[en] [en] INTRODUCTION: Several lifestyle factors promote protection against Alzheimer's disease (AD) throughout a person's lifespan. Although such protective effects have been described for occupational cognitive requirements (OCR) in midlife, it is currently unknown whether they are conveyed by brain maintenance (BM), brain reserve (BR), or cognitive reserve (CR) or a combination of them.
METHODS: We systematically derived hypotheses for these resilience concepts and tested them in the population-based AgeCoDe cohort and memory clinic-based AD high-risk DELCODE study. The OCR score (OCRS) was measured using job activities based on the O*NET occupational classification system. Four sets of analyses were conducted: (1) the interaction of OCR and APOE-ε4 with regard to cognitive decline (N = 2,369, AgeCoDe), (2) association with differentially shaped retrospective trajectories before the onset of dementia of the Alzheimer's type (DAT; N = 474, AgeCoDe), (3) cross-sectional interaction of the OCR and cerebrospinal fluid (CSF) AD biomarkers and brain structural measures regarding memory function (N = 873, DELCODE), and (4) cross-sectional and longitudinal association of OCR with CSF AD biomarkers and brain structural measures (N = 873, DELCODE).
RESULTS: Regarding (1), higher OCRS was associated with a reduced association of APOE-ε4 with cognitive decline (mean follow-up = 6.03 years), consistent with CR and BR. Regarding (2), high OCRS was associated with a later onset but subsequently stronger cognitive decline in individuals converting to DAT, consistent with CR. Regarding (3), higher OCRS was associated with a weaker association of the CSF Aβ42/40 ratio and hippocampal volume with memory function, consistent with CR. Regarding (4), OCR was not associated with the levels or changes in CSF AD biomarkers (mean follow-up = 2.61 years). We found a cross-sectional, age-independent association of OCRS with some MRI markers, but no association with 1-year-change. OCR was not associated with the intracranial volume. These results are not completely consistent with those of BR or BM.
DISCUSSION: Our results support the link between OCR and CR. Promoting and seeking complex and stimulating work conditions in midlife could therefore contribute to increased resistance to pathologies in old age and might complement prevention measures aimed at reducing pathology.
Disciplines :
Neurology
Author, co-author :
Kleineidam, Luca; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Wolfsgruber, Steffen; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Weyrauch, Anne-Sophie; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Zulka, Linn E; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; Department of Psychology and Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
Forstmeier, Simon; Developmental Psychology and Clinical Psychology of the Lifespan, University of Siegen, Siegen, Germany
Roeske, Sandra; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
van den Bussche, Hendrik; Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Kaduszkiewicz, Hanna; Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ; Medical Faculty, Institute of General Practice, University of Kiel, Kiel, Germany
Wiese, Birgitt; Center for Information Management, Hannover Medical School, Hanover, Germany
Weyerer, Siegfried; Medical Faculty, Central Institute of Mental Health, Mannheim/Heidelberg University, Heidelberg, Germany
Werle, Jochen; Medical Faculty, Central Institute of Mental Health, Mannheim/Heidelberg University, Heidelberg, Germany
Fuchs, Angela; Medical Faculty, Centre for Health and Society (CHS), Institute of General Practice (ifam), Heinrich Heine University, Düsseldorf, Germany
Pentzek, Michael; Medical Faculty, Centre for Health and Society (CHS), Institute of General Practice (ifam), Heinrich Heine University, Düsseldorf, Germany
Brettschneider, Christian; Department of Health Economics and Health Services Research, Hamburg Center for Health Economics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
König, Hans-Helmut; Department of Health Economics and Health Services Research, Hamburg Center for Health Economics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Weeg, Dagmar; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
Bickel, Horst; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
Luppa, Melanie; Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
Rodriguez, Francisca S; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
Freiesleben, Silka Dawn; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany ; Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
Erdogan, Selin; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany ; Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
Unterfeld, Chantal; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
Peters, Oliver; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry, Campus Berlin-Buch, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany ; Memory Clinic and Dementia Prevention Center, Experimental and Clinical Research Center (ECRC), Berlin, Germany
Spruth, Eike J; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
Altenstein, Slawek; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
Lohse, Andrea; Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
Priller, Josef; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany ; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany ; University of Edinburgh and UK DRI, Edinburgh, United Kingdom
Fliessbach, Klaus; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Kobeleva, Xenia; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Schneider, Anja; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Bartels, Claudia; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
Schott, Björn H; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ; Leibniz Institute for Neurobiology, Magdeburg, Germany
