Article (Périodiques scientifiques)
Federated learning for 5G and beyond, a blessing and a curse- an experimental study on intrusion detection systems
Djaidja, Taki Eddine Toufik; Brik, Bouziane; BOUALOUACHE, Abdelwahab et al.
2024In Computers and Security, 139, p. 103707
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
_REV2__FL_Paper__black___final_.pdf
Postprint Auteur (4.37 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G and beyond; Deep learning; Federated learning; IDS; NON-IID; 5g and beyond; Centralised; Collaborative approach; Data distribution; Intrusion Detection Systems; Learning models; NON-identically distributed; Service provider; Computer Science (all); Law; General Computer Science
Résumé :
[en] 5G's service providers now leverage Deep Learning (DL) to automate their network slice management, provisioning, and security. To this end, each slice owner contributes data to feed a common dataset used to train centralized learning models. However, this method raises privacy considerations that prevent its usage. Therefore, Federated learning (FL), a collaborative approach that ensures data privacy, is being investigated while striving toward the same performance as centralized learning. As 5G and beyond services are so diverse, the local slice's data is not intended to reflect the entire data distribution. Thus, local data of slices are Non-Independently and non-Identically distributed (Non-IID), posing a challenge for FL-based models. In this paper, we investigate the use of FL to secure network slices and detect potential attacks. For that purpose, we first propose an architecture for deploying intrusion detection systems (IDSs) in 5G and beyond networks. Next, we thoroughly evaluate the latest state-of-art FL algorithms, including FedAvg, FedProx, FedPer, and SCAFFOLD, in the context of Independently and Identically Distributed (IID) and Non-IID data distributions. We compare these FL models to centralized and local DL models. We find that SCAFFOLD outperforms all the other FL algorithms and ensures a stable learning loss convergence, a promising finding that strengthens the case for leveraging FL in IDS development. Nevertheless, none of the FL models could achieve the centralized model's performance in Non-IID scenarios.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Djaidja, Taki Eddine Toufik ;  DRIVE Laboratory EA1859, University of Burgundy, Nevers, France
Brik, Bouziane ;  Computer Science Department, College of Computing and Informatics, Sharjah University, United Arab Emirates
BOUALOUACHE, Abdelwahab  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Senouci, Sidi Mohammed;  DRIVE Laboratory EA1859, University of Burgundy, Nevers, France
Ghamri-Doudane, Yacine;  L3I Laboratory, Univ. La Rochelle, France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated learning for 5G and beyond, a blessing and a curse- an experimental study on intrusion detection systems
Date de publication/diffusion :
avril 2024
Titre du périodique :
Computers and Security
ISSN :
0167-4048
Maison d'édition :
Elsevier Ltd
Volume/Tome :
139
Pagination :
103707
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Organisme subsidiant :
Agence Nationale de la Recherche
Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
This work was supported by the 5G-INSIGHT bilateral project (ID: 14891397 ) / ( ANR-20-CE25-0015-16 ), funded by the Luxembourg National Research Fund (FNR), and by the French National Research Agency (ANR).
Disponible sur ORBilu :
depuis le 26 février 2024

Statistiques


Nombre de vues
58 (dont 5 Unilu)
Nombre de téléchargements
276 (dont 2 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
13
citations OpenAlex
 
14

Bibliographie


Publications similaires



Contacter ORBilu