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A B S T R A C T

5G’s service providers now leverage Deep Learning (DL) to automate their network slice management,
provisioning, and security. To this end, each slice owner contributes data to feed a common dataset
used to train centralized learning models. However, this method raises privacy considerations that
prevent its usage. Therefore, Federated learning (FL), a collaborative approach that ensures data
privacy, is being investigated while striving toward the same performance as centralized learning.
As 5G and beyond services are so diverse, the local slice’s data is not intended to reflect the entire
data distribution. Thus, local data of slices are Non-Independently and non-Identically distributed
(Non-IID), posing a challenge for FL-based models. In this paper, we investigate the use of FL to
secure network slices and detect potential attacks. For that purpose, we first propose an architecture
for deploying intrusion detection systems (IDSs) in 5G and beyond networks. Next, we thoroughly
evaluate the latest state-of-art FL algorithms, including FedAvg, FedProx, FedPer, and SCAFFOLD,
in the context of Independently and Identically Distributed (IID) and Non-IID data distributions. We
compare these FL models to centralized and local DL models. We find that SCAFFOLD outperforms
all the other FL algorithms and ensures a stable learning loss convergence, a promising finding that
strengthens the case for leveraging FL in IDS development. Nevertheless, none of the FL models could
achieve the centralized model’s performance in Non-IID scenarios.

1. Introduction
5G and beyond networks’ ambition is to build an intelli-

gent connected environment that spans communications on
the ground, in the air, and the space (Chowdhury, Shahjalal,
Ahmed and Jang, 2020). Indeed, 5G networks pave the
way for a wide range of applications, including vehicular
networks, unmanned aerial vehicles, smart homes, real-
time streaming, and virtual and augmented reality (Dogra,
Jha and Jain, 2021). 5G’s adoption of the network slic-
ing paradigm allows the creation of logical, self-contained
networks known as slices. Each business client (service
provider) will have its slice(s) with independent control and
management, facilitating the on-demand creation of network
resources. In other terms, the conventional, one-size-fits-all
components of cellular networks are being replaced by soft-
warized and virtualized components that may accommodate
diverse network requirements, depending on the delivered
service (Zhang, 2019). The security of the network and its
end-users must be considered for any new communication
technology; fortunately, both industry and academia are
designing countermeasures and safeguards to address these
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concerns. Network protocols, firewalls, and IDSs are exam-
ples of these technical solutions (Nencioni, Garroppo and
Olimid, 2021). These safeguards complement each other; for
example, IDSs supplement firewalls by capturing intrusions
targeting network protocols and applications.

Nowadays, most of the research community’s efforts
are directed toward creating IDSs that focus on protection
against any potential intrusion. The consideration of IDS
began to acquire popularity in the early 2000’s, and regained
interest in 2015 with the advent of Machine Learning (ML)
and, in particular, DL (Lavaur, Pahl, Busnel and Autrel,
2022).
In this new wave of IDSs, patterns of network intrusions
are learned from available intrusion datasets using DL
techniques, and once the DL models are deployed, they are
used to analyze and identify intrusions. Current DL-based
IDSs rely on network traffic traces, which are aggregated to
network flows, including meta-data header information and
statistical data of packets in the flows (Hofstede, Čeleda,
Trammell, Drago, Sadre, Sperotto and Pras, 2014). The flows
are then labeled as benign or malicious, as well as the type
of malicious activity. For that purpose, DL models collect
data (labeled network flows) from all involved parts and
network slices in the context of 5G and beyond networks,
constructing a global dataset including all the flows that are
used in the training phase to provide a global model; this
method is known as centralized training.

Industries and service providers in 5G and beyond
networks must manage their networks and design security
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mechanisms for their network slices. In practice, however,
the centralized approach has proven inconceivable because
the network flows dataset contains sensitive information
about companies and slice owners. This raises concerns
about business privacy, labeled datasets can disclose that an
attack has occurred within the network slice, and companies
are reluctant to share this information. Therefore, sharing
the data to build a global dataset is resisted by individual
slice owners. Even so, network slices must collaborate to
deploy effective IDSs; unfortunately, DL models trained in-
dependently at the slice level using local slice data may miss
relevant samples of malicious and benign traffic, resulting in
a decrease in the effectiveness of the learning model.

To deal with this challenge, the community has been
considering distributed techniques to perform training with-
out requiring data sharing across slices. The advent of
FL (McMahan, Moore, Ramage, Hampson and Arcas, 2016),
a framework that allows decentralized training, has been
a catalyst for collaborative IDS research (Lavaur et al.,
2022). FL consists of performing local training for different
clients, with the clients communicating just their local model
parameters to a coordinator. This approach ensures privacy
since local data is not shared. The coordinator performs
an aggregation procedure, then this aggregated model is
returned to clients; the training process is repeated until
convergence. In (McMahan et al., 2016), the federated
average (FedAvg) aggregation function was introduced; it
simply averages the clients’ model weights in the aggre-
gation phase to obtain the global model at each training
round. However, FL faces many challenges that impede
its use in the industry, including concerns about statistical
heterogeneity (non iid-ness), communication efficiency, and
security and privacy (Mothukuri, Parizi, Pouriyeh, Huang,
Dehghantanha and Srivastava, 2021). The authors in (Li,
Sahu, Talwalkar and Smith, 2020; Rahman, Ahmed, Akhter,
Hasan, Amin, Aziz, Islam, Mukta and Islam, 2021; Wahab,
Mourad, Otrok and Taleb, 2021; Ma, Zhu, Lin, Chen and
Qin, 2022) reviewed these challenges and possible solutions
found in the literature.

To recap, the main objective of FL is to deliver a DL
model with similar performances to the centralized one.
Statistical heterogeneity concern compromises this objec-
tive, and the FedAvg aggregation function has shown its
limitation in this realistic scenario, suffering from a weight
divergence from an optimal model that leads to unstable
convergence (Karimireddy, Kale, Mohri, Reddi, Stich and
Suresh, 2019). In light of these challenges, new aggregation
methods have been introduced, including Federated with
the Proximal term (FedProx) (Li, Sahu, Zaheer, Sanjabi,
Talwalkar and Smith, 2018) and SCAFFOLD (Karimireddy
et al., 2019) as two novel aggregation techniques that solve
the high weight divergence caused by Non-IID data by using
controlling mechanisms in client updates. The Federated
Personalizing (FedPer) (Arivazhagan, Aggarwal, Singh and
Choudhary, 2019) aggregation approach tackles the issue by

personalizing DL models via transfer learning.

