[en] Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.
Disciplines :
Oncology
Author, co-author :
Sharma, Abhishek Bharadwaj ; DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Erasimus, Hélène; DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg. ; Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Pinto, Lia; DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg. ; Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Caron, Marie-Christine; CHU de Québec Research Center, Oncology Division, Québec City, Canada. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada.
Gopaul, Diyavarshini; Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
Peterlini, Thibaut; CHU de Québec Research Center, Oncology Division, Québec City, Canada. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada.
Neumann, Katrin; DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
NAZAROV, Petr ; Quantitative Biology Unit, Multiomics Data Science Group, LIH, Luxembourg.
FRITAH, Sabrina ; NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg.
KLINK, Barbara ; National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg. ; Functional Tumour Genetics Group, Department of Oncology, LIH, Luxembourg.
Herold-Mende, Christel C; Department of Neurosurgery, University Clinic Heidelberg, Heidelberg, Germany.
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg. ; Department of Biomedicine, University of Bergen, Norway.
Pasero, Philippe; Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
Calsou, Patrick ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018.
Masson, Jean-Yves; CHU de Québec Research Center, Oncology Division, Québec City, Canada. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada.
Britton, Sébastien ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018.
Van Dyck, Eric ; DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Trenner,A. and Sartori,A.A. (2019) Harnessing DNA double-strand break repair for cancer treatment. Front. Oncol., 9, 1388.
Ensminger,M., Iloff,L., Ebel,C., Nikolova,T., Kaina,B. and Lbrich,M. (2014) DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J. Cell Biol., 206, 29-43.
Pommier,Y. (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 6, 789-802.
Murai,J., Huang,S.Y., Das,B.B., Renaud,A., Zhang,Y., Doroshow,J.H., Ji,J., Takeda,S. and Pommier,Y. (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res., 72, 5588-5599.
Zeman,M.K. and Cimprich,K.A. (2014) Causes and consequences of replication stress. Nat. Cell Biol., 16, 2-9.
Arnaudeau,C., Lundin,C. and Helleday,T. (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J. Mol. Biol., 307, 1235-1245.
Helleday,T., Lo,J., van Gent,D.C. and Engelward,B.P. (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst.), 6, 923-935.
Chang,H.H.Y., Pannunzio,N.R., Adachi,N. and Lieber,M.R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol., 18, 495-506.
Shibata,A., Jeggo,P. and Lobrich,M. (2018) The pendulum of the Ku-Ku clock. DNA Repair (Amst.), 71, 164-171.
Balmus,G., Pilger,D., Coates,J., Demir,M., Sczaniecka-Clift,M., Barros,A.C., Woods,M., Fu,B., Yang,F., Chen,E. et al. (2019) ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun., 10, 87.
Chanut,P., Britton,S., Coates,J., Jackson,S.P. and Calsou,P. (2016) Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat. Commun., 7, 12889.
Anand,R.P., Lovett,S.T. and Haber,J.E. (2013) Break-induced DNA replication. Cold Spring Harb. Perspect. Biol., 5, a010397.
Whelan,D.R., Lee,W.T.C., Yin,Y., Ofri,D.M., Bermudez-Hernandez,K., Keegan,S., Fenyo,D. and Rothenberg,E. (2018) Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat. Commun., 9, 3882.
Sotiriou,S.K., Kamileri,I., Lugli,N., Evangelou,K., Da-Re,C., Huber,F., Padayachy,L., Tardy,S., Nicati,N.L., Barriot,S. et al. (2016) Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication forks. Mol. Cell, 64, 1127-1134.
Bhowmick,R., Minocherhomji,S. and Hickson,I.D. (2016) RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell, 64, 1117-1126.
Van Dyck,E., Stasiak,A.Z., Stasiak,A. andWest,S.C. (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature, 398, 728-731.
Stasiak,A.Z., Larquet,E., Stasiak,A., Muller,S., Engel,A., Van Dyck,E., West,S.C. and Egelman,E.H. (2000) The human Rad52 protein exists as a heptameric ring. Curr. Biol., 10, 337-340.
Van Dyck,E., Hajibagheri,N.M., Stasiak,A. and West,S.C. (1998) Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J. Mol. Biol., 284, 1027-1038.
