anticancer drugs; biological networks; co-expression networks; drug sensitivity prediction; network hubs; systems biomedicine; transational bioinformatics
Abstract :
[en] Background: The topological analysis of networks extracted from different types of "omics" data is a useful strategy for characterizing biologically meaningful properties of the complex systems underlying these networks. In particular, the biological significance of highly connected genes in diverse molecular networks has been previously determined using data from several model organisms and phenotypes. Despite such insights, the predictive potential of candidate hubs in gene co-expression networks in the specific context of cancer-related drug experiments remains to be deeply investigated. The examination of such associations may offer opportunities for the accurate prediction of anticancer drug responses. Methods: Here, we address this problem by: a) analyzing a co-expression network obtained from thousands of cancer cell lines, b) detecting significant network hubs, and c) assessing their capacity to predict drug sensitivity using data from thousands of drug experiments. We investigated the prediction capability of those genes using a multiple linear regression model, independent datasets, comparisons with other models and our own in vitro experiments. Results: These analyses led to the identification of 47 hub genes, which are implicated in a diverse range of cancer-relevant processes and pathways. Overall, encouraging agreements between predicted and observed drug sensitivities were observed in public datasets, as well as in our in vitro validations for four glioblastoma cell lines and four drugs. To facilitate further research, we share our hub-based drug sensitivity prediction model as an online tool. Conclusions: Our research shows that co-expression network hubs are biologically interesting and exhibit potential for predicting drug responses in vitro. These findings motivate further investigations about the relevance and application of our unbiased discovery approach in pre-clinical, translationally-oriented research.
Disciplines :
Oncology
Author, co-author :
AZUAJE, Francisco ; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
Kaoma, Tony; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
Jeanty, Céline; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
NAZAROV, Petr ; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
Muller, Arnaud; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
Kim, Sang-Yoon; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
DITTMAR, Gunnar ; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
GOLEBIEWSKA, Anna ; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
NICLOU, Simone P. ; Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
External co-authors :
yes
Language :
English
Title :
Hub genes in a pan-cancer co-expression network show potential for predicting drug responses.
Camacho D, Vera Licona P, Mendes P, : Comparison of reverse-engineering methods using an in silico network. Ann N Y Acad Sci. 2007;1115:73–89. 17925358 10.1196/annals.1407.006
Emmert-Streib F, Glazko GV, Altay G, : Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front Genet. 2012;3:8. 22408642 10.3389/fgene.2012.00008 3271232
Chai LE, Loh SK, Low ST, : A review on the computational approaches for gene regulatory network construction. Comput Biol Med. 2014;48:55–65. 24637147 10.1016/j.compbiomed.2014.02.011
Jalili M, Salehzadeh-Yazdi A, Gupta S, : Evolution of Centrality Measurements for the Detection of Essential Proteins in Biological Networks. Front Physiol. 2016;7:375. 27616995 10.3389/fphys.2016.00375 4999434
Jeong H, Mason SP, Barabasi AL, : Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2. 11333967 10.1038/35075138
Yu H, Kim PM, Sprecher E, : The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007;3(4):e59. 17447836 10.1371/journal.pcbi.0030059 1853125
Yu H, Greenbaum D, Xin Lu H, : Genomic analysis of essentiality within protein networks. Trends Genet. 2004;20(6):227–31. 15145574 10.1016/j.tig.2004.04.008
Li Z, Ivanov AA, Su R, : The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun. 2017;8:14356. 28205554 10.1038/ncomms14356 5316855
Ahmed H, Howton TC, Sun Y, : Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun. 2018;9(1):2312. 29899369 10.1038/s41467-018-04632-8 5998135
Zotenko E, Mestre J, O'Leary DP, : Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol. 2008;4(8):e1000140. 18670624 10.1371/journal.pcbi.1000140 2467474
Yang Y, Han L, Yuan Y, : Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun. 2014;5:3231. 24488081 10.1038/ncomms4231 3951205
Barretina J, Caponigro G, Stransky N, : The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. 22460905 10.1038/nature11003 3320027
Yang W, Soares J, Greninger P, : Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955–61. 23180760 10.1093/nar/gks1111 3531057
Garnett MJ, Edelman EJ, Heidorn SJ, : Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–5. 22460902 10.1038/nature11005 3349233
Costello JC, Heiser LM, Georgii E, : A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12. 24880487 10.1038/nbt.2877 4547623
Stetson LC, Pearl T, Chen Y, : Computational identification of multi-omic correlates of anticancer therapeutic response. BMC Genomics. 2014;15 Suppl 7:S2. 25573145 10.1186/1471-2164-15-S7-S2 4243102