Wiltfang, Jens; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ; Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
Maier, Franziska; Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
Glanz, Wenzel; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
Incesoy, Enise I; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
Butryn, Michaela; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
Düzel, Emrah; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
Buerger, Katharina; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Janowitz, Daniel; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Ewers, Michael; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Rauchmann, Boris-Stephan; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
Perneczky, Robert; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom ; Sheeld Institute for Translational Neuroscience (SITraN), University of Sheeld, Sheeld, United Kingdom
Kilimann, Ingo; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
Görß, Doreen; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
Teipel, Stefan; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
Laske, Christoph; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
Munk, Matthias H J; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ; Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
Spottke, Annika; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurology, University of Bonn, Bonn, Germany
Roy, Nina; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Brosseron, Frederic; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Ramirez, Alfredo; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany ; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany ; Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States
Yakupov, Renat; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
Scherer, Martin; Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Maier, Wolfgang; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Jessen, Frank; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
Riedel-Heller, Steffi G; Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
Wagner, Michael; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
This study was part of the German Research Network on Dementia (KND), the German Research Network on Degenerative Dementia (KNDD; German Study on Aging, Cognition, and Dementia in Primary Care Patients; AgeCoDe), and the Health Service Research Initiative [Study on Needs, health service use, costs, and health-related quality of life in a large sample of oldest-old primary care patients (85+; AgeQualiDe)] and was funded by the German Federal Ministry of Education and Research (grants KND: 01GI0102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, and 01GI0434; grants KNDD: 01GI0710, 01GI0711, 01GI0712, 01GI0713, 01GI0714, 01GI0715, and 01GI0716; grants Health Service Research Initiative: 01GY1322A, 01GY1322B, 01GY1322C, 01GY1322D, 01GY1322E, 01GY1322F, and 01GY1322G).
Amieva H. Mokri H. Le Goff M. Meillon C. Jacqmin-Gadda H. Foubert-Samier A. et al. (2014). Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline. Brain 137, 1167–1175. 10.1093/brain/awu03524578544
Andel R. Finkel D. Pedersen N. L. (2016). Effects of preretirement work complexity and postretirement leisure activity on cognitive aging. J. Gerontol. Ser. B 71, 849–856. 10.1093/geronb/gbv02625975289
Andel R. Silverstein M. Kåreholt I. (2015). The role of midlife occupational complexity and leisure activity in late-life cognition. J. Gerontol. Ser. B 70, 314–321. 10.1093/geronb/gbu11025190210
Arenaza-Urquijo E. M. Wirth M. Chételat G. (2015). Cognitive reserve and lifestyle: moving towards preclinical Alzheimer's disease. Front. Aging Neurosci. 7, 134. 10.3389/fnagi.2015.0013426321944
Azarpazhooh M. R. Avan A. Cipriano L. E. Munoz D. G. Erfanian M. Amiri A. et al. (2020). A third of community-dwelling elderly with intermediate and high level of Alzheimer's neuropathologic changes are not demented: a meta-analysis. Ageing Res. Rev. 58, 101002. 10.1016/j.arr.2019.10100231899366
Bates D. Mächler M. Bolker B. Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. 10.18637/jss.v067.i01
Boots E. A. Schultz S. A. Almeida R. P. Oh J. M. Koscik R. L. Dowling M. N. et al. (2015). Occupational complexity and cognitive reserve in a middle-aged cohort at risk for Alzheimer's disease. Arch. Clin. Neuropsychol. 30, 634–642. 10.1093/arclin/acv04126156334
Braak H. Thal D. R. Ghebremedhin E. Del Tredici K. (2011). Stages of the pathologic process in alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969. 10.1097/NEN.0b013e318232a37922002422
Brayne C. Ince P. G. Keage H. A. D. McKeith I. G. Matthews F. E. Polvikoski T. et al. (2010). Education, the brain and dementia: neuroprotection or compensation? EClipSE collaborative members. Brain 133, 2210–2216. 10.1093/brain/awq18520826429
Butler M. McCreedy E. Nelson V. A. Desai P. Ratner E. Fink H. A. et al. (2018). Does cognitive training prevent cognitive decline? A systematic review. Ann. Intern. Med. 168, 63–68. 10.7326/M17-153129255842
Cabeza R. Albert M. Belleville S. Craik F. Duarte A. Grady C. et al. (2018). Cognitive neuroscience of healthy aging: maintenance, reserve, and compensation. Nat. Rev. Neurosci. 19, 701. 10.1038/s41583-018-0068-230305711
Celidoni M. Dal Bianco C. Weber G. (2017). Retirement and cognitive decline. A longitudinal analysis using SHARE data. J. Health Econ. 56, 113–125. 10.1016/j.jhealeco.2017.09.00329040897
Chételat G. (2018). Multimodal neuroimaging in Alzheimer's disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. J. Alzheimers Dis. 64, S199–S211. 10.3233/JAD-17992029504542
Collaboratory on Research Definitions for Reserve Resilience in Cognitive Aging Dementia (2022). Framework for Terms Used in Research of Reserve and Resilience. Collaboratory on Research Definitions for Reserve and Resilience in Cognitive Aging and Dementia. Available online at: https://reserveandresilience.com/framework/ (accessed March 23, 2022).
