Alzheimer’s disease; entorhinal cortex; magnetic resonance imaging; mild cognitive impairment; Aged; Aged, 80 and over; Atrophy/diagnostic imaging; Atrophy/psychology; Cognitive Dysfunction/diagnostic imaging; Cognitive Dysfunction/psychology; Disease Progression; Entorhinal Cortex/diagnostic imaging; Female; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Neuropsychological Tests; Prognosis; Retrospective Studies; Atrophy; Cognitive Dysfunction; Neuroscience (all); Clinical Psychology; Geriatrics and Gerontology; Psychiatry and Mental Health; General Medicine; General Neuroscience
Abstract :
[en] [en] BACKGROUND: Structural magnetic resonance imaging (MRI) is routinely performed in patients with mild cognitive impairment (MCI), but diagnostic accuracy to detect early cerebral atrophy is limited.
OBJECTIVE: To validate the visual entorhinal cortex atrophy (ERICA) rating scale regarding diagnosis, biomarker status, neuropsychological profile, and dementia risk in MCI.
METHODS: The ERICA score was retrospectively assessed regarding its discrimination of MCI (n = 80) from subjective cognitive decline and Alzheimer's disease (AD) dementia (n = 60, respectively), its prediction of conversion to dementia (median follow-up 28 months) and amyloid/tau biomarker status, and its association with neuropsychological tests.
RESULTS: The ERICA score achieved 97% positive predictive value (PPV) for the presence of MCI. Discrimination between MCI and AD dementia (area under the curve: 0.71) was comparable to volumetry, and superior to the medial temporal lobe atrophy (MTA) score (p = 0.006). The PPV of the ERICA score for conversion to dementia was 83%, equivalent to tau status. It achieved 90% PPV for conversion when combined with tau, and 100% negative predictive value with verbal recall. While no measure predicted the predominantly positive amyloid status, the ERICA score was at least comparable to volumetry, and superior to the MTA score in predicting tau positivity (92% PPV for phospho-tau). The ERICA score was associated with verbal learning and memory, and, unlike the MTA score, also with AD-specific deficits in cued verbal recall.
CONCLUSION: The ERICA score is a simple and valuable tool to exploit structural MRI for diagnosis and prognosis in MCI and is non-inferior to volumetry.
Disciplines :
Neurology
Author, co-author :
Traschütz, Andreas; Department of Neurology, University Hospital of Bonn, Bonn, Germany ; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
Enkirch, S Jonas; Department of Radiology, University Hospital of Bonn, Bonn, Germany
Polomac, Nenad; Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
Widmann, Catherine N; Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University Hospital of Bonn, Bonn, Germany
Schild, Hans H; Department of Radiology, University Hospital of Bonn, Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University Hospital of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Hattingen, Elke; Department of Radiology, University Hospital of Bonn, Bonn, Germany ; Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
External co-authors :
yes
Language :
English
Title :
The Entorhinal Cortex Atrophy Score Is Diagnostic and Prognostic in Mild Cognitive Impairment.
A.T. was supported by the Else Kröner Research Foundation, and receives funding from the University of Tübingen, medical faculty, for the Clinician Scientist Program Grant #439–0–0.
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, PhelpsCH (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7, 270-279.
Roberts R, Knopman DS (2013) Classification and epidemiology of MCI. Clin Geriatr Med 29, 753-772.
Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, Bullock R, Walker Z, Kennedy A, Fox NC, Rossor MN, Rinne JO, Brooks DJ (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology 73, 754-760.
Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosen E, Aarsland D, Visser PJ, Schroder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttila T, Wallin A, Jonhagen ME, Minthon L, Winblad B, BlennowK (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302, 385-393.
Jack CR Jr, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith GE, Ivnik RJ, Tangalos EG, Petersen RC (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65, 1227-1231.
Kloppel S, Peter J, Ludl A, Pilatus A, Maier S, Mader I, Heimbach B, Frings L, Egger K, Dukart J, Schroeter ML, Perneczky R, Haussermann P, VachW, Urbach H, Teipel S, Hull M, Abdulkadir A, Alzheimer's Disease Neuroimaging Initiative (2015) Applying automated MR-based diagnostic methods to the memory clinic: A prospective study. J Alzheimers Dis 47, 939-954.