To contribute to the development of FL-based IDS ca-
pable of addressing the aforementioned issue, this study
investigates FL and the aggregation methods by which it
can be utilized to enable collaborative DL-based IDS in
a 5G and beyond slicing environment. This paper aims to
delve into state-of-the-art FL algorithms, namely FedProx,
FedPer, and SCAFFOLD, designed to address the chal-
lenge of weight divergence in heterogeneous networks. It
focuses on two primary settings: one where data is uniformly
distributed across network slices (IID), and another, more
realistic scenario where data distribution is non-uniform
(Non-IID) among slices. In this context, the paper explores
situations where malicious traffic may manifest in one slice
while being absent in another. The paper also conducts a
comparative analysis of the performance of these models
in comparison to locally trained models and centralized
global models, a comparison that has been overlooked in
existing research works. Furthermore, within this paper, we
present a framework for the training and deployment of FL-
based IDSs within the context of 5G and beyond networks.
The experimental study reveals that FL can be viewed as
a "curse" because the exchanging models involve commu-
nication overhead but do not improve detection accuracy
and performance compared to locally trained models. Fortu-
nately, state-of-art approaches could overcome convergence
problems in Non-IID data, a "blessing" for future FL-based
models to enable effective distributed learning.

The rest of the paper is organized as follows. Section 2
explains the FL aggregation algorithms while it also covers
the deployment of intrusion detection systems in 5G and
beyond networks; Section 3 overviews the related works
regarding the use of FL in securing 5G networks. Section 4
outlines our methodology, details the used dataset and its
partitioning for the IID/Non-IID scenarios, and specifies the
DL models, including centralized, FL, and local models. The
experimental evaluations of these models are presented in
section 5. Finally, Section 6 discusses the work and brings
the study to a close.

2. Background
This section provides general background on FL and its

various aggregation algorithms. Furthermore, we describe
IDSs.

2.1. Federated Learning
FL is a distributed DL approach to build a single global

model from data stored on multiple entities; these entities
are referred to as clients, which represent network slices in
our context. The model training is conducted at the client
level, specifically within each 5G network slice; only model
weights are exchanged across clients. The learning of FL
was formulated in (McMahan et al., 2016) as a minimization
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function:

min
𝑤

𝑓 (𝑤) =
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝐹𝑘(𝑤) , 𝐹𝑘(𝑤) = 1

𝑛𝑘

∑

𝑖∈𝑃𝑘

𝑓𝑖(𝑤) (1)

Where 𝐾 is the number of clients, 𝑓𝑖(𝑤) = 𝑙(𝑥𝑖, 𝑦𝑖;𝑤)
represents the loss function of input 𝑖 where the output is
predicted by the model having 𝑊 = 𝑤, 𝐹𝑘 is the objective
function for client 𝑘, 𝑃𝑘 is the client’s 𝑘 local dataset with
𝑛𝑘 = |𝑃𝑘| and 𝑛 =

∑

𝑛𝑘.
FL was initially designed to reduce the communication

overhead (McMahan et al., 2016). This communication ef-
ficiency is achieved by sharing model weights rather than
client-generated large-sized raw data. Additionally, FL can
guarantee more data privacy since the client’s local data will
always reside at the client level. However, one of the primary
objectives of FL is to show classification/prediction results
comparable to models trained in a centralized fashion. This
can be challenging because a single set of client data is not
supposed to reflect the data distribution in the domain.

Starting from an initial DL model, the process begins
by training separate models locally for a certain number
of iterations 𝐸, each client using its data. These respective
models are then communicated to a central node, and ag-
gregated using an aggregation function to obtain a global
model. This process is called a round. At the end of each
round, the clients receive the aggregated model, and the
process is repeated for a certain number of rounds 𝑅. The
majority of FL models rely on client-server architecture, in
which the server (or coordinator) is in charge of initializing
the model and performing aggregation at each round. Other
FL topologies, such as peer-to-peer architecture, are also
possible.
Algorithms 1, 2 summarize the FL training procedure for
both the server-side (coordinator-) and client-sides, respec-
tively. Regarding the client procedure (Algorithm 2), 𝜂 rep-
resents the learning rate, ∇𝑙(𝑏;𝑤) is the gradient of the loss
function (𝑓𝑖(𝑤)).

In the next sub-sections, we will explore four aggrega-
tion algorithms, namely FedAvg (McMahan et al., 2016),
FedProx (Li et al., 2018), FedPer (Arivazhagan et al., 2019),
and SCAFFOLD (Karimireddy et al., 2019).

Algorithm 1 FL Server (Coordinator)
Input: clients // list of 𝑘 client
Input: 𝑟
Output: 𝑤𝑟

1: 𝑤0 ← init()
2: for 𝑡 = 1 to 𝑟 do
3: 𝑤𝑘

𝑡 ← clients.local_train(𝑡,𝑤𝑡−1) // Executing Algo. 2
for all 𝑘 clients

4: 𝑤𝑡 ← aggregate(𝑤𝑘
𝑡 )

5: end for
6: return 𝑤𝑟

Algorithm 2 FL Client Local Train
Input: 𝑡,𝑤𝑡−1,𝑃𝑘,𝐸,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
Output: 𝑤𝑘

𝑡
1: 𝛽 ← getBatches(𝑃𝑘,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)
2: 𝑤𝑘

𝑡 ← 𝑤𝑡−1
3: for 𝑒 = 1 to 𝐸 do
4: for 𝑏 in 𝛽 do
5: 𝑤𝑘

𝑡 ← 𝑤𝑘
𝑡 + 𝜂∇𝑙(𝑏;𝑤𝑘

𝑡 )
6: end for
7: end for
8: return 𝑤𝑘

𝑡

2.1.1. FedAvg
Federated average is the first averaging algorithm pro-

posed in (McMahan et al., 2016). The approach consists
of simply averaging the weights of the different models
communicated by the clients. As shown in (Equation 2), the
global model 𝑤𝑡 at round 𝑡 is calculated by averaging 𝑛𝑘𝑤𝑘

𝑡 ,
this line will replace the line 4 in algorithm 1.