Parsons,C.A., Baumann,P., Van Dyck,E. and West,S.C. (2000) Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO J., 19, 4175-4181.
Singleton,M.R., Wentzell,L.M., Liu,Y., West,S.C. and Wigley,D.B. (2002) Structure of the single-strand annealing domain of human RAD52 protein. Proc. Natl. Acad. Sci. U.S.A., 99, 13492-13497.
Van Dyck,E., Stasiak,A.Z., Stasiak,A. and West,S.C. (2001) Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep., 2, 905-909.
Grimme,J.M., Honda,M., Wright,R., Okuno,Y., Rothenberg,E., Mazin,A.V., Ha,T. and Spies,M. (2010) Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res., 38, 2917-2930.
Shinohara,A., Shinohara,M., Ohta,T., Matsuda,S. and Ogawa,T. (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells, 3, 145-156.
Nimonkar,A.V., Sica,R.A. and Kowalczykowski,S.C. (2009) Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc. Natl. Acad. Sci. U.S.A., 106, 3077-3082.
McIlwraith,M.J. and West,S.C. (2008) DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell, 29, 510-516.
Bi,B., Rybalchenko,N., Golub,E.I. and Radding,C.M. (2004) Human and yeast Rad52 proteins promote DNA strand exchange. Proc. Natl. Acad. Sci. U.S.A., 101, 9568-9572.
Kagawa,W., Kurumizaka,H., Ikawa,S., Yokoyama,S. and Shibata,T. (2001) Homologous pairing promoted by the human Rad52 protein. J. Biol. Chem., 276, 35201-35208.
Kumar,J.K. and Gupta,R.C. (2004) Strand exchange activity of human recombination protein Rad52. Proc. Natl. Acad. Sci. U.S.A., 101, 9562-9567.
Symington,L.S. (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol., 51, 195-212.
Ronato,D.A., Mersaoui,S.Y., Busatto,F.F., Affar,E.B., Richard,S. and Masson,J.Y. (2020) Limiting the DNA double-strand break resectosome for genome protection. Trends Biochem. Sci., 45, 779-793.
Chen,G., Chen,J., Qiao,Y., Shi,Y., Liu,W., Zeng,Q., Xie,H., Shi,X., Sun,Y., Liu,X. et al. (2018) ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair. Nucleic Acids Res., 46, 1266-1279.
Sakasai,R., Isono,M., Wakasugi,M., Hashimoto,M., Sunatani,Y., Matsui,T., Shibata,A., Matsunaga,T. and Iwabuchi,K. (2017) Aquarius is required for proper CtIP expression and homologous recombination repair. Sci. Rep., 7, 13808.
Onyango,D.O., Howard,S.M., Neherin,K., Yanez,D.A. and Stark,J.M. (2016) Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res., 44, 5702-5716.
Stupp,R., Mason,W.P., van den Bent,M.J., Weller,M., Fisher,B., Taphoorn,M.J., Belanger,K., Brandes,A.A., Marosi,C., Bogdahn,U. et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N. Engl. J. Med., 352, 987-996.
Erasimus,H., Gobin,M., Niclou,S. and Van Dyck,E. (2016) DNA repair mechanisms and their clinical impact in glioblastoma. Mutat. Res. Rev. Mutat. Res., 769, 19-35.
Kaina,B., Christmann,M., Naumann,S. and Roos,W.P. (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.), 6, 1079-1099.
Hegi,M.E., Diserens,A.C., Gorlia,T., Hamou,M.F., de Tribolet,N., Weller,M., Kros,J.M., Hainfellner,J.A., Mason,W., Mariani,L. et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 352, 997-1003.
Mitra,S. (2007) MGMT: a personal perspective. DNA Repair (Amst.), 6, 1064-1070.
Gupta,D., Lin,B., Cowan,A. and Heinen,C.D. (2018) ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage. Proc. Natl. Acad. Sci. U.S.A., 115, 1523-1528.
Quiros,S., Roos,W.P. and Kaina,B. (2010) Processing of O6-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle, 9, 168-178.