Deweer B. Lehericy S. Pillon B. Baulac M. Chiras J. Marsault C. et al. (1995). Memory disorders in probable Alzheimer's disease: the role of hippocampal atrophy as shown with MRI. J. Neurol. Neurosurg. Psychiatry 58, 590–597. 10.1136/jnnp.58.5.5907745409
Dufouil C. Alpérovitch A. Tzourio C. (2003). Influence of education on the relationship between white matter lesions and cognition. Neurology 60, 831–836. 10.1212/01.WNL.0000049456.33231.9612629242
Ewers M. (2020). Reserve in Alzheimer's disease: update on the concept, functional mechanisms and sex differences. Curr. Opin. Psychiatry 33, 178–184. 10.1097/YCO.000000000000057431789678
Fischl B. Salat D. H. Busa E. Albert M. Dieterich M. Haselgrove C. et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/S0896-6273(02)00569-X11832223
Fischl B. Van Der Kouwe A. Destrieux C. Halgren E. Ségonne F. Salat D. H. et al. (2004). Automatically parcellating the human cerebral cortex. Cereb. cortex 14, 11–22. 10.1093/cercor/bhg08714654453
Fjell A. M. McEvoy L. Holland D. Dale A. M. Walhovd K. B. Initiative A. D. N. (2013). Brain changes in older adults at very low risk for Alzheimer's disease. J. Neurosci. 33, 8237–8242. 10.1523/JNEUROSCI.5506-12.201323658162
Folstein M. F. Robins L. N. Helzer J. E. (1983). The mini-mental state examination. Arch. Gen. Psychiatry 40, 812. 10.1001/archpsyc.1983.017900601100166860082
Forstmeier S. Maercker A. Maier W. Van Den Bussche H. Riedel-Heller S. Kaduszkiewicz H. et al. (2012). Motivational reserve: motivation-related occupational abilities and risk of mild cognitive impairment and Alzheimer disease. Psychol. Aging 27, 353–363. 10.1037/a002511721875213
Fujishiro K. MacDonald L. A. Crowe M. McClure L. A. Howard V. J. Wadley V. G. (2019). The role of occupation in explaining cognitive functioning in later life: education and occupational complexity in a U.S. national sample of black and white men and women. J. Gerontol. Ser. B 74, 1189–1199. 10.1093/geronb/gbx11228958077
Garibotto V. Borroni B. Kalbe E. Herholz K. Salmon E. Holtoff V. et al. (2008). Education and occupation as proxies for reserve in aMCI converters and AD. Neurology 71, 1342–1349. 10.1212/01.wnl.0000327670.62378.c018936426
Genin E. Hannequin D. Wallon D. Sleegers K. Hiltunen M. Combarros O. et al. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907. 10.1038/mp.2011.5221556001
Grober E. Ocepek-Welikson K. Teresi J. A. (2009). The free and cued selective reminding test: evidence of psychometric adequacy. Psychol. Sci. Q. 51, 266–282.
