[en] Malignant gliomas including Glioblastoma (GBM) are characterized by extensive diffuse tumor cell infiltration throughout the brain, which represents a major challenge in clinical disease management. While surgical resection is beneficial for patient outcome, it is well recognized that tumor cells at the invasive front or beyond stay behind and constitute a major source of tumor recurrence. Invasive glioma cells also represent a difficult therapeutic target since they are localized within normal functional brain areas with an intact blood brain barrier (BBB), thereby excluding most systemic drug treatments. Cell movement is mediated via the actin cytoskeleton where corresponding membrane protrusions play essential roles. This review provides an overview of the various paths of glioma cell invasion and underlines the specific aspects of the brain microenvironment. We highlight recent insight into tumor microtubes, neuro-glioma synapses and tumor metabolism which can regulate collective invasion processes. We also focus on the deregulation of actin cytoskeleton-related components in the context of glioma invasion, a deregulation that may be controlled by genomic alterations in tumor cells as well as by various external factors, including extracellular matrix (ECM) components and non-malignant stromal cells. Finally we critically assess the challenges and opportunities for therapeutically targeting glioma cell invasion.
Disciplines :
Oncology
Author, co-author :
Fabian, Carina; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg, Department of Biomedicine, University of Bergen, Bergen, Norway.
Han, Mingzhi; Department of Biomedicine, University of Bergen, Bergen, Norway, Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
Bjerkvig, Rolf; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg, Department of Biomedicine, University of Bergen, Bergen, Norway. Electronic address: rolf.bjerkvig@uib.no.
NICLOU, Simone P. ; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg, Department of Biomedicine, University of Bergen, Bergen, Norway. Electronic address: simone.niclou@lih.lu.
External co-authors :
yes
Language :
English
Title :
Novel facets of glioma invasion.
Publication date :
2021
Journal title :
International Review of Cell and Molecular Biology
Al Absi, A., Wurzer, H., Guerin, C., Hoffmann, C., Moreau, F., Mao, X., Brown-Clay, J., Petrolli, R., Casellas, C.P., Dieterle, M., Thiery, J.P., Chouaib, S., Berchem, G., Janji, B., Thomas, C., Actin cytoskeleton remodeling drives breast cancer cell escape from natural killer-mediated cytotoxicity. Cancer Res. 78 (2018), 5631–5643.
Alexandrova, A.Y., Chikina, A.S., Svitkina, T.M., Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. International Review of Cell and Molecular Biology (this issue), 2020, Academic Press in press.
Ayanlaja, A.A., Xiong, Y., Gao, Y., Ji, G., Tang, C., Abdikani Abdullah, Z., Gao, D., Distinct features of Doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Front. Mol. Neurosci., 10, 2017, 199.
Bamburg, J.R., McGough, A., Ono, S., Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9 (1999), 364–370.
Baucum, A.J. 2nd, Jalan-Sakrikar, N., Jiao, Y., Gustin, R.M., Carmody, L.C., Tabb, D.L., Ham, A.J., Colbran, R.J., Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol. Cell. Proteomics 9 (2010), 1243–1259.
Berges, R., Balzeau, J., Peterson, A.C., Eyer, J., A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis. Mol. Ther. 20 (2012), 1367–1377.
Berghoff, A.S., Rajky, O., Winkler, F., Bartsch, R., Furtner, J., Hainfellner, J.A., Goodman, S.L., Weller, M., Schittenhelm, J., Preusser, M., Invasion patterns in brain metastases of solid cancers. Neuro Oncol. 15 (2013), 1664–1672.
Bernard, O., Lim kinases, regulators of actin dynamics. Int. J. Biochem. Cell Biol. 39 (2007), 1071–1076.
Biber, G., Ben-Shmuel, A., Sabag, B., Barda-Saad, M., Actin regulators in cancer progression and metastases: from structure and function to cytoskeletal dynamics. International Review of Cell and Molecular Biology (this issue), 2020, Academic Press in press.
Biolato, A.M., Filali, L., Wurzer, H., Hoffmann, C., Gargiulo, E., Valitutti, S., Thomas, C., Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. International Review of Cell and Molecular Biology, first ed., 356, 2020, Academic Press.
Blockus, H., Chédotal, A., Slit-Robo signaling. Development 143 (2016), 3037–3044.
Bowman, R.L., Wang, Q., Carro, A., Verhaak, R.G.W., Squatrito, M., GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 19 (2017), 139–141.
Cardoso, L.C., Soares, R.D.S., Laurentino, T.S., Lerario, A.M., Marie, S.K.N., Oba-Shinjo, S.M., CD99 expression in glioblastoma molecular subtypes and role in migration and invasion. Int. J. Mol. Sci., 20, 2019, 1137.
Cheerathodi, M., Avci, N.G., Guerrero, P.A., Tang, L.K., Popp, J., Morales, J.E., Chen, Z., Carnero, A., Lang, F.F., Ballif, B.A., Rivera, G.M., McCarty, J.H., The cytoskeletal adapter protein spinophilin regulates invadopodia dynamics and tumor cell invasion in glioblastoma. Mol. Cancer Res. 14 (2016), 1277–1287.
Chen, W., Xia, T., Wang, D., Huang, B., Zhao, P., Wang, J., Qu, X., Li, X., Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget 7 (2016), 62425–62438.
Clark, E.S., Whigham, A.S., Yarbrough, W.G., Weaver, A.M., Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 67 (2007), 4227–4235.
Cloughesy, T.F., Lassman, A.B., NovoTTF: where to go from here?. Neuro Oncol. 19 (2017), 605–608.
Colin, C., Voutsinos-Porche, B., Nanni, I., Fina, F., Metellus, P., Intagliata, D., Baeza, N., Bouvier, C., Delfino, C., Loundou, A., Chinot, O., Lah, T., Kos, J., