[en] Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1β (IL-1β), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1β. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1β signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1β activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1β expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1β activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1β and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1β via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.
Disciplines :
Neurology
Author, co-author :
Jiang, Shanya; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Maphis, Nicole M; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Binder, Jessica; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Chisholm, Devon; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Weston, Lea; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Duran, Walter; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Peterson, Crina; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
Zimmerman, Amber; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
Mandell, Michael A; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
Jett, Stephen D; Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
Bigio, Eileen; Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
Geula, Changiz; Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
Mellios, Nikolaos; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
Weick, Jason P; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
Rosenberg, Gary A; Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87131, USA
Latz, Eicke; Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany, Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
HENEKA, Michael ; Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany, Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA, Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn 53127, Germany
Bhaskar, Kiran; Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA, Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address: kbhaskar@salud.unm.edu
We thank Dr. Vishwa Dixit (Genentech) and Dr. Vojo Deretic (UNM) for providing ASC −/− mice and various reagents, respectively. We thank Drs. Xiaoxia Li and Zizhen Kang (Cleveland Clinic) for providing CD11bCre/MyD88 flox mice. We thank Dr. Amir Yazdi (University of Lausanne) for providing ASC flox mice. We are thankful to Dr. Michael Paffett at the UNM Cancer Center Fluorescence Microscopy facility and CTSC T1 lab for help with confocal imaging and RNA quantification, respectively. We thank Dr. Paulus Mrass for his assistance in processing live image files. We thank Dr. Bryce Chackerian, Ms. Julianne Peabody, Mr. Jeff Thompson, and Ms. Sasha Hobson for assistance with tau immunization experiments and analyzing tau levels in the CSF samples. The graphical abstract was created with https://www.biorender.com . This study was supported by the NIH ( RF1NS083704-05A1 , R01NS083704 , and R21NS077089 ; R21NS093442 to K.B.; and R01NS116051 to J.P.W.), AIM CoBRE Center ( P20GM121176-04 ), the University of New Mexico (UNM) Health Sciences Center Bridge Funding , UNM Department of Molecular Genetics and Microbiology intradepartmental grant funding, Dr. Stephanie Ruby travel award (to N.M. and J.B.), and a T32 training grant (to L.W.). This study was also supported in part by Alzheimer’s Disease Core Center ( P30AG013854 ) from the National Institute on Aging (NIA) to Northwestern University and New Mexico Alzheimer’s Disease Research Center ( P20AG068077-01 ) from NIA to G.A.R. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.We thank Dr. Vishwa Dixit (Genentech) and Dr. Vojo Deretic (UNM) for providing ASC−/− mice and various reagents, respectively. We thank Drs. Xiaoxia Li and Zizhen Kang (Cleveland Clinic) for providing CD11bCre/MyD88 flox mice. We thank Dr. Amir Yazdi (University of Lausanne) for providing ASC flox mice. We are thankful to Dr. Michael Paffett at the UNM Cancer Center Fluorescence Microscopy facility and CTSC T1 lab for help with confocal imaging and RNA quantification, respectively. We thank Dr. Paulus Mrass for his assistance in processing live image files. We thank Dr. Bryce Chackerian, Ms. Julianne Peabody, Mr. Jeff Thompson, and Ms. Sasha Hobson for assistance with tau immunization experiments and analyzing tau levels in the CSF samples. The graphical abstract was created with https://www.biorender.com. This study was supported by the NIH (RF1NS083704-05A1, R01NS083704, and R21NS077089; R21NS093442 to K.B.; and R01NS116051 to J.P.W.), AIM CoBRE Center (P20GM121176-04), the University of New Mexico (UNM) Health Sciences Center Bridge Funding, UNM Department of Molecular Genetics and Microbiology intradepartmental grant funding, Dr. Stephanie Ruby travel award (to N.M. and J.B.), and a T32 training grant (to L.W.). This study was also supported in part by Alzheimer's Disease Core Center (P30AG013854) from the National Institute on Aging (NIA) to Northwestern University and New Mexico Alzheimer's Disease Research Center (P20AG068077-01) from NIA to G.A.R. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. K.B. and S.J designed experiments. S.J performed majority of the experiments. J.P.W. E.L. and M.T.H. helped with conceptual planning and assisted with manuscript preparation. S.J. C.P. A.Z. and N.M. performed RNA-seq analysis and assisted with interpretations. S.J. L.W. N.M.M. and D.C. generated the mice and performed various biochemical analysis. J.B. performed exosome experiments. W.D. assisted in cell-culture experiments with S.J. and J.B. S.D.J. performed immune electron microscopy. E.B. and C.G. provided human autopsy brain samples. G.A.R. provided CSF. E.B. C.G. and G.A.R. assisted with manuscript preparation. M.A.M. performed NF-κB in vitro experiments. K.B. wrote the manuscript. The authors declare no competing interests.