𝑤𝑡 ←
1
𝑛

𝐾
∑

𝑘=1
𝑛𝑘𝑤

𝑘
𝑡 (2)

2.1.2. FedProx
FedProx (Li et al., 2018) was suggested to deal with het-

erogeneous networks; seeking to encounter FedAvg’s limita-
tions in Non-IID situations. FedProx changes the objective
function on the client side, by adding a proximal term (𝜇)
to regulate the direction of weights at the client level, and
prevent the client’s model from deviating from the global
model communicated, by the coordinator at the beginning
of the round. The line 5 in algorithm 2 will be:

𝑤𝑘
𝑡 ← 𝑤𝑘

𝑡 + 𝜂(∇𝑙(𝑤𝑘
𝑡 , 𝑏) +

𝜇
2
||𝑤𝑘

𝑡 −𝑤𝑡−1||
2) (3)

Where 𝑤𝑡−1 is the global aggregated model of the previous
round (𝑡 − 1), 𝜇 is the proximal term and ||𝑤𝑘

𝑡 − 𝑤𝑡−1||
2 is

an L2 norm which measures the distance between the model
during the local training and the previously communicated
global model.

2.1.3. SCAFFOLD
SCAFFOLD (Karimireddy et al., 2019) stands for the

stochastic controlled averaging algorithm. Its main aim is to
reduce the client variance induced by heterogeneity in client
updates. In this approach, both the clients and server (coor-
dinator) procedures are updated and are shown in algorithms
3 and 4. The server’s model and all the clients’ models are
equipped with control variates, 𝑐 and 𝑐𝑘, respectively. The
difference (𝑐𝑘-𝑐) estimates the client (𝑘)’s weight drift and is
used to control the client update (line 6 in algorithm 4).

2.1.4. FedPer
FedPer (Arivazhagan et al., 2019) is a transfer learning-

inspired approach. It involves modifying the training pro-
cess of FL by integrating transfer learning technique. This
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Algorithm 3 FL SCAFFOLD Server
Input: clients,𝑟
Output: 𝑤𝑟

1: 𝑤0 ← init()
2: 𝑐0 ← 0
3: for 𝑡 = 1 to 𝑟 do
4: (Δ𝑤𝑘

𝑡 ,Δ𝑐
𝑘
𝑡 ) ← clients.local_train(𝑡,𝑤𝑡−1,𝑐𝑡−1)

5: (Δ𝑤𝑡,Δ𝑐𝑡) ←
1
𝐾
∑𝐾

𝑘=1(Δ𝑤
𝑘
𝑡 ,Δ𝑐

𝑘
𝑡 )

6: 𝑤𝑡 ← 𝑤𝑡−1 + 𝛾Δ𝑤𝑡
7: 𝑐𝑡 ← 𝑐𝑡−1 + Δ𝑐𝑡
8: end for
9: return 𝑤𝑟

Algorithm 4 FL SCAFFOLD Client Local Train
Input: 𝑡,𝑤𝑡−1,𝑐𝑡−1,𝑃𝑘,𝐸,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
Output: Δ𝑤𝑘

𝑡 ,Δ𝑐𝑘𝑡
1: if (𝑡 = 1) then 𝑐𝑘0 ← 0 // Init
2: 𝛽 ← getBatches(𝑃𝑘,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)
3: 𝑤𝑘

𝑡 ← 𝑤𝑡−1
4: for 𝑒 = 1 to 𝐸 do
5: for 𝑏 in 𝛽 do
6: 𝑤𝑘

𝑡 ← 𝑤𝑘
𝑡 + 𝜂(∇𝑙(𝑏;𝑤𝑘

𝑡 ) − 𝑐𝑘𝑡−1 + 𝑐𝑡−1)
7: end for
8: end for
9: 𝑐𝑘𝑡 ← ∇𝑙(𝑤𝑡−1, 𝑃𝑘)

10: (Δ𝑤𝑘
𝑡 ,Δ𝑐

𝑘
𝑡 ) ← (𝑤𝑘

𝑡 −𝑤𝑡−1, 𝑐𝑘𝑡 − 𝑐𝑘𝑡−1)
11: return Δ𝑤𝑘

𝑡 ,Δ𝑐𝑘𝑡

approach is compatible with various FL aggregation algo-
rithms, including FedAvg and FedProx. In federated person-
alizing, the model is divided into the following: base and
personalized layers. Only the base layers are communicated
and aggregated in the server, while the personalized layers
are trained locally; the architecture is shown in Fig. 1.
Consequently, the FedPer aggregation updates the algorithm
executed at the client level; at the first round, the clients
initialize their local weights, and during the training, the
used model is the concatenation of base and personalized
layers. The algorithm 5 showcases the procedure.

2.2. Intrusion Detection Systems
Intrusion detection is the process of searching for in-

dicators of attacks. Current research on intrusion detection
is supported by the use of statistics, data mining, ML and
DL algorithms, which can be used in supervised, semi-
supervised, or unsupervised ways. These models are com-
monly referred to as data-driven models, and network flows
are commonly used to train them.

A network flow is a grouping of packets identified
by the tuple <source, source port, destination, destination
port,protocol> (Hofstede et al., 2014). A flow is formed
when the first packet arrives and is terminated by receiving a
termination flag or exceeding a timeout. Secondly, network
flows are enriched with statistical information such as flow

Cl i ent  1

Cl i ent  k

Cl i ent  K

Ser ver
( Coor di nat or )

Figure 1: FedPer aggregation algorithm: layers in blue are the
base layers 𝑤𝑡, and the other colors represent the personalized
layers 𝑤𝑝𝑘𝑡 . The server knows only base layers.