Habeck C. Eich T. S. Gu Y. Stern Y. (2019). Occupational patterns of structural brain health: independent contributions beyond education, gender, intelligence, and age. Front. Hum. Neurosci. 13, 449. 10.3389/fnhum.2019.0044932174818
Hall C. B. Derby C. LeValley A. Katz M. J. Verghese J. Lipton R. B. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology 69, 1657–1664. 10.1212/01.wnl.0000278163.82636.3017954781
Hall C. B. Lipton R. B. Sliwinski M. Katz M. J. Derby C. A. Verghese J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology 73, 356–361. 10.1212/WNL.0b013e3181b04ae319652139
Iglesias J. E. Augustinack J. C. Nguyen K. Player C. M. Player A. Wright M. et al. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137. 10.1016/j.neuroimage.2015.04.04225936807
Jessen F. Spottke A. Boecker H. Brosseron F. Buerger K. Catak C. et al. (2018). Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer's disease (DELCODE). Alzheimers Res. Ther. 10, 15. 10.1186/s13195-017-0314-229415768
Jessen F. Wiese B. Bachmann C. Eifflaender-Gorfer S. Haller F. Kölsch H. et al. (2010). Prediction of dementia by subjective memory impairment effects of severity and temporal association with cognitive impairment. Arch. Gen. Psychiatry 67, 414–422. 10.1001/archgenpsychiatry.2010.3020368517
Joannette M. Bocti C. Dupont P. S. Lavallée M. M. Nikelski J. Vallet G. T. et al. (2020). Education as a moderator of the relationship between episodic memory and amyloid load in normal aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 75, 1820. 10.1093/gerona/glz23531639181
Kalmijn S. Feskens E. J. M. Launer L. J. Kromhout D. (1997). Longitudinal study of the effect of apolipoprotein e4 allele on the association between education and cognitive decline in elderly men. BMJ 314, 34. 10.1136/bmj.314.7073.349001477
Karr J. E. Graham R. B. Hofer S. M. Muniz-Terrera G. (2018). When does cognitive decline begin? A systematic review of change point studies on accelerated decline in cognitive and neurological outcomes preceding mild cognitive impairment, dementia, and death. Psychol Aging. 33, 195–218. 10.1037/pag000023629658744
Katzman R. Terry R. DeTeresa R. Brown T. Davies P. Fuld P. et al. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23, 138–144. 10.1002/ana.4102302062897823
Kaup A. R. Xia F. Launer L. J. Sidney S. Nasrallah I. Erus G. et al. (2018). Occupational cognitive complexity in earlier adulthood is associated with brain structure and cognitive health in midlife: the CARDIA study. Neuropsychology 32, 895–905. 10.1037/neu000047429985017
Koller M. Stahel W. A. (2017). Nonsingular subsampling for regression S estimators with categorical predictors. Comput. Stat. 32, 631–646. 10.1007/s00180-016-0679-x
Kröger E. Andel R. Lindsay J. Benounissa Z. Verreault R. Laurin D. (2008). Is complexity of work associated with risk of dementia? The Canadian study of health and aging. Am. J. Epidemiol. 167, 820–830. 10.1093/aje/kwm38218263600
Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. et al. (2020). Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 396, 413–446. 10.1016/S0140-6736(20)30367-632738937
Luck T. Riedel-Heller S. G. Kaduszkiewicz H. Bickel H. Jessen F. Pentzek M. et al. (2007). Mild cognitive impairment in general practice: age-specific prevalence and correlate results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). Dement. Geriatr. Cogn. Disord. 24, 307–16. 10.1159/00010809917848793
Maechler M. Rousseeuw P. Croux C. Todorov V. Ruckstuhl A. Salibian-Barrera M. et al. (2018). Robustbase: Basic Robust Statistics R Package Version 0.93-3. Computer Software Manual. Retrieved from http//robustbase.r-forge.r-project.org
Malek-Ahmadi M. Lu S. Chan Y. Perez S. E. Chen K. Mufson E. J. (2017). Static and dynamic cognitive reserve proxy measures: interactions with alzheimer's disease neuropathology and cognition. J. Alzheimers Dis. Park. 7, 390. 10.4172/2161-0460.100039029423338
McKhann G. Drachman D. Folstein M. Katzman R. Price D. Stadlan E. M. (1984). Clinical diagnosis of alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer's disease. Neurology 34, 939–944. 10.1212/WNL.34.7.9396610841
Meng X. D'Arcy C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS ONE 7, e38268. 10.1371/journal.pone.003826822675535
Mohs R. C. Knopman D. Petersen R. C. Ferris S. H. Ernesto C. Grundman M. et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer's disease assessment scale that broaden its scope. Alzheimer Dis. Assoc. Disord. 11(Suppl2), S13–S21. 10.1097/00002093-199700112-000039236948
Myung W. Lee C. Park J. H. Woo S. Kim S. Kim S. et al. (2017). Occupational attainment as risk factor for progression from mild cognitive impairment to Alzheimer's disease: a CREDOS study. J. Alzheimers Dis. 55, 283–292. 10.3233/JAD-16025727662289
Nyberg L. Lövdén M. Riklund K. Lindenberger U. Bäckman L. (2012). Memory aging and brain maintenance. Trends Cogn. Sci. 16, 292–305. 10.1016/j.tics.2012.04.00522542563
Petermann F Lepach AC. (2012). Wechsler Memory Scale-Fourth Edition (WMS-IV). Manual zur Durchführung und Auswertung. Deutsche Übersetzung und Adaptation der WMS-IV von David Wechsler: Pearson Assessment, Frankfurt/Main.