Harper L, Fumagalli GG, Barkhof F, Scheltens P, O'Brien JT, Bouwman F, Burton EJ, Rohrer JD, Fox NC, Ridgway GR, Schott JM (2016) MRI visual rating scales in the diagnosis of dementia: Evaluation in 184 post-mortem confirmed cases. Brain 139, 1211-1225.
Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, Kuiper M, Steinling M, Wolters EC, Valk J (1992) Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55, 967-972.
Claus JJ, Staekenborg SS, Holl DC, Roorda JJ, Schuur J, Koster P, Tielkes CEM, Scheltens P (2017) Practical use of visual medial temporal lobe atrophy cut-off scores in Alzheimer's disease: Validation in a large memory clinic population. Eur Radiol 27, 3147-3155.
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239-259.
Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala EL, Vainio P, Vanninen R, Partanen K, Soininen H (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25, 303-310.
Jessen F, Feyen L, Freymann K, Tepest R, Maier W, Heun R, Schild HH, Scheef L (2006) Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiol Aging 27, 1751-1756.
Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49, 202-213.
Enkirch SJ, Traschütz A, Muller A, Widmann CN, Gielen GH, Heneka MT, Jurcoane A, Schild HH, Hattingen E (2018) The ERICA Score: An MR imaging-based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease. Radiology 288, 226-333.
Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex 15, 1676-1689.
Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T, Pihlajamaki M, Laakso MP, Hallikainen M, Hamalainen A, Vanhanen M, Helkala EL, Vanninen R, Nissinen A, Rossi R, Frisoni GB, Soininen H (2008) MRI of hippocampus and entorhinal cortex in mild cognitive impairment: A follow-up study. Neurobiol Aging 29, 31-38.
Stoub TR, Bulgakova M, Leurgans S, Bennett DA, Fleischman D, Turner DA, deToledo-Morrell L (2005) MRI predictors of risk of incident Alzheimer disease: A longitudinal study. Neurology 64, 1520-1524.
Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256, 183-194.
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7, 263-269.
Thalmann B, Monsch A, Bernasconi F, Berres M, Schneitter M, Ermini-Fünfschilling D, Spiegel R, Stähelin H. CERADConsortium to Establish a Registry for Alzheimer's Disease Assessment Battery-deutsche Fassung (PSYNDEX Tests Review).
Grober E, Sanders AE, Hall C, Lipton RB (2010) Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Dis Assoc Disord 24, 284.
HuberW, Poeck K, Weniger D, WillmesK (1983) Aachener Aphasie Test (AAT): Handanweisung, Verlag für Psychologie Hogrefe
Jolles J, Houx P, Van Boxtel M, Ponds R (1995) The Maastricht Aging Study: Determinants of cognitive aging. Neuropsych Publishers, Maastricht, 192.
Rapport LJ, Millis SR, Bonello PJ (1998) Validation of the Warrington theory of visual processing and the Visual Object and Space Perception Battery. J Clin Exp Neuropsychol 20, 211-220.
Pereira JB, Cavallin L, Spulber G, Aguilar C, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Spenger C, Aarsland D, Lovestone S, Simmons A, Wahlund LO, Westman E, AddNeuroMed consortium and for the Alzheimer's Disease Neuroimaging Initiative (2014) Influence of age, disease onset and ApoE4 on visual medial temporal lobe atrophy cut-offs. J Intern Med 275, 317-330.
DeLong ER, DeLong DM, Clarke-PearsonDL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837-845.
Xu Y, Jack CR Jr, O'Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, PetersenRC (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54, 1760-1767.
Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, Jagust WJ, Miller BL, Reed BR, Mungas D, Yaffe K, Chui HC, Weiner MW (2004) Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 62, 422-427.
DeCarli C, Frisoni GB, Clark CM, Harvey D, Grundman M, Petersen RC, Thal LJ, Jin S, Jack CR Jr, Scheltens P, Alzheimer's Disease Cooperative Study Group (2007) Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 64, 108-115.