Ahmed, M.E., Iyer, S., Thangavel, R., Kempuraj, D., Selvakumar, G.P., Raikwar, S.P., Zaheer, S., Zaheer, A., Co-Localization of Glia Maturation Factor with NLRP3 Inflammasome and Autophagosome Markers in Human Alzheimer's Disease Brain. J. Alzheimers Dis. 60 (2017), 1143–1160.
Akbarshahi, H., Axelsson, J.B., Said, K., Malmström, A., Fischer, H., Andersson, R., TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated. J. Transl. Med., 9, 2011, 219.
Andorfer, C., Kress, Y., Espinoza, M., de Silva, R., Tucker, K.L., Barde, Y.A., Duff, K., Davies, P., Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. 86 (2003), 582–590.
Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., Wolozin, B., Butovsky, O., Kügler, S., Ikezu, T., Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18 (2015), 1584–1593.
Ashton, N.J., Pascoal, T.A., Karikari, T.K., Benedet, A.L., Lantero-Rodriguez, J., Brinkmalm, G., Snellman, A., Schöll, M., Troakes, C., Hye, A., et al. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathol. 141 (2021), 709–724.
Barron, A.M., Ji, B., Fujinaga, M., Zhang, M.R., Suhara, T., Sahara, N., Aoki, I., Tsukada, H., Higuchi, M., In vivo positron emission tomography imaging of mitochondrial abnormalities in a mouse model of tauopathy. Neurobiol. Aging 94 (2020), 140–148.
Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, X., Blazey, T.M., et al., Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367 (2012), 795–804.
Bellingham, S.A., Guo, B.B., Coleman, B.M., Hill, A.F., Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?. Front. Physiol., 3, 2012, 124.
Bellucci, A., Bugiani, O., Ghetti, B., Spillantini, M.G., Presence of Reactive Microglia and Neuroinflammatory Mediators in a Case of Frontotemporal Dementia with P301S Mutation. Neurodegener. Dis. 8 (2011), 221–229.
Bergmann, C.C., Yao, Q., Stohlman, S.A., Microglia exhibit clonal variability in eliciting cytotoxic T lymphocyte responses independent of class I expression. Cell. Immunol. 198 (1999), 44–53.
Beum, P.V., Lindorfer, M.A., Hall, B.E., George, T.C., Frost, K., Morrissey, P.J., Taylor, R.P., Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J. Immunol. Methods 317 (2006), 90–99.
Bhaskar, K., Yen, S.H., Lee, G., Disease-related modifications in tau affect the interaction between Fyn and Tau. J. Biol. Chem. 280 (2005), 35119–35125.
Bhaskar, K., Konerth, M., Kokiko-Cochran, O.N., Cardona, A., Ransohoff, R.M., Lamb, B.T., Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68 (2010), 19–31.
Caplan, I.F., Maguire-Zeiss, K.A., Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front. Pharmacol., 9, 2018, 417.
Chakraborty, S., Kaushik, D.K., Gupta, M., Basu, A., Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res. 88 (2010), 1615–1631.