Algorithm 5 FL FedPer Client Local Train
Input: 𝑡,𝑤𝑡−1,𝑃𝑘,𝐸,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
Output: 𝑤𝑘

𝑡
1: if (𝑡 = 1) then
2: 𝑤𝑝𝑘0 ← 𝑖𝑛𝑖𝑡()
3: end if
4: 𝛽 ← getBatches(𝑃𝑘,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒)
5: 𝑡𝑒𝑚𝑝𝑘𝑡 ← (𝑤𝑡−1, 𝑤𝑝𝑘𝑡−1)
6: for 𝑒 = 1 to 𝐸 do
7: for 𝑏 in 𝛽 do
8: 𝑡𝑒𝑚𝑝𝑘𝑡 ← 𝑡𝑒𝑚𝑝𝑘𝑡 + 𝜂∇𝑙(𝑏; 𝑡𝑒𝑚𝑝𝑘𝑡 )
9: end for

10: end for
11: (𝑤𝑘

𝑡 , 𝑤𝑝𝑘𝑡 ) ← 𝑡𝑒𝑚𝑝𝑘𝑡
12: return 𝑤𝑘

𝑡

time, the number of packets, packet length, and flag informa-
tion. Finally, in an IDS that uses supervised learning, flows
are labeled. The label can be normal or malicious, as well as
the type of malicious activity in this case.

The following section will review recent research efforts
that have employed ML/DL techniques for intrusion detec-
tion, with a particular focus on FL-based IDS approaches.

3. Related Works
The appearance of FL in 2018 stimulated research ef-

forts in distributed IDS (Lavaur et al., 2022). This section
provides a summary of some recent works closely related to
this topic.

In (Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha
and Srivastava, 2022), the authors have proposed a Recurrent
Neural Network (RNN) trained in a federated fashion to
detect anomalies in Internet of Things (IoT) networks using
the ModBus network dataset (Rysavy and Matousek, 2021).
Seven different models were trained while varying the
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window size of their time-series data; then, these models
were combined using a decision tree vote-based scheme to
classify the traffic with high confidence.
Attack detection in wireless edge-enabled networks using
FL while minimizing communication costs and ensuring
high detection performance was discussed in (Chen, Lv, Liu,
Fang, Chen and Pan, 2020). The authors leveraged attention
mechanisms applied to RNN-based DL models in their FL
training process. The use of attention is meant to increase the
weight of important devices (clients) in the training phase.
In (Zhang, He, Ma, Gao, Ma and Avestimehr, 2021), the
authors proposed an FL-based framework for intrusion
detection in the IoT context. They used a semi-supervised
scheme, where auto-encoder-based models are trained using
the FedAvg algorithm across different IoT devices. The
authors presented a method for calculating a global recon-
struction error threshold for the traffic classification task.
The authors used the NB-IoT dataset (Meidan, Bohadana,
Mathov, Mirsky, Shabtai, Breitenbacher and Elovici, 2018)
for the experiments, where data is collected from 9 IoT
devices attacked with mainly the same attacks. The FL ap-
proach outperformed the local approach while having nearly
the same performance as the centralized one, thanks to the
introduced global reconstruction error threshold approach.
The authors in (Fan, Li, Zhan, Cui and Zhang, 2020)
expressed the need of personalizing distributed DL-based
model, in the context of 5G IoT, due to IoT devices’ het-
erogeneity. The authors presented a similar approach to
FedPer, by leveraging personalized layers, that are learned
via transfer learning. At each training round, each client
performs a train with a publicly shared dataset and commu-
nicates the model weights to the server to perform the ag-
gregation (FedAvg). Then, the server returns the aggregated
model to the clients, and each client performs a training
epoch with its local data, on its personalized layers. The
process is repeated for all training rounds. Furthermore,
by utilizing a public dataset, that is shared by all clients,
the approach is somehow inspired by knowledge distillation
in FL. Four separate clients are simulating four different
networks for the experimental phase; the authors used both
IoTDataset (Kang, Ahn, Lee, Yoo, Park and Kim, 2019)
and NSLKDD (Tavallaee, Bagheri, Lu and Ghorbani, 2009)
datasets for the clients’ data and CICIDS (Sharafaldin,
Habibi Lashkari and Ghorbani, 2018) dataset for the public
dataset. The authors revealed the good results obtained by
their approach; nevertheless, the generalization aspect of
each separate model is missing, as well as a comprehensive
comparison with models trained on local data only.
The authors in (Rahman, Tout, Talhi and Mourad, 2020)
investigated the implementation of DL-based IDS models,
whether centralized, local, or based on FL. They evalu-
ated the NSLKDD dataset in IID and Non-IID partition-
ing settings. The authors reported that FedAvg obtained
comparable accuracy to the centralized approach while
outperforming the on-device models. Besides, under Non-
IID settings, FedAvg was marginally higher than on-device
and significantly exceeded by the centralized approach.

These studies have proposed FL-based approaches for
intrusion detection in cellular networks, demonstrating the
superior performance of FL models over centralized and on-
device models (Mothukuri et al., 2022; Chen et al., 2020).
Conversely, in our study, the centralized model is assumed
to be the optimal model with the best performances, and we
are attempting to get similar results using FL. In addition to
the investigation (Rahman et al., 2020), our work includes
a pathological Non-IID scenario as well as multi-class DL
model classifiers. Furthermore, we investigate various FL
aggregation algorithms that have been proposed to address
the limitations of FedAvg in heterogeneous networks.

4. Methodology
In this section, we detail our methodology to study the

FL-enabled IDS performance involving the use of DL, FL
aggregation algorithms, and the partitioning of IID and Non-
IID datasets. Before we proceed, we first introduce the sliced
5G architecture as well as the system model we considered
in this study.

4.1. Intrusions and DL based Intrusion Detection
in 5G and beyond networks

In our given scenario, a 5G network slice provides a
service, such as video streaming or Internet of Things (IoT)
application. This service is deployed on the Application
Server (AS), a network function belonging to the network
slice. End users of the slice access and utilize this service by
establishing communication with the AS. However, a poten-
tial security threat arises when an internal node, assumed to
be an attacker, attempts to compromise the AS by sending
malicious network traffic.