Li,Z., Pearlman,A.H. and Hsieh,P. (2016) DNA mismatch repair and the DNA damage response. DNA Repair (Amst.), 38, 94-101.
Rajesh,P., Rajesh,C., Wyatt,M.D. and Pittman,D.L. (2010) RAD51D protects against MLH1-dependent cytotoxic responses to O(6)-methylguanine. DNA Repair (Amst.), 9, 458-467.
Roos,W.P., Nikolova,T., Quiros,S., Naumann,S.C., Kiedron,O., Zdzienicka,M.Z. and Kaina,B. (2009) Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O(6)-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst.), 8, 72-86.
Pilie,P.G., Tang,C., Mills,G.B. and Yap,T.A. (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 16, 81-104.
Campos,B., Wan,F., Farhadi,M., Ernst,A., Zeppernick,F., Tagscherer,K.E., Ahmadi,R., Lohr,J., Dictus,C., Gdynia,G. et al. (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin. Cancer Res., 16, 2715-2728.
Chandramouly,G., McDevitt,S., Sullivan,K., Kent,T., Luz,A., Glickman,J.F., Andrake,M., Skorski,T. and Pomerantz,R.T. (2015) Small-molecule disruption of RAD52 rings as a mechanism for precision medicine in BRCA-deficient cancers. Chem. Biol., 22, 1491-1504.
Ostermann,S., Csajka,C., Buclin,T., Leyvraz,S., Lejeune,F., Decosterd,L.A. and Stupp,R. (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin. Cancer Res., 10, 3728-3736.
Schuster,A., Erasimus,H., Fritah,S., Nazarov,P.V., van Dyck,E., Niclou,S.P. and Golebiewska,A. (2019) RNAi/CRISPR screens: from a Pool to a Valid Hit. Trends Biotechnol., 37, 38-55.
Li,W., Koster,J., Xu,H., Chen,C.H., Xiao,T., Liu,J.S., Brown,M. and Liu,X.S. (2015) Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol., 16, 281.
Yu,J., Silva,J. and Califano,A. (2016) ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics, 32, 260-267.
Diaz,A.A., Qin,H., Ramalho-Santos,M. and Song,J.S. (2015) HiTSelect: a comprehensive tool for high-complexity-pooled screen analysis. Nucleic Acids Res., 43, e16.
Moffat,J., Grueneberg,D.A., Yang,X., Kim,S.Y., Kloepfer,A.M., Hinkle,G., Piqani,B., Eisenhaure,T.M., Luo,B., Grenier,J.K. et al. (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124, 1283-1298.
Benson,F.E., Stasiak,A. and West,S.C. (1994) Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J., 13, 5764-5771.
Benson,F.E., Baumann,P. and West,S.C. (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature, 391, 401-404.
Britton,S., Coates,J. and Jackson,S.P. (2013) A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol., 202, 579-595.
Caron,M.C., Sharma,A.K., O'Sullivan,J., Myler,L.R., Ferreira,M.T., Rodrigue,A., Coulombe,Y., Ethier,C., Gagne,J.P., Langelier,M.F. et al. (2019) Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun., 10, 2954.
Nakatsu,Y., Asahina,H., Citterio,E., Rademakers,S., Vermeulen,W., Kamiuchi,S., Yeo,J.P., Khaw,M.C., Saijo,M., Kodo,N. et al. (2000) XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J. Biol. Chem., 275, 34931-34937.
Kuraoka,I., Ito,S., Wada,T., Hayashida,M., Lee,L., Saijo,M., Nakatsu,Y., Matsumoto,M., Matsunaga,T., Handa,H. et al. (2008) Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J. Biol. Chem., 283, 940-950.
Petermann,E., Orta,M.L., Issaeva,N., Schultz,N. and Helleday,T. (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell, 37, 492-502.
Zeytuni,N. and Zarivach,R. (2012) Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure, 20, 397-405.
Galganski,L., Urbanek,M.O. and Krzyzosiak,W.J. (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res., 45, 10350-10368.
Rodrigue,A., Margaillan,G., Torres Gomes,T., Coulombe,Y., Montalban,G., da Costa,E.S.C.S., Milano,L., Ducy,M., De-Gregoriis,G., Dellaire,G. et al. (2019) A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res., 47, 10662-10677.