Chauhan, S., Ahmed, Z., Bradfute, S.B., Arko-Mensah, J., Mandell, M.A., Won Choi, S., Kimura, T., Blanchet, F., Waller, A., Mudd, M.H., et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat. Commun., 6, 2015, 8620.
Costello, D.A., Carney, D.G., Lynch, M.A., α-TLR2 antibody attenuates the Aβ-mediated inflammatory response in microglia through enhanced expression of SIGIRR. Brain Behav. Immun. 46 (2015), 70–79.
Couturier, J., Stancu, I.C., Schakman, O., Pierrot, N., Huaux, F., Kienlen-Campard, P., Dewachter, I., Octave, J.N., Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J. Neuroinflammation, 13, 2016, 20.
Dawson, H.N., Ferreira, A., Eyster, M.V., Ghoshal, N., Binder, L.I., Vitek, M.P., Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci. 114 (2001), 1179–1187.
Drexler, S.K., Bonsignore, L., Masin, M., Tardivel, A., Jackstadt, R., Hermeking, H., Schneider, P., Gross, O., Tschopp, J., Yazdi, A.S., Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc. Natl. Acad. Sci. USA 109 (2012), 18384–18389.
Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Hutton, M., Adamson, J., Goedert, M., et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7 (2000), 87–98.
Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D., Deretic, V., Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30 (2011), 4701–4711.
Eidenmüller, J., Fath, T., Hellwig, A., Reed, J., Sontag, E., Brandt, R., Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry 39 (2000), 13166–13175.
Falcon, B., Zhang, W., Murzin, A.G., Murshudov, G., Garringer, H.J., Vidal, R., Crowther, R.A., Ghetti, B., Scheres, S.H.W., Goedert, M., Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561 (2018), 137–140.
Gambuzza, M.E., Sofo, V., Salmeri, F.M., Soraci, L., Marino, S., Bramanti, P., Toll-like receptors in Alzheimer's disease: a therapeutic perspective. CNS Neurol. Disord. Drug Targets 13 (2014), 1542–1558.
Gerhard, A., Watts, J., Trender-Gerhard, I., Turkheimer, F., Banati, R.B., Bhatia, K., Brooks, D.J., In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov. Disord. 19 (2004), 1221–1226.
Gerhard, A., Trender-Gerhard, I., Turkheimer, F., Quinn, N.P., Bhatia, K.P., Brooks, D.J., In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov. Disord. 21 (2006), 89–93.
Greenberg, S.G., Davies, P., A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. USA 87 (1990), 5827–5831.
Greenberg, S.G., Davies, P., Schein, J.D., Binder, L.I., Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J. Biol. Chem. 267 (1992), 564–569.
Griffioen, K., Mattson, M.P., Okun, E., Deficiency of Toll-like receptors 2, 3 or 4 extends life expectancy in Huntington's disease mice. Heliyon, 4, 2018, e00508.
Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.C., et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493 (2013), 674–678.
Henn, A., Lund, S., Hedtjärn, M., Schrattenholz, A., Pörzgen, P., Leist, M., The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2009), 83–94.
Holmes, B.B., DeVos, S.L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M.O., Brodsky, F.M., Marasa, J., Bagchi, D.P., et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA 110 (2013), E3138–E3147.
Ishizawa, K., Dickson, D.W., Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J. Neuropathol. Exp. Neurol. 60 (2001), 647–657.
Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S.V., Vieira-Saecker, A., Schwartz, S., Albasset, S., McManus, R.M., Tejera, D., et al. NLRP3 inflammasome activation drives tau pathology. Nature 575 (2019), 669–673.
Kang, S.G., Kim, C., Cortez, L.M., Carmen Garza, M., Yang, J., Wille, H., Sim, V.L., Westaway, D., McKenzie, D., Aiken, J., Toll-like receptor-mediated immune response inhibits prion propagation. Glia 64 (2016), 937–951.
Kfoury, N., Holmes, B.B., Jiang, H., Holtzman, D.M., Diamond, M.I., Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287 (2012), 19440–19451.