In the context of DL-based IDS in 5G and beyond
networks, the Network Data Analytics Function (NWDAF)
-which is a network function that supports the deployment
of DL models pipeline in the 5G network(Yuan, Gehrmann,
Sternby and Barriga, 2022)- gathers network packets from
the User Plan Function (UPF) network function that serves
as a gateway in the 5G context, and, as previously mentioned
(sub-section 2.2), transforms these network packets into net-
work flows. The flow is then analyzed using the DL model,
and the classification result is communicated to the Security
NF, in order to devise the appropriate policy, for example, in
the event of an attack.

For supervised DL training of IDS, it is essential for
the involved parts to reach a consensus on certain hyper-
parameters. These hyperparameters include the choice of
the DL architecture, class labels, and information regard-
ing normalization. Subsequently slice’s security engineers
gather elaborated flows from the NWDAF; the training is
then performed after data labeling. The DL model training
can be performed locally or collaboratively with other slices,
which include centralized and federated methods. Finally,
the DL model is deployed at the NWDAF level, and the
SecurityVNF will request the NWDAF to classify future
network traffic. Fig. 2 depicts and illustrates the whole
process.
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Figure 2: DL based IDS in 5G and Beyond : 1. NWDAF
collects traffic from UPF, 2. NWDAF generates network flows,
3. Security engineer gathers the unlabeled flows, 4. Security
engineer labels the flows and sends them back to NWDAF, 5.
Training phase: (i) Local training is done at the NWDAF level,
(ii) Centralized training: labeled flows are transmitted to the
coordinator (5.a), which performs training (5.b) and returns
the final model (5.c), (iii) FL: for each round, model weights
are transmitted to the coordinator (5.a), which performs
aggregation (5.b) and returns the aggregated model (5.c), 6.
SecurityVNF requests the NWDAF when new traffic arrives

We consider a set of 𝐾 slices (or clients following the
FL process), each slice 𝑐𝑘 has a labeled flow 𝑃𝑘; where
𝑃𝑘 = 𝑇 𝑟𝑘 ∪ 𝑇 𝑒𝑘, 𝑇 𝑟𝑘 and 𝑇 𝑒𝑘 refer to train and test set
for client 𝑘, respectively. We also define 𝑀centralized as the
centralized model, which has 𝑇 𝑟centralized and 𝑇 𝑒centralized as
training and test sets; where 𝑇 𝑟centralized = 𝑇 𝑟1 ∪ 𝑇 𝑟2 ∪⋯∪
𝑇 𝑟𝐾 and 𝑇 𝑒centralized = 𝑇 𝑒1 ∪ 𝑇 𝑒2 ∪ ⋯ ∪ 𝑇 𝑒𝐾 . For FL
approaches, slices will act as clients, and we build three FL
global models using three different aggregation algorithms
(𝑀fedavg, 𝑀fedprox and 𝑀scaffold), and 𝐾 personalized model
𝑀𝑘

fedper. Besides, 𝑀𝑘
local reflects the local models trained on

𝑇 𝑟𝑘 and 𝑇 𝑒𝑘. In order to evaluate the different DL models
𝑀𝑥, we also consider a validation dataset. We evaluate the
performance of the models (𝑀𝑥) with this validation set,
assumed as new traffic to evaluate future use.

4.2. Dataset Description and Pre-processing
In our study, we used NSLKDD dataset (Tavallaee

et al., 2009), since it was widely used by the research
community, and is considered as a reference dataset for flow-
based intrusion detection. While the dataset itself was not
originally generated within a 5G context, it is noteworthy
that the simulated communication between a user and a
server in the dataset can be assumed to occur within a 5G
infrastructure, and the data is captured at the level of the
UPF.

Figure 3: NSLKDD label distribution T: Train / V : Validation
datasets

The primary data files of NSLKDD are "KDDTrain+"
and "KDDTest+". The former will be used during the train-
ing phase this include train and test data for the different
models, while the latter will be kept for the validation phase.
The purpose of utilizing the validation dataset is to evaluate
the performance of the various models using previously
unseen data. The results related to this validation data are
depicted in Figs. 8 and 12.

The training dataset has 148,517 records with 41 features
and covers 23 different labels. The dataset is mostly made up
of normal and Neptune attack traffic, the latter is a flooding-
based denial-of-service (DoS) attack.

Fig. 3 displays the label distribution of NSLKDD dataset.
Features’ nature is either Boolean, real, or categorical. In
regard to data pre-processing, we used min-max normaliza-
tion to convert real values to a range from 0 to 1. In our
contribution, we assumed that the involved network slices
communicate their minimum local values to enable global
min-max normalization.
The dataset has three categorical features: protocol type,
service, and flag. The categorical features are encoded
between 0 and 1 using the following encoding process, e.g.

Taki Eddine Toufik Djaidja et al.: Preprint submitted to Elsevier Page 6 of 14



FL for 5G and Beyond, an Experimental Study on IDSs

the protocol type has three values: ’tcp’, ’udp’, and ’icmp’
and the corresponding value for each category equals to its
order count divided by the number of categories (3), given
that the order of counting starts from zero. Hence, the result
is {0, 13 ,

2
3}. Flow labels are indeed encoded using one-hot

encoding; at this stage, we can expect the DL model to have
41 input and 23 output sizes.

The "KDDTest+", utilized as the validation dataset in our
research, captured new types of attacks. However, our study
is constrained to the labels already present in the training
set, and these new attack labels are consequently excluded
from the validation set. While new attacks are advantageous
for binary classification (normal and abnormal), enabling
researchers to assess the efficiency of their IDS models by
training them to recognize normal behavior and label any
new attack patterns as abnormal, our study employs a multi-
class supervised learning approach to identify the specific
type of attack. For novel attack labels, however, we cannot
make predictions for these since we lack that knowledge
during the training phase.