Feng,L., Li,N., Li,Y.,Wang,J., Gao,M.,Wang,W. and Chen,J. (2015) Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov., 1, 15019.
Bakr,A., Kocher,S., Volquardsen,J., Petersen,C., Borgmann,K., Dikomey,E., Rothkamm,K. and Mansour,W.Y. (2016) Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget, 7, 57679-57693.
Lee,J.H., Cheong,H.M., Kang,M.Y., Kim,S.Y. and Kang,Y. (2009) Ser1778 of 53BP1 plays a role in DNA double-strand break repairs. Korean J. Physiol. Pharmacol., 13, 343-348.
Kang,Y., Lee,J.H., Hoan,N.N., Sohn,H.M., Chang,I.Y. and You,H.J. (2009) Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage. J. Biol. Chem., 284, 9845-9853.
Harding,S.M. and Bristow,R.G. (2012) Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Cell Cycle, 11, 1432-1444.
Jowsey,P., Morrice,N.A., Hastie,C.J., McLauchlan,H., Toth,R. and Rouse,J. (2007) Characterisation of the sites of DNA damage-induced 53BP1 phosphorylation catalysed by ATM and ATR. DNA Repair (Amst.), 6, 1536-1544.
Zgheib,O., Huyen,Y., DiTullio,R.A. Jr, Snyder,A., Venere,M., Stavridi,E.S. and Halazonetis,T.D. (2005) ATM signaling and 53BP1. Radiother. Oncol., 76, 119-122.
Britton,S., Chanut,P., Delteil,C., Barboule,N., Frit,P. and Calsou,P. (2020) ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res., 48, 9710-9723.
Hickson,I., Zhao,Y., Richardson,C.J., Green,S.J., Martin,N.M., Orr,A.I., Reaper,P.M., Jackson,S.P., Curtin,N.J. and Smith,G.C. (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res., 64, 9152-9159.
Marechal,A. and Zou,L. (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res., 25, 9-23.
Chanarat,S. and Strasser,K. (2013) Splicing and beyond: the many faces of the Prp19 complex. Biochim. Biophys. Acta, 1833, 2126-2134.
Marechal,A., Li,J.M., Ji,X.Y., Wu,C.S., Yazinski,S.A., Nguyen,H.D., Liu,S., Jimenez,A.E., Jin,J. and Zou,L. (2014) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell, 53, 235-246.
de Moura,T.R.,Mozaffari-Jovin,S., Szabo,C.Z.K., Schmitzova,J., Dybkov,O., Cretu,C., Kachala,M., Svergun,D., Urlaub,H., Luhrmann,R. et al. (2018) Prp19/Pso4 is an autoinhibited ubiquitin ligase activated by stepwise assembly of three splicing factors. Mol. Cell, 69, 979-992.
Cimprich,K.A. and Cortez,D. (2008) ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol., 9, 616-627.
Zou,L. and Elledge,S.J. (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542-1548.
Foote,K.M., Nissink,J.W.M., McGuire,T., Turner,P., Guichard,S., Yates,J.W.T., Lau,A., Blades,K., Heathcote,D., Odedra,R. et al. (2018) Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem., 61, 9889-9907.
Kwon,M.S., Lee,J.J., Min,J., Hwang,K., Park,S.G., Kim,E.H., Kim,B.C., Bhak,J. and Lee,H. (2019) Brca2 abrogation engages with the alternative lengthening of telomeres via break-induced replication. FEBS J., 286, 1841-1858.
Audebert,M., Salles,B. and Calsou,P. (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem., 279, 55117-55126.
Peterson,S.E., Li,Y., Wu-Baer,F., Chait,B.T., Baer,R., Yan,H., Gottesman,M.E. and Gautier,J. (2013) Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol. Cell, 49, 657-667.
Makharashvili,N., Tubbs,A.T., Yang,S.H., Wang,H., Barton,O., Zhou,Y., Deshpande,R.A., Lee,J.H., Lobrich,M., Sleckman,B.P. et al. (2014) Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol. Cell, 54, 1022-1033.