Kovac, A., Zilka, N., Kazmerova, Z., Cente, M., Zilkova, M., Novak, M., Misfolded truncated protein τ induces innate immune response via MAPK pathway. J. Immunol. 187 (2011), 2732–2739.
Krämer, A., Green, J., Pollard, J. Jr., Tugendreich, S., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30 (2014), 523–530.
Ksiezak-Reding, H., Morgan, K., Mattiace, L.A., Davies, P., Liu, W.K., Yen, S.H., Weidenheim, K., Dickson, D.W., Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am. J. Pathol. 145 (1994), 1496–1508.
Lamkanfi, M., Dixit, V.M., The inflammasomes. PLoS Pathog., 5, 2009, e1000510.
Langmead, B., Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics, Chapter 11, 2010, Unit 11.17.
Laurent, C., Buée, L., Blum, D., Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies?. Biomed. J. 41 (2018), 21–33.
Lee, G., Newman, S.T., Gard, D.L., Band, H., Panchamoorthy, G., Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci. 111 (1998), 3167–3177.
Leugers, C.J., Lee, G., Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding. J. Biol. Chem. 285 (2010), 19125–19134.
Li, B., Dewey, C.N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 2011, 323.
Maphis, N., Xu, G., Kokiko-Cochran, O.N., Cardona, A.E., Ransohoff, R.M., Lamb, B.T., Bhaskar, K., Loss of tau rescues inflammation-mediated neurodegeneration. Front. Neurosci., 9, 2015, 196.
Maphis, N., Xu, G., Kokiko-Cochran, O.N., Jiang, S., Cardona, A., Ransohoff, R.M., Lamb, B.T., Bhaskar, K., Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138 (2015), 1738–1755.
Maphis, N.M., Jiang, S., Binder, J., Wright, C., Gopalan, B., Lamb, B.T., Bhaskar, K., Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front. Mol. Neurosci., 10, 2017, 69.
Maphis, N.M., Peabody, J., Crossey, E., Jiang, S., Jamaleddin Ahmad, F.A., Alvarez, M., Mansoor, S.K., Yaney, A., Yang, Y., Sillerud, L.O., et al. Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. NPJ Vaccines, 4, 2019, 26.
Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., Dixit, V.M., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430 (2004), 213–218.
Meng, X.F., Wang, X.L., Tian, X.J., Yang, Z.H., Chu, G.P., Zhang, J., Li, M., Shi, J., Zhang, C., Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose. Mol. Neurobiol. 49 (2014), 673–684.
Mocanu, M.M., Nissen, A., Eckermann, K., Khlistunova, I., Biernat, J., Drexler, D., Petrova, O., Schönig, K., Bujard, H., Mandelkow, E., et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J. Neurosci. 28 (2008), 737–748.
Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11 (1984), 47–60.
Nelson, P.T., Alafuzoff, I., Bigio, E.H., Bouras, C., Braak, H., Cairns, N.J., Castellani, R.J., Crain, B.J., Davies, P., Del Tredici, K., et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71 (2012), 362–381.
Nilson, A.N., English, K.C., Gerson, J.E., Barton Whittle, T., Nicolas Crain, C., Xue, J., Sengupta, U., Castillo-Carranza, D.L., Zhang, W., Gupta, P., Kayed, R., Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. J. Alzheimers Dis. 55 (2017), 1083–1099.
Papadopoulos, C., Kirchner, P., Bug, M., Grum, D., Koerver, L., Schulze, N., Poehler, R., Dressler, A., Fengler, S., Arhzaouy, K., et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. 36 (2017), 135–150.
Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, N.C., Hall, G.F., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287 (2012), 3842–3849.
Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309 (2005), 476–481.
Saura, J., Tusell, J.M., Serratosa, J., High-yield isolation of murine microglia by mild trypsinization. Glia 44 (2003), 183–189.