The training dataset is partitioned into 𝐾 subsets for
the generating slices’ (clients’) data 𝑃𝑘. As explained in the
previous sub-section, each 𝑃𝑘 is further divided into training
and testing sets for the training phase of the DL models.
Meanwhile, the validation dataset 𝑉 is reserved exclusively
for the final validation of the DL models. Partitioning sce-
narios are discussed in the next subsection.

4.3. Partitioning Scenarios
In our study, we consider eight slices (𝐾 = 8), where

"KDDTrain+" dataset is partitioned according to two dif-
ferent scenarios. We chose this number of clients (𝐾 = 8)
due to practical reasons. The NSLKDD dataset, although
valuable, isn’t very large. Including more clients could have
made the dataset less representative. Thus, we decided that
having eight clients would provide a manageable dataset
size, allowing us to explore diverse scenarios effectively.
The labels distribution for both scenarios are shown in
Figs. 4 and 5.

4.3.1. IID Data-based scenario
In this scenario (Fig. 4), the "KDDTrain+" data is ran-

domly partitioned across the clients using a uniform distri-
bution, assuming that each slice has known more or less the
same nature of traffic, hence the slices undergo the same
attacks and with the same frequency.

4.3.2. Non-IID Data-based scenario
This pathological Non-IID scenario (Fig. 5), is more

realistic, where the assumption that slices undergo the same
type of attacks is not valid. So, in this scenario, we assume
that normal traffic is more or less collected with the same
distribution across slices. However, for attacks, we assume
that the traces of some attacks are only available in one slice
and not in others.

Table 1
Neural Network (𝑀𝑥 Architecture)

N Layers Size
0 Linear 41 input layer
1 Linear 128

ReLu
BatchNorm 128

2 Linear 256
ReLu

BatchNorm 256
3 Linear 128

ReLu
BatchNorm 128

3 Linear 128
ReLu

BatchNorm 128
4 Linear 64

ReLu
BatchNorm 64

5(*) Linear 32
ReLu

BatchNorm 32
6(*) Linear 23 output layer

ReLu
DropOut

4.4. Neural Network Architecture and Training
Table 1 summarizes the neural network architecture,

which is used to build all the models 𝑀𝑥 described previ-
ously.

We opted for a Multi-Layer Perceptron (MLP) architec-
ture, which is appropriate for our specific context, where we
treat each network flow as a single data point. We believe
that in other contexts where the data structure is different
(such as time series data), other DL architectures like RNNs
and Transformers may prove to be more suitable. Our DL
model has six feed-forward layers, each followed by a ReLu
activation function and a batch normalization layer, while
the output layer is succeeded by a dropout layer. In the
FedPer approach (𝑀𝑘

fedper), the layers 5(*) and 6(*) are used
as personalized layers as detailed in sub-section 2.1.4.

The majority of the rows in the training sets (𝑇 𝑟𝑘 and
𝑇 𝑟centralized) are normal and neptune, as seen in Figs. 4
and 5. To handle this unbalanced data situation, we used
weighted CrossEntropy Loss for the DL training function.
We used Stochastic Gradient Descent (SGD) as the learning
optimizer, setting the learning rate (𝜂) at 3𝑒−4. Concerning
the remaining training-related hyper-parameters, we set the
batch size to 64, the training rounds (𝑅) to 200, the number
of local epochs learning (𝐸) to 1, the proximal term for
FedProx (𝜇) to 0.3 and the step size for SCAFFOLD (𝛾) to
1. These hyper-parameters were selected following a series
of tests using a generate-and-test methodology for hyper-
parameter tuning.
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Figure 4: IID Scenario Label distribution over 𝐾 clients, (𝑇 𝑟𝑘,𝑇 𝑒𝑘)

5. Experimental Study and Results
This section presents the experimental study and evalu-

ates the performances of different DL models 𝑀𝑋 on top
of both IID and Non-IID scenarios (sub-sections 5.1 and
5.2 respectively) and different aggregation algorithms. We
conducted the model training and experiments using the

PyTorch1 framework on a system with the configuration:
Intel Core i7-10700, 32GB RAM, Nvidia RTX 3070.

5.1. IID-based Scenario
Fig. 6 depicts the training classification loss, the weighted

cross entropy as mentioned previously, during each training
round/epoch of the different DL models (𝑀𝑋) for IID
scenario, with the lines and dashed lines in the graph

1pytorch.org/
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Figure 5: Non-IID Scenario Label distribution over 𝐾 clients, (𝑇 𝑟𝑘,𝑇 𝑒𝑘)

representing the average loss on the training (𝑇 𝑟𝑘) and test
(𝑇 𝑒𝑘) sets at each round/epoch, respectively. Furthermore,
the colored contour shows the confidence interval of the
train loss average. It is calculated as the average plus-
minus the standard deviation of the loss in (𝑇 𝑟𝑘); this
confidence interval presents insight about the loss trend
across all clients. The four FL models in this scenario
converge at the same pace, which is promising. Another
interesting aspect is that the confidence interval is so tight,

that the loss standard variation is ≈ 0. This implies that
the loss value is approximately the same for all clients at
each round, simply due to the similar distribution in this
training scenario. We also remark that both centralized
and local models converge at around the 25th epoch. But,
they then started to over-fit the training data set, due to
over-training of the model, which led to over-fitting of the
common labels (normal and Neptune). Another reason is the
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Figure 6: IID LOSS.

Figure 7: IID Accuracy.

weighted loss function, which penalizes the error on the non-
dominant labels more. Furthermore, the centralized model
outperforms the other models, despite the fact that they all
have the same distribution. This is because the centralized
model has a complete view of all the distinct traces of the
different labels.

Fig. 7 displays the 𝑀𝑋’s accuracy during the training
process. We clearly observe that both the centralized and
local models provide the best results. The previously men-
tioned minor over-fitting between train and test does not
appear, because the accuracy calculation is not weighted,
and non-dominant labels have the least impact on this metric.
In addition, most of the federated methods progress toward
the same acceptable accuracy of 95 (≈ 95%); FedPer and
SCAFFOLD converge the slowest, however after a few
rounds (25), they start to follow the converging tendency like
other FL approaches.