Reinhold WC, Sunshine M, Liu H, : CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72(14):3499–511. 22802077 10.1158/0008-5472.CAN-12-1370 3399763
Rees MG, Seashore-Ludlow B, Cheah JH, : Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12(2):109–16. 26656090 10.1038/nchembio.1986 4718762
Azuaje FJ, : Selecting biologically informative genes in co-expression networks with a centrality score. Biol Direct. 2014;9:12. 24947308 10.1186/1745-6150-9-12 4079186
Coker OO, Dai Z, Nie Y, : Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut. 2018;67(6):1024–32. 28765474 10.1136/gutjnl-2017-314281 5969346
Wang F, Li Y, Wu X, : Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs. BMC Genomics. 2017;18(1):148. 28187707 10.1186/s12864-017-3546-4 5303240
Rodius S, Androsova G, Gotz L, : Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Sci Rep. 2016;6:26822. 27241320 10.1038/srep26822 4886216
Azuaje F, Kaoma T, Jeanty C, : Hub genes in a pan-cancer co-expression network show potential for predicting drug responses. Zenodo. 2018. http://www.doi.org/10.5281/zenodo.1494802
Harrell FE, Jr Lee KL, Mark DB, : Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87. 8668867 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
Carvalho BS, Irizarry RA, : A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7. 20688976 10.1093/bioinformatics/btq431 2944196
Carlson M, : hgu219.db: Affymetrix Human Genome 219 Plate annotation data (chip hgu219). R package version 3.2.3.2016. 10.18129/B9.bioc.hgu219.db
Nazarov PV, Muller A, Kaoma T, : RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18(1):443. 28587590 10.1186/s12864-017-3819-y 5461714
Campos B, Wan F, Farhadi M, : Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 2010;16(10):2715–28. 20442299 10.1158/1078-0432.CCR-09-1800
Sanzey M, Abdul Rahim SA, Oudin A, : Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS One. 2015;10(5):e0123544. 25932951 10.1371/journal.pone.0123544 4416792
Jang IS, Neto EC, Guinney J, : Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput. 2014;63–74. 24297534 10.1142/9789814583220_0007 3995541
Dong Z, Zhang N, Li C, : Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer. 2015;15:489. 26121976 10.1186/s12885-015-1492-6 4485860
Wang B, Mezlini AM, Demir F, : Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7. 24464287 10.1038/nmeth.2810
Shannon P, Markiel A, Ozier O, : Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. 14597658 10.1101/gr.1239303 403769
Reshef DN, Reshef YA, Finucane HK, : Detecting novel associations in large data sets. Science. 2011;334(6062):1518–24. 22174245 10.1126/science.1205438 3325791
Supek F, Bošnjak M, Škunca N, : REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800. 21789182 10.1371/journal.pone.0021800 3138752
Reimand J, Kull M, Peterson H, : g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35(Web Server issue):W193–200. 17478515 10.1093/nar/gkm226 1933153
Hall M, Frank E, Holmes G, : The WEKA Data Mining Software: An Update. SIGKDD Explorations. 2009;11(1):10–18. 10.1145/1656274.1656278
Frank E, Hall MA, Witten IH, : The WEKA Workbench. Online Appendix for " Data Mining: Practical Machine Learning Tools and Techniques". Fourth Edition, ed: Morgan Kaufmann;2016. Reference Source
Cotto KC, Wagner AH, Feng YY, : DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018;46(D1):D1068–D1073. 29156001 10.1093/nar/gkx1143 5888642
Safikhani Z, Smirnov P, Freeman M, : Revisiting inconsistency in large pharmacogenomic studies [version 3; referees: 2 approved, 1 approved with reservations]. F1000Res. 2017;5:2333. 28928933 10.12688/f1000research.9611.3 5580432
Azuaje F, Kaoma T, Jeanty C, : Hub genes in a pan-cancer co-expression network show potential for predicting drug responses. Zenodo. 2018. http://www.doi.org/10.5281/zenodo.1689980
Iorio F, Knijnenburg TA, Vis DJ, : A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740–54. 27397505 10.1016/j.cell.2016.06.017 4967469
Papillon-Cavanagh S, De Jay N, Hachem N, : Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med Inform Assoc. 2013;20(4):597–602. 23355484 10.1136/amiajnl-2012-001442 3721163
Menden MP, Iorio F, Garnett M, : Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One. 2013;8(4):e61318. 23646105 10.1371/journal.pone.0061318 3640019
Gupta S, Chaudhary K, Kumar R, : Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine. Sci Rep. 2016;6:23857. 27030518 10.1038/srep23857 4814902
Azuaje F, : Computational models for predicting drug responses in cancer research. Brief Bioinform. 2017;18(5):820–9. 27444372 10.1093/bib/bbw065 5862310
Haverty PM, Lin E, Tan J, : Reproducible pharmacogenomic profiling of cancer cell line panels. Nature. 2016;533(7603):333–7. 27193678 10.1038/nature17987
Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium: Pharmacogenomic agreement between two cancer cell line data sets. Nature. 2015;528(7580):84–7. 26570998 10.1038/nature15736 6343827
Safikhani Z, Smirnov P, Thu KL, : Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun. 2017;8(1):1126. 29066719 10.1038/s41467-017-01153-8 5655668
Smirnov P, Kofia V, Maru A, : PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res. 2018;46(D1):D994–D1002. 30053271 10.1093/nar/gkx911 5753377