Matsuoka,S., Ballif,B.A., Smogorzewska,A.,McDonald,E.R. 3rd, Hurov,K.E., Luo,J., Bakalarski,C.E., Zhao,Z., Solimini,N., Lerenthal,Y. et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 316, 1160-1166.
Li,S., Ting,N.S., Zheng,L., Chen,P.L., Ziv,Y., Shiloh,Y., Lee,E.Y. and Lee,W.H. (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature, 406, 210-215.
Sartori,A.A., Lukas,C., Coates,J., Mistrik,M., Fu,S., Bartek,J., Baer,R., Lukas,J. and Jackson,S.P. (2007) Human CtIP promotes DNA end resection. Nature, 450, 509-514.
Ruff,P., Donnianni,R.A., Glancy,E., Oh,J. and Symington,L.S. (2016) RPA stabilization of single-stranded DNA is critical for break-induced replication. Cell Rep., 17, 3359-3368.
Sullivan-Reed,K., Bolton-Gillespie,E., Dasgupta,Y., Langer,S., Siciliano,M., Nieborowska-Skorska,M., Hanamshet,K., Belyaeva,E.A., Bernhardy,A.J., Lee,J. et al. (2018) Simultaneous targeting of PARP1 and RAD52 triggers dual synthetic lethality in BRCA-deficient tumor cells. Cell Rep., 23, 3127-3136.
Goulielmaki,E., Tsekrekou,M., Batsiotos,N., Ascensao-Ferreira,M., Ledaki,E., Stratigi,K., Chatzinikolaou,G., Topalis,P., Kosteas,T., Altmüller,J. et al. (2021) The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat. Commun., 12, 3153.
Deshpande,R.A., Myler,L.R., Soniat,M.M., Makharashvili,N., Lee,L., Lees-Miller,S.P., Finkelstein,I.J. and Paull,T.T. (2020) DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv., 6, eaay0922.
Shiotani,B. and Zou,L. (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell, 33, 547-558.
Villarreal,D.D., Lee,K., Deem,A., Shim,E.Y., Malkova,A. and Lee,S.E. (2012) Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet., 8, e1003026.
Zan,H., Tat,C., Qiu,Z., Taylor,J.R., Guerrero,J.A., Shen,T. and Casali,P. (2017) Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat. Commun., 8, 14244.
Hastings,P.J., Ira,G. and Lupski,J.R. (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet., 5, e1000327.
Feng,Z., Scott,S.P., Bussen,W., Sharma,G.G., Guo,G., Pandita,T.K. and Powell,S.N. (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl. Acad. Sci. U.S.A., 108, 686-691.
Lok,B.H., Carley,A.C., Tchang,B. and Powell,S.N. (2013) RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination. Oncogene, 32, 3552-3558.
Chun,J., Buechelmaier,E.S. and Powell,S.N. (2013) Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol., 33, 387-395.
Wang,H., Li,S., Oaks,J., Ren,J., Li,L. and Wu,X. (2018) The concerted roles of FANCM and Rad52 in the protection of common fragile sites. Nat. Commun., 9, 2791.
Lord,C.J., McDonald,S., Swift,S., Turner,N.C. and Ashworth,A. (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst.), 7, 2010-2019.
Helleday,T. (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol, 5, 387-393.
Paulsen,R.D., Soni,D.V.,Wollman,R., Hahn,A.T., Yee,M.C., Guan,A., Hesley,J.A., Miller,S.C., Cromwell,E.F., Solow-Cordero,D.E. et al. (2009) A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell, 35, 228-239.
Carruthers,R.D., Ahmed,S.U., Ramachandran,S., Strathdee,K., Kurian,K.M., Hedley,A., Gomez-Roman,N., Kalna,G., Neilson,M., Gilmour,L. et al. (2018) Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res., 78, 5060-5071.
Bader,A.S., Hawley,B.R., Wilczynska,A. and Bushell,M. (2020) The roles of RNA in DNA double-strand break repair. Br. J. Cancer, 122, 613-623.
Meng,X., Yang,S. and Camp,V.J.A. (2019) The interplay between the DNA damage response, RNA processing and extracellular vesicles. Front. Oncol., 9, 1538.