The models’ efficiency is evaluated by showing how they
perform on a validation dataset. Accuracy in validation data
is shown in Fig. 8. The accuracy values of the global models
(𝑀centralized, 𝑀fedavg, 𝑀fedprox and 𝑀scaffold) are identical
throughout all clients, while for FedPer and local models
(𝑀𝑘

fedper, 𝑀
𝑘
local) they are proper to each client 𝑘. We can see

that all models achieved the same performances (≈ 80%).

Figure 8: IID Accuracy on validation dataset.

Figure 9: Non-IID LOSS

The federated techniques were able to deliver similar results
as the centralized approach, which is the purpose of FL.
However, the same outcomes were also obtained by local
training, putting into question the necessity of collaboration
in this scenario.

5.2. Non-IID-based Scenario
Similarly to the previous scenario, we elaborate on the

same evaluation/analysis for the Non-IID scenario. The
(𝑀𝑋)s’ train/test loss is presented in Fig. 9. The average
loss (represented in the Fig. by the lines and dashed lines)
for FedAvg and FedProx stays unchanged at (≈ 2) and
does not decrease. Secondly, after 100 rounds, these two
approaches’ average standard deviation values are (≈ 0.8),
indicating a large confidence interval. This signifies that the
classification loss is not uniform across clients, with certain
clients achieving good error scores, while others do not.
Meanwhile, SCAFFOLD shows lower train/test loss rates
(≈ 1) compared to FedProx and FedAvg. Additionally, it has
the narrowest confidence interval, with an average standard
deviation of (≈ 0.17), indicating that 𝑀scaffold achieves
almost the same error rate for all clients.

Fig. 10 displays the training loss over the 𝐾 clients for
FedProx and SCAFFOLD and clearly illustrates these find-
ings. For SCAFFOLD, we can see that the loss is descending
equitably (to ≈ 1) for all clients, but FedProx is converging
just for clients 1 and 2. However, the loss sticks and does

Taki Eddine Toufik Djaidja et al.: Preprint submitted to Elsevier Page 10 of 14



FL for 5G and Beyond, an Experimental Study on IDSs

Figure 10: SCAFFOLD Vs FedProx loss

not decrease for other clients, indicating poor learning. Both
clients 1 and 2 contain normal and Neptune labels; FedProx
is forced to converge to a model that fits these two labels
while diverging from the optimal model that is expected to
learn all labels.

FedPer has the lowest loss when compared to other FL
approaches. Each personalized model achieves the minimum
loss on its train/test data, with an average loss of less than
0.5. These values were not previously obtained with other
FL models. However, before the validation process, it is too
early to make any conclusions. Local models also provide
good results, with a narrower confidence interval than the
centralized approach. This is because each client has a
limited number of labels, which makes it easier for 𝑀𝑘

local to
learn labels of 𝑇 𝑟𝑘/𝑇 𝑒𝑘. For example, client 1 must learn just
normal and Neptune. Also, for the same reasons indicated
in the IID experiments (see subsection 5.1), the centralized
model produces the best performance.

The accuracy graph (Fig. 11) aligns with the loss graph.
The accuracy of centralized and local models is close to
100%. Moreover, an interesting observation is that FedPer
is showing comparable performances. FedAvg and FEDProx
have a large confidence interval and an accuracy of approx-
imately (80%); while SCAFFOLD reaches (90%) accuracy
with a small confidence interval, it outperforms both FedAvg
and FedProx.

In the next paragraphs, we present and discuss the valida-
tion phase. We first investigate personalized models (FedPer
and local models) and as shown in Fig. 12,𝑀𝑘

fedper and𝑀𝑘
local

models achieve the same accuracy rates over all clients 𝐾 .
𝑀1,2

fedper and 𝑀1,2
local models learn well the Neptune attack

since it is frequent in 𝑇 𝑟1,2, but also in the validation dataset.
This explains why 𝑀1,2

fedper and 𝑀1,2
local have high accuracy

rates on the validation data (≈ 70%). Nonetheless, we notice
that employing FedPer does not lead in any knowledge shar-
ing between the different 𝑀𝑘

fedper, as seen by poor accuracy
rates for clients 𝑐3..𝑐8. We find that the personalized layers
(𝑤𝑝𝑘) trained via transfer learning force the 𝑀𝑘

fedper model
to generate a model similar to the local one (𝑀𝑘

local). This
finding also explains why FedPer performs better across the
different 𝑇 𝑟𝑘/𝑇 𝑒𝑘; each personalized model 𝑀𝑘

fedper has lost
its generalization ability and is over-fitting its locally known
labels.

Table 2 contains the validation results for the remaining
global models, including the true positives (TP), true posi-
tives rate (TPR), positive predictive value (PPV) aka preci-
sion, and F1 score metrics for each label in the validation
dataset; please refer to (Naser and Alavi, 2021) for further
details on these metrics. The three FL models perform well
in learning the normal and Neptune labels, but only FedAvg
and SCAFFOLD can do so for the Nmap label (label 3 in
Table 2). SCAFFOLD outperforms FedAvg and FedProx
for labels 4 to 7. For example, SCAFFOLD can efficiently
learn the Pod attack, which is not frequent in the training
dataset. However, labels 8-13 are unfortunately not learned
by the FL models; while the centralized model identifies
those labels adequately, the FL models ignore them. This
demonstrates the current limitations of FL approaches to
deal with pathological Non-IID contexts.

Meanwhile, the centralized model fails to detect labels
14-20, which may be due to various reasons, including the

Taki Eddine Toufik Djaidja et al.: Preprint submitted to Elsevier Page 11 of 14



FL for 5G and Beyond, an Experimental Study on IDSs

Figure 11: Non-IID Accuracy

Figure 12: Local and FedPer accuracy on validation dataset
in Non-IID scenario.

pre-processing and encoding processes, the quantity/quality
of training data, the DL architecture, etc. However, this
study aims to compare the effectiveness of FL models with
the centralized approach. The centralized approach is as-
sumed to be optimal with satisfactory results (labels 1-13).
In the previous paragraphs, we showed that SCAFFOLD
outperformed the other FL-based aggregation approaches
and maybe a solution for a stable convergence to an opti-
mal model (which could be similar to the centralized one).
Even so, further enhancement of the control mechanisms is
required to overcome SCAFFOLD’s limitations (e.g. labels
8-13).

