton S. A. (2013) S-nitrosylated SHP-2 contributes to NMDA receptor- mediated excitotoxicity in acute ischemic stroke Zhong-Qing. Proc. Natl Acad. Sci. USA 110, 3137–3142.
Søgaard A., Johannsen A., Plank B., Hovy D. and Martinez H. (2014) What’s in a -value in NLP? In Proc. of CoNLL.
Sperling R. A., Aisen P. S., Beckett L. A., et al. (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292.
Sutton M. A., Taylor A. M., Ito H. T., Pham A. and Schuman E. M. (2007) Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661.
Swomley A. M., Förster S., Keeney J. T., Triplett J., Zhang Z., Sultana R. and Butterfield D. A. (2014) Abeta, oxidative stress in Alzheimer disease: Evidence based on proteomics studies. Biochim. Biophys. Acta 1842, 1248–1257.
Tchaikovskaya T., Fraifeld V., Urphanishvili T., Andorfer J. H., Davies P. and Listowsky I. (2005) Glutathione S-transferase hGSTM3 and ageing- associated neurodegeneration: relationship to Alzheimer’s disease. Mech. Mech Ageing Dev. 126, 309–315.
Terry R. D., Masliah E., Salmon D. P., Butters N., Deteresa R., Hill R., Hansen L. A. and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer ’ s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 30, 572–580.
Thomas P. D., Campbell M. J., Kejariwal A., Mi H., Karlak B., Daverman R., Diemer K., Muruganujan A. and Narechania A. (2003) PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141.
Tomiyama T., Matsuyama S., Iso H., et al. (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. Off. J. Soc. Neurosci. 30, 4845–4856.
Tonnies E. and Trushina E. (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimer’s Dis. 57, 1105–1121.
Trushina E., Dutta T., Persson X.-M. T., Mielke M. M. and Petersen Ronald C. (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS ONE 8, e63644.
Wang X., Anderson G. A., Smith R. D. and Dabney A. R. (2012) A hybrid approach to protein differential expression in mass spectrometry-based proteomics. Bioinformatics 28, 1586–1591.
Watanabe Y., Hirao Y., Kasuga K., Tokutake T., Semizu Y., Kitamura K., Ikeuchi T., Nakamura K. and Yamamoto T. (2019) Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord. Extra 9, 53–65.
Wijasa T. S., Sylvester M., Brocke-Ahmadinejad N., Kummer M. P., Brosseron F., Gieselmann V. and Heneka M. T. (2017) Proteome profiling of s-nitrosylated synaptosomal proteins by isobaric mass tags. J. Neurosci. Methods 291, 95–100.
Wolfe M. S. (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 8, 136–140.
Yao P. J., Zhu M., Pyun E. I., Brooks A. I., Therianos S., Meyers V. E. and Coleman P. D. (2003) Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol. Dis. 12, 97–109.
Zareba-Koziol M., Szwajda A., Dadlez M., Wyslouch-Cieszynska A. and Lalowski M. (2014) Global analysis of S-nitrosylation sites in the wild type (APP) transgenic mouse brain-clues for synaptic pathology. Mol. Cell Proteomics 13, 2288–2305.
Zhang L., Guo X. Q., Chu J. F., Zhang X., Yan Z. R. and Li Y. Z. (2015) Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis. Genet. Mol. Res. 14, 7218–7232.
Zhang W., Sun J., Cao H., Tian R., Cai L., Ding W. and Qian P.-Y. (2016) Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. Microbiome 4, 49.
Zhang Q., Ma C., Gearing M., Wang P. G., Chin L.-S. and Li L. (2018) Integrated proteomics and network analysis identifies protein hubs and network alterations in Alzheimer’s disease. Acta Neuropathol. Commun. 6, 19.