Korf ES, Wahlund LO, Visser PJ, Scheltens P (2004) Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 63, 94-100.
Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, Tanzi R, Jones K, Albert MS (2002) MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58, 1188-1196.
Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R, Stern Y, Tabert MH, de Leon MJ (2007) Hippocampal and entorhinal atrophy in mild cognitive impairment: Prediction of Alzheimer disease. Neurology 68, 828-836.
Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol 12, 207-216.
Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, Hassenstab J (2016) Tau and A imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med 8, 338ra366.
Cho H, Choi JY, Hwang MS, Lee JH, KimYJ, LeeHM, Lyoo CH, Ryu YH, LeeMS (2016) Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 87, 375-383.
Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman DM (2009) Decreased cerebrospinal fluid Abeta (42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 65, 176-183.
Rolstad S, Berg AI, Bjerke M, Blennow K, Johansson B, Zetterberg H, Wallin A (2011) Amyloid- 42 is associated with cognitive impairment in healthy elderly and subjective cognitive impairment. J Alzheimers Dis 26, 135-142.
Jefferson AL, Cosentino SA, Ball SK, Bogdanoff B, Leopold N, Kaplan E, Libon DJ (2002) Errors produced on the mini-mental state examination and neuropsychological test performance in Alzheimer's disease, ischemic vascular dementia, and Parkinson's disease. J Neuropsychiatry Clin Neurosci 14, 311-320.
Levy D, Bayley P, Squire L (2004) The anatomy of semantic knowledge: Medial vs. lateral temporal lobe. Proc Natl Acad Sci U S A 101, 6710-6715.
Sarazin M, Chauvire V, Gerardin E, Colliot O, Kinkingnehun S, de Souza LC, Hugonot-Diener L, Garnero L, Lehericy S, Chupin M, Dubois B (2010) The amnestic syndrome of hippocampal type in Alzheimer's disease: An MRI study. J Alzheimers Dis 22, 285-294.
Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ, Macdonald K, Schuff N, Fox NC, Ourselin S, Alzheimer's Disease Neuroimaging Initiative (2010) Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. Neuroimage 51, 1345-1359.
Redolfi A, Manset D, Barkhof F, Wahlund LO, Glatard T, Mangin JF, Frisoni GB, neuGRID Consortium, for the Alzheimer's Disease Neuroimaging Initiative (2015) Head-to-head comparison of two popular cortical thickness extraction algorithms: A cross-sectional and longitudinal study. PLoS One 10, e0117692.
Teipel SJ, Keller F, Thyrian JR, Strohmaier U, Altiner A, Hoffmann W, Kilimann I (2017) Hippocampus and basal forebrain volumetry for dementia and mild cognitive impairment diagnosis: Could it be useful in primary care? J Alzheimers Dis 55, 1379-1394.
Prestia A, Caroli A, Herholz K, Reiman E, Chen K, Jagust WJ, Frisoni GB, Translational Outpatient Memory ClinicWorking Group, Alzheimer's Disease Neuroimaging Initiative (2013) Diagnostic accuracy of markers for prodromal Alzheimer's disease in independent clinical series. Alzheimers Dement 9, 677-686.
Suppa P, Hampel H, Spies L, Fiebach JB, Dubois B, Buchert R, Alzheimer's Disease Neuroimaging Initiative (2015) Fully automated atlas-based hippocampus volumetry for clinical routine: Validation in subjects with mild cognitive impairment from the ADNI Cohort. J Alzheimers Dis 46, 199-209.
Heinen R, Bouvy WH, Mendrik AM, Viergever MA, Biessels GJ, de Bresser J (2016) Robustness of automated methods for brain volume measurements across different MRI field strengths. PLoS One 11, e0165719.
Guo C, Ferreira D, Fink K, Westman E, Granberg T (2019) Repeatability and reproducibility of FreeSurfer, FSL-SIENAXandSPMbrain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 29, 1355-1364.
Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, FischlB (2004)Ahybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060-1075.
Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR, Alzheimer's Disease Neuroimaging Initiative (2017) Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: Do regions outside the hippocampus matter? AJNR Am J Neuroradiol 38, 546-552.