6. Discussion and Conclusion
FL is a key enabler in 5G and future networks, intending

to allow cognitive intelligence across various slices while
maintaining the privacy of each slice’s data. FedAvg was the
first proposed method that showed limitations when dealing
with Non-IID data. As a result, several techniques were
designed, notably FedPer, FedProx, and SCAFFOLD.

We showed that for IID scenario, FL algorithms per-
formed effectively. However, similar results were also ob-
tained when each slice trains a model with only its local data.
In reality, uniform sampling gives the same label distribution
throughout slices, resulting in equivalent local and federated

training models. The efficacy of FL, consequently, cannot be
measured in this scenario.

In the second scenario, we considered a more realistic
scenario in which the label distribution is not identical across
FL clients (Non-IID scenario). We revealed that FedAvg
converged for a limited number of clients’ data while di-
verging in others, asserting that the model was forced to
learn only a specific set of labels while ignoring the others.
This results in poor loss decreasing during training. Fed-
Prox surpassed FedAvg; however, FedProx, like FedAvg,
has the same previous issue even though it has a control-
ling mechanism to deal with it. SCAFFOLD was the only
global model that provided stable convergence across the FL
clients; SCAFFOLD outperformed other FL approaches.

We also showed that FedPer training via transfer learning
tends to replicate local models and over-fit the local data.
This approach is not yet mature since it loses generalization
potential. Despite this, we can envision FedPer being a
solution in cases where the same sample has different client
labels. This requires further investigation to locate these
reflective labels and perform transfer learning to encounter
this situation.

While classifying new attack traffic, which was not previ-
ously known (referred to as ’unknown unknowns’), remains
a challenge for deep learning-based models when trained
in a centralized manner, FL currently faces difficulties in
sharing knowledge to classify the ’known unknowns.’ It
struggles to deliver a global model capable of providing
similar capabilities to centralized models due to statistical
heterogeneity.

We believe that the current limitations related to statis-
tical heterogeneity of FL in enabling cognitive knowledge
in realistic scenarios extend beyond intrusion detection ap-
plications. They may also manifest in other areas relying
on FL in 5G and beyond networks, including edge and fog
computing.

These challenges pose potential obstacles to the real-
ization of self-X networks, where future networks must
autonomously plan, configure, manage, optimize, and self-
heal. Therefore, to effectively address the issue of statistical
heterogeneity in FL, it is imperative to allocate additional
research efforts toward enhancing FL aggregation method-
ologies. One promising avenue involves exploring con-
trol systems similar to SCAFFOLD. Investigating control
mechanisms for FL and developing sophisticated control
strategies that adapt to the dynamic nature of FL systems
can help maintain model stability and prevent issues related
to model weight divergence. Another promising approach
is to delve into metalearning within the context of FL.
Metalearning equips FL models with the ability to quickly
adapt to new environments, making them more versatile
and efficient. This adaptability is particularly valuable in
5G and beyond networks characterized by heterogeneous
conditions.

In this paper, we suggest an architecture for IDSs in
the context of multi-slice 5G and beyond networks, discuss
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Table 2
Detection metrics for FedAVG,FedProx,SCAFFOLD and Centralised models

label N FAVG FPROX SCA CEN
TP TPR PPV F1 TP TPR PPV F1 TP TPR PPV F1 TP TPR PPV F1

1 normal 9711 9645 0.99 0.72 0.83 9642 0.99 0.71 0.83 9623 0.99 0.72 0.84 9199 0.95 0.82 0.88
2 neptune 4657 1457 0.31 1.00 0.48 1507 0.32 0.97 0.49 1426 0.31 1.00 0.47 4567 0.98 1.00 0.99
3 nmap 73 71 0.97 0.66 0.79 0 0.00 / / 67 0.92 0.28 0.43 73 1.00 0.55 0.71
4 satan 735 397 0.54 0.68 0.60 372 0.51 0.85 0.63 490 0.67 0.82 0.74 457 0.62 0.74 0.68
5 prtswep 157 90 0.57 0.03 0.06 99 0.63 0.26 0.37 119 0.76 0.61 0.67 144 0.92 0.41 0.56
6 pod 41 0 0.00 / / 0 0.00 / / 25 0.61 0.60 0.60 35 0.85 0.73 0.79
7 land 7 3 0.43 0.33 0.38 1 0.14 0.08 0.10 7 1.00 0.00 0.01 5 0.71 1.00 0.83
8 smurf 665 0 0.00 0.00 / 0 0.00 / / 8 0.01 0.53 0.02 656 0.99 0.97 0.98
9 back 359 2 0.01 0.67 0.01 0 0.00 0.00 / 0 0.00 / / 324 0.90 0.58 0.71
10 ipswep 141 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 / 138 0.98 0.93 0.96
11 tear 12 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 / 11 0.92 0.21 0.34
12 phf 2 0 0.00 / / 0 0.00 0.00 / 0 0.00 / / 1 0.50 0.14 0.22
13 perl 2 0 0.00 0.00 / 0 0.00 / / 0 0.00 / / 1 0.50 0.09 0.15
14 rtkit 13 0 0.00 / / 0 0.00 / / 0 0.00 / / 0 0.00 0.00 /
15 imap 1 0 0.00 / / 0 0.00 0.00 / 0 0.00 / / 0 0.00 0.00 /
16 buffer 20 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 /
17 guess 1231 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 /
18 mlthop 18 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 / 1 0.06 0.06 0.06
19 ldmdle 2 0 0.00 / / 0 0.00 0.00 / 0 0.00 0.00 / 0 0.00 0.00 /
20 ftp 3 0 0.00 / / 0 0.00 / / 0 0.00 0.00 / 0 0.00 0.00 /

and experiment with various state-of-the-art FL aggregation
approaches to intrusion detection, and finally, emphasize the
limitations of FL as it stands at present.
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