Article (Périodiques scientifiques)
Structure of the Region-Technology Network as a Driver for Technological Innovation.
O'Neale, Dion R J; Hendy, Shaun C; VASQUES FILHO, Demival
2021In Frontiers in Big Data, 4, p. 689310
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
fdata-04-689310.pdf
Postprint Auteur (2.65 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
agglomeration advantage; bipartite netwoks; evolutionary economic geography (EEG); innovation networks; knowledge spillover; patent space; patents; technological innovation; Artificial Intelligence; Computer Science (miscellaneous); Information Systems
Résumé :
[en] Agglomeration and spillovers are key phenomena of technological innovation, driving regional economic growth. Here, we investigate these phenomena through technological outputs of over 4,000 regions spanning 42 countries, by analyzing more than 30 years of patent data (approximately 2.7 million patents) from the European Patent Office. We construct a bipartite network-based on revealed comparative advantage-linking geographic regions with areas of technology and compare its properties to those of artificial networks using a series of randomization strategies, to uncover the patterns of regional diversity and technological ubiquity. Our results show that the technological outputs of regions create nested patterns similar to those of ecological networks. These patterns suggest that regions need to dominate various technologies first (those allegedly less sophisticated), creating a diverse knowledge base, before subsequently developing less ubiquitous (and perhaps more sophisticated) technologies as a consequence of complementary knowledge that facilitates innovation. Finally, we create a map-the Patent Space Network-showing the interactions between technologies according to their regional presence. This network reveals how technology across industries co-appear to form several explicit clusters, which may aid future works on predicting technological innovation due to agglomeration and spillovers.
Disciplines :
Sciences économiques & de gestion: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
O'Neale, Dion R J;  Department of Physics, University of Auckland, Auckland, New Zealand ; Te Pūnaha Matatini-The Centre for Complex Systems and Networks, Auckland, New Zealand
Hendy, Shaun C;  Department of Physics, University of Auckland, Auckland, New Zealand ; Te Pūnaha Matatini-The Centre for Complex Systems and Networks, Auckland, New Zealand
VASQUES FILHO, Demival  ;  University of Luxembourg > Luxembourg Centre for Contemporary and Digital History (C2DH) > Digital History and Historiography
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Structure of the Region-Technology Network as a Driver for Technological Innovation.
Date de publication/diffusion :
2021
Titre du périodique :
Frontiers in Big Data
eISSN :
2624-909X
Maison d'édition :
Frontiers Media S.A., Suisse
Volume/Tome :
4
Pagination :
689310
Peer reviewed :
Peer reviewed vérifié par ORBi
Subventionnement (détails) :
The authors thank two reviewers for their constructive comments and suggestions that helped us to significantly improve the article.
Disponible sur ORBilu :
depuis le 10 avril 2024

Statistiques


Nombre de vues
84 (dont 1 Unilu)
Nombre de téléchargements
15 (dont 0 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
OpenCitations
 
2
citations OpenAlex
 
5
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu