Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence.
Oudin, Anais; Moreno-Sanchez, Pilar M; Baus, Virginieet al.
[en] BACKGROUND: Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs). METHODS: We derived a cohort of 46 GBM PDOX models that faithfully recapitulate human disease in mice. We assessed the detection and quantification of intracranial tumors using magnetic resonance imaging (MRI).To evaluate feasibility of surgical resection in PDOXs, we selected two models representing histopathological features of GBM tumors, including diffuse growth into the mouse brain. Surgical resection in the mouse brains was performed based on MRI-guided coordinates. Survival study followed by MRI and immunohistochemistry-based evaluation of recurrent tumors allowed for assessment of clinically relevant parameters. RESULTS: We demonstrate the utility of MRI for the noninvasive assessment of in vivo tumor growth, preoperative programming of resection coordinates and follow-up of tumor recurrence. We report tumor detection by MRI in 90% of GBM PDOX models (36/40), of which 55% (22/40) can be reliably quantified during tumor growth. We show that a surgical resection protocol in mice carrying diffuse primary GBM tumors in the brain leads to clinically relevant outcomes. Similar to neurosurgery in patients, we achieved a near total to complete extent of tumor resection, and mice with resected tumors presented significantly increased survival. The remaining unresected GBM cells that invaded the normal mouse brain prior to surgery regrew tumors with similar histopathological features and tumor microenvironments to the primary tumors. CONCLUSIONS: Our data positions GBM PDOXs developed in mouse brains as a valuable preclinical model for conducting therapeutic studies that involve surgical tumor resection. The high detectability of tumors by MRI across a substantial number of PDOX models in mice will allow for scalability of our approach toward specific tumor types for efficacy studies in precision medicine-oriented approaches. Additionally, these models hold promise for the development of enhanced image-guided surgery protocols.
Disciplines :
Oncology
Author, co-author :
Oudin, Anais; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
Moreno-Sanchez, Pilar M; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. ; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, L-4367, Luxembourg.
Baus, Virginie; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
NICLOU, Simone P. ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) ; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
GOLEBIEWSKA, Anna ; University of Luxembourg ; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Anna.Golebiewska@lih.lu.
External co-authors :
yes
Language :
English
Title :
Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence.
Publication date :
02 January 2024
Journal title :
BMC Cancer
eISSN :
1471-2407
Publisher :
BioMed Central, London, United Kingdom
Volume :
24
Issue :
1
Pages :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funding number :
C20/BM/14646004/GLASSLUX/Fonds National de la Recherche Luxembourg/; PRIDE19/14254520/i2TRON/Fonds National de la Recherche Luxembourg/
Gavin PR, Kraft SL, Wendling LR, Miller DL. Canine spontaneous brain tumors–a large animal model for BNCT. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft. 1989;165(2–3):225–8.
Weber K, Garman RH, Germann PG, Hardisty JF, Krinke G, Millar P, Pardo ID. Classification of neural tumors in laboratory rodents, emphasizing the rat. Toxicol Pathol. 2011;39(1):129–51. DOI: 10.1177/0192623310392249
Dagle GE, Zwicker GM, Renne RA. Morphology of spontaneous brain tumors in the rat. Vet Pathol. 1979;16(3):318–24. DOI: 10.1177/030098587901600305
Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68. DOI: 10.1038/nrc.2016.140
Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM, Sakariassen PO, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neurooncology. 2012;14(8):979–93.
Ren L, Huang S, Beck J, LeBlanc AK. Impact of limb amputation and cisplatin chemotherapy on metastatic progression in mouse models of osteosarcoma. Sci Rep. 2021;11(1):24435. DOI: 10.1038/s41598-021-04018-9
Gast CE, Shaw AK, Wong MH, Coussens LM. Surgical procedures and Methodology for a preclinical murine model of De Novo Mammary Cancer Metastasis. J Vis Exp. 2017(125).
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling Pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188554. DOI: 10.1016/j.bbcan.2021.188554
Linxweiler J, Hajili T, Zeuschner P, Menger MD, Stockle M, Junker K, Saar M. Primary Tumor resection decelerates Disease Progression in an Orthotopic Mouse Model of metastatic Prostate Cancer. Cancers (Basel). 2022;14(3).
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neurooncology. 2021;23(8):1231–51.
Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of Maximal Extent of Resection of contrast-enhanced and non-contrast-enhanced Tumor with Survival within Molecular subgroups of patients with newly diagnosed Glioblastoma. JAMA Oncol. 2020;6(4):495–503. DOI: 10.1001/jamaoncol.2019.6143
Rao G. Intraoperative MRI and maximizing extent of Resection. Neurosurg Clin North Am. 2017;28(4):477–85. DOI: 10.1016/j.nec.2017.05.003
Eseonu CI, Rincon-Torroella J, ReFaey K, Lee YM, Nangiana J, Vivas-Buitrago T, Quinones-Hinojosa A. Awake craniotomy vs craniotomy under General Anesthesia for Perirolandic Gliomas: evaluating Perioperative Complications and Extent of Resection. Neurosurgery. 2017;81(3):481–9. DOI: 10.1093/neuros/nyx023
Coburger J, Hagel V, Wirtz CR, Konig R. Surgery for Glioblastoma: impact of the combined use of 5-Aminolevulinic acid and Intraoperative MRI on extent of Resection and Survival. PLoS ONE. 2015;10(6):e0131872. DOI: 10.1371/journal.pone.0131872
Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D et al. Advances in Brain Tumor Surgery for Glioblastoma in adults. Brain Sci. 2017;7(12).