Philipps V. Amieva H. Andrieu S. Dufouil C. Berr C. Dartigues J.-F. et al. (2014). Normalized mini-mental state examination for assessing cognitive change in population-based brain aging studies. Neuroepidemiology 43, 15–25. 10.1159/00036563725248074
Polcher A. Frommann I. Koppara A. Wolfsgruber S. Jessen F. Wagner M. (2017). Face-name associative recognition deficits in subjective cognitive decline and mild cognitive impairment. J. Alzheimers Dis. 56, 1185–1196. 10.3233/JAD-16063728106560
Pool L. R. Weuve J. Wilson R. S. Bültmann U. Evans D. A. De Leon C. F. M. (2016). Occupational cognitive requirements and late-life cognitive aging. Neurology 86, 1386–1392. 10.1212/WNL.000000000000256926984944
Proust-Lima C. Dartigues J.-F. Jacqmin-Gadda H. (2011). Misuse of the linear mixed model when evaluating risk factors of cognitive decline. Am. J. Epidemiol. 174, 1077–1088. 10.1093/aje/kwr24321965187
Proust-Lima C. Philipps V. Liquet B. (2017). Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J. Stat. Softw. 78, 1–56. 10.18637/jss.v078.i02
Reisberg B. Ferris S. H. De Leon M. J. Crook T. (1982). The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139, 1136–1139. 10.1176/ajp.139.9.11367114305
Reuter M. Schmansky N. J. Rosas H. D. Fischl B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418. 10.1016/j.neuroimage.2012.02.08422430496
Rodriguez F. S. Huhn S. Vega W. A. Aranda M. P. Schroeter M. L. Engel C. et al. (2021a). Do high mental demands at work protect cognitive health in old age via hippocampal volume? Results from a community sample. Front. Aging Neurosci. 12, 622321. 10.3389/fnagi.2020.62232133536897
Rodriguez F. S. Roehr S. Pabst A. Kleineidam L. Fuchs A. Wiese B. et al. (2021b). Effects of APOE e4-allele and mental work demands on cognitive decline in old age: results from the German study on ageing, cognition, and dementia in primary care patients (AgeCoDe). Int. J. Geriatr. Psychiatry 36, 152–162. 10.1002/gps.540932819031
Rosen W. G. Terry R. D. Fuld P. A. Katzman R. Peck A. (1980). Pathological verification of ischemic score in differentiation of dementias. Ann. Neurol. 7, 486–488. 10.1002/ana.4100705167396427
Seeman T. E. Huang M.-H. Bretsky P. Crimmins E. Launer L. Guralnik J. M. (2005). Education and APOE-e4 in longitudinal cognitive decline: MacArthur studies of successful aging. J. Gerontol. Ser. B 60, P74–P83. 10.1093/geronb/60.2.P7415746021
Shadlen M.-F. Larson E. B. Wang L. Phelan E. A. McCormick W. C. Jolley L. et al. (2005). Education modifies the effect of apolipoprotein epsilon 4 on cognitive decline. Neurobiol. Aging 26, 17–24. 10.1016/j.neurobiolaging.2004.03.00515585342
Smart E. L. Gow A. J. Deary I. J. (2014). Occupational complexity and lifetime cognitive abilities. Neurology 83, 2285–2291. 10.1212/WNL.000000000000107525901062
Smith A. (1982). Symbol digit modalities test (SDMT) manual (revised). Los Angeles, CA.