Sayed, F.A., Telpoukhovskaia, M., Kodama, L., Li, Y., Zhou, Y., Le, D., Hauduc, A., Ludwig, C., Gao, F., Clelland, C., et al. Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc. Natl. Acad. Sci. USA 115 (2018), 10172–10177.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (2012), 676–682.
Schöll, M., Lockhart, S.N., Schonhaut, D.R., O'Neil, J.P., Janabi, M., Ossenkoppele, R., Baker, S.L., Vogel, J.W., Faria, J., Schwimmer, H.D., et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 89 (2016), 971–982.
Selenica, M.L., Davtyan, H., Housley, S.B., Blair, L.J., Gillies, A., Nordhues, B.A., Zhang, B., Liu, J., Gestwicki, J.E., Lee, D.C., et al. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J. Neuroinflammation, 11, 2014, 152.
Shammas, S.L., Garcia, G.A., Kumar, S., Kjaergaard, M., Horrocks, M.H., Shivji, N., Mandelkow, E., Knowles, T.P., Mandelkow, E., Klenerman, D., A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun., 6, 2015, 7025.
Sharma, V.M., Litersky, J.M., Bhaskar, K., Lee, G., Tau impacts on growth-factor-stimulated actin remodeling. J. Cell Sci. 120 (2007), 748–757.
Smith, R., Puschmann, A., Schöll, M., Ohlsson, T., van Swieten, J., Honer, M., Englund, E., Hansson, O., 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 139 (2016), 2372–2379.
Stancu, I.C., Cremers, N., Vanrusselt, H., Couturier, J., Vanoosthuyse, A., Kessels, S., Lodder, C., Brône, B., Huaux, F., Octave, J.N., et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 137 (2019), 599–617.
Stutz, A., Horvath, G.L., Monks, B.G., Latz, E., ASC speck formation as a readout for inflammasome activation. Methods Mol. Biol. 1040 (2013), 91–101.
Thery, C., Amigorena, S., Raposo, G., Clayton, A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol., Chapter 3, 2006, Unit 3.22.
Venegas, C., Kumar, S., Franklin, B.S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M.P., et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature 552 (2017), 355–361.
Vorhees, C.V., Williams, M.T., Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1 (2006), 848–858.
Warner, N., Núñez, G., MyD88: a critical adaptor protein in innate immunity signal transduction. J. Immunol. 190 (2013), 3–4.
Wes, P.D., Easton, A., Corradi, J., Barten, D.M., Devidze, N., DeCarr, L.B., Truong, A., He, A., Barrezueta, N.X., Polson, C., et al. Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer's disease. PLoS ONE, 9, 2014, e106050.
Wu, J.W., Herman, M., Liu, L., Simoes, S., Acker, C.M., Figueroa, H., Steinberg, J.I., Margittai, M., Kayed, R., Zurzolo, C., et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288 (2013), 1856–1870.
Xu, S., Zhou, Q., Fan, C., Zhao, H., Wang, Y., Qiu, X., Yang, K., Ji, Q., Doxycycline inhibits NAcht Leucine-rich repeat Protein 3 inflammasome activation and interleukin-1β production induced by Porphyromonas gingivalis-lipopolysaccharide and adenosine triphosphate in human gingival fibroblasts. Arch. Oral Biol., 107, 2019, 104514.
Yona, S., Kim, K.W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., Guilliams, M., Misharin, A., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38 (2013), 79–91.
Yu, M., Zhou, H., Zhao, J., Xiao, N., Roychowdhury, S., Schmitt, D., Hu, B., Ransohoff, R.M., Harding, C.V., Hise, A.G., et al. MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J. Exp. Med. 211 (2014), 887–907.
Zilka, N., Stozicka, Z., Kovac, A., Pilipcinec, E., Bugos, O., Novak, M., Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J. Neuroimmunol. 209 (2009), 16–25.
Zilka, N., Kazmerova, Z., Jadhav, S., Neradil, P., Madari, A., Obetkova, D., Bugos, O., Novak, M., Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J. Neuroinflammation, 9, 2012, 47.