Otvos B, Alban TJ, Grabowski MM, Bayik D, Mulkearns-Hubert EE, Radivoyevitch T, et al. Preclinical modeling of Surgery and steroid therapy for Glioblastoma reveals changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clin Cancer Res. 2021;27(7):2038–49. DOI: 10.1158/1078-0432.CCR-20-3262
Sheets KT, Bago JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137).
Sweeney KJ, Jarzabek MA, Dicker P, O’Brien DF, Callanan JJ, Byrne AT, Prehn JH. Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods. 2014;233:99–104. DOI: 10.1016/j.jneumeth.2014.05.006
Knudsen AM, Halle B, Cedile O, Burton M, Baun C, Thisgaard H, et al. Surgical resection of glioblastomas induces pleiotrophin-mediated self-renewal of glioblastoma stem cells in recurrent tumors. Neurooncology. 2022;24(7):1074–87.
Pacioni S, D’Alessandris QG, Giannetti S, Della Pepa GM, Offi M, Giordano M et al. 5-Aminolevulinic acid (5-ALA)-Induced protoporphyrin IX fluorescence by glioma Cells-A fluorescence Microscopy Clinical Study. Cancers (Basel). 2022;14(12).
Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, et al. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget. 2017;8(7):12145–57. DOI: 10.18632/oncotarget.14553
Oudin A, Baus V, Barthelemy V, Fabian C, Klein E, Dieterle M, et al. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. STAR Protoc. 2021;2(2):100534. DOI: 10.1016/j.xpro.2021.100534
Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020;140(6):919–49. DOI: 10.1007/s00401-020-02226-7
Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77. DOI: 10.1038/sj.bjc.6605642
Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9(5):e96801. DOI: 10.1371/journal.pone.0096801
Bougnaud S, Golebiewska A, Oudin A, Keunen O, Harter PN, Mader L, et al. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget. 2016;7(22):31955–71. DOI: 10.18632/oncotarget.7454
Radaelli E, Ceruti R, Patton V, Russo M, Degrassi A, Croci V, et al. Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of Glioblastoma Multiforme recapitulating the most salient features of human Disease. Histol Histopathol. 2009;24(7):879–91.
Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NH, Nicot N, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 2014;127(2):203–19. DOI: 10.1007/s00401-013-1196-4
Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic Tumor plasticity shaped by the microenvironment. Nat Commun. 2019;10(1):1787. DOI: 10.1038/s41467-019-09853-z
Golebiewska A, Bougnaud S, Stieber D, Brons NH, Vallar L, Hertel F, et al. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain. 2013;136(Pt 5):1462–75. DOI: 10.1093/brain/awt025
Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, et al. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med. 2017;9(12):1681–95. DOI: 10.15252/emmm.201707729
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Kyriakis D, Grzyb K et al. Glioblastoma-instructed microglia transit to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. bioRxiv. 2023:2023.03.05.531162.
Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115–31. DOI: 10.1007/s00401-014-1352-5
Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, et al. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer. 2017;117(6):813–25. DOI: 10.1038/bjc.2017.263
Sheets KT, Bagó JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137).
Tang B, Foss K, Lichtor T, Phillips H, Roy E. Resection of orthotopic murine brain glioma. Neuroimmunol Neuroinflammation. 2021;8(1):64–9.
Hingtgen S, Figueiredo JL, Farrar C, Duebgen M, Martinez-Quintanilla J, Bhere D, Shah K. Real-time multi-modality imaging of glioblastoma Tumor resection and recurrence. J Neurooncol. 2013;111(2):153–61. DOI: 10.1007/s11060-012-1008-z
Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. Correlation of the extent of Tumor volume resection and patient survival in Surgery of Glioblastoma Multiforme with high-field intraoperative MRI guidance. Neurooncology. 2011;13(12):1339–48.
De Bonis P, Anile C, Pompucci A, Fiorentino A, Balducci M, Chiesa S, et al. The influence of Surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg. 2013;115(1):37–43. DOI: 10.1016/j.clineuro.2012.04.005
Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the Tumor resection cavity induce cell death in gliomas. Nat Neurosci. 2011;15(2):197–204. DOI: 10.1038/nn.3019
Hoogstrate Y, Draaisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, et al. Transcriptome analysis reveals Tumor microenvironment changes in glioblastoma. Cancer Cell. 2023;41(4):678–92. e7. DOI: 10.1016/j.ccell.2023.02.019
Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184–99e16. DOI: 10.1016/j.cell.2022.04.038
Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, et al. Transport of 5-aminolevulinic acid between blood and brain. Brain Res. 2003;959(2):226–34. DOI: 10.1016/S0006-8993(02)03749-6
Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neurooncology. 2021.