Soldan A. Pettigrew C. Albert M. (2020). Cognitive reserve from the perspective of preclinical Alzheimer disease: 2020 update. Clin. Geriatr. Med. 36, 247. 10.1016/j.cger.2019.11.00632222300
Steffener J. Barulli D. Habeck C. O'Shea D. Razlighi Q. Stern Y. (2014). The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PLoS ONE 9, e91196. 10.1371/journal.pone.009119624625888
Stern Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 11, 1006–1012. 10.1016/S1474-4422(12)70191-626173482
Stern Y. Alexander G. E. Prohovnik I. Stricks L. Link B. Lennon M. C. et al. (1995). Relationship between lifetime occupation and parietal flow. Neurology 45, 55–60. 10.1212/WNL.45.1.557824135
Stern Y. Arenaza-Urquijo E. M. Bartrés-Faz D. Belleville S. Cantilon M. Chetelat G. et al. (2020). Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 16, 1305–1311. 10.1016/j.jalz.2018.07.21930222945
Suo C. León I. Brodaty H. Trollor J. Wen W. Sachdev P. et al. (2012). Supervisory experience at work is linked to low rate of hippocampal atrophy in late life. Neuroimage 63, 1542–1551. 10.1016/j.neuroimage.2012.08.01522902920
Thalmann B. Monsch A. U. Schneitter M. Bernasconi F. Aebi C. Camachova-Davet Z. et al. (2000). The CERAD neuropsychological assessment battery (CERAD-NAB)—a minimal data set as a common tool for German-speaking Europe. Neurobiol. Aging 21:30. 10.1016/S0197-4580(00)82810-9
Then F. S. Luck T. Heser K. Ernst A. Posselt T. Wiese B. et al. (2017). Which types of mental work demands may be associated with reduced risk of dementia? Alzheimers Dement. 13, 431–440. 10.1016/j.jalz.2016.08.00827693184
Udeh-Momoh C. T. Su B. Evans S. Zheng B. Sindi S. Tzoulaki I. et al. (2019). Cortisol, amyloid-β, and reserve predicts Alzheimer's disease progression for cognitively normal older adults. J. Alzheimers Dis. 70, 553–562. 10.3233/JAD-18103031256117
Van Gerven P. W. M. Van Boxtel M. P. J. Ausems E. E. B. Bekers O. Jolles J. (2012). Do apolipoprotein E genotype and educational attainment predict the rate of cognitive decline in normal aging? A 12-year follow-up of the maastricht aging study. Neuropsychology 26, 459. 10.1037/a002868522642392
Vemuri P. Weigand S. D. Przybelski S. A. Knopman D. S. Smith G. E. Trojanowski J. Q. et al. (2011). Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition. Brain 134, 1479–1492. 10.1093/brain/awr04921478184
Vuoksimaa E. Panizzon M. S. Chen C. H. Eyler L. T. Fennema-Notestine C. Fiecas M. J. A. et al. (2013). Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia 51, 1124–1131. 10.1016/j.neuropsychologia.2013.02.02223499725
Wilson R. S. Yang J. Yu L. Leurgans S. E. Capuano A. W. Schneider J. A. et al. (2019a). Postmortem neurodegenerative markers and trajectories of decline in cognitive systems. Neurology 92, e831–e840. 10.1212/WNL.000000000000694930674595
Wilson R. S. Yu L. Lamar M. Schneider J. A. Boyle P. A. Bennett D. A. (2019b). Education and cognitive reserve in old age. Neurology 92, e1041–e1050. 10.1212/WNL.000000000000703635134847
Wolf D. Fischer F. U. Fellgiebel A. (2019). Impact of resilience on the association between amyloid-β and longitudinal cognitive decline in cognitively healthy older adults. J. Alzheimers Dis. 70, 361–370. 10.3233/JAD-19037031256140
Wolfsgruber S. Kleineidam L. Guski J. Polcher A. Frommann I. Roeske S. et al. (2020). Minor neuropsychological deficits in patients with subjective cognitive decline. Neurology 95, e1134–e1143. 10.1212/WNL.000000000001014232636322
Wood S. N. (2003). Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114. 10.1111/1467-9868.00374
Wood S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686. 10.1198/016214504000000980
Wood S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036. 10.1111/j.1541-0420.2006.00574.x17156276
Wood S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36. 10.1111/j.1467-9868.2010.00749.x
Zahodne L. B. Mayeda E. R. Hohman T. J. Fletcher E. Racine A. M. Gavett B. et al. (2019). The role of education in a vascular pathway to episodic memory: brain maintenance or cognitive reserve? Neurobiol. Aging 84, 109–118. 10.1016/j.neurobiolaging.2019.08.00931539647
Zaudig M. Mittelhammer J. Hiller W. Pauls A. Thora C. Morinigo A. et al. (1991). SIDAM—a structured interview for the diagnosis of dementia of the Alzheimer type, multi-infarct dementia and dementias of other aetiology according to ICD-10 and DSM-III-R. Psychol. Med. 21, 225–236. 10.1017/S00332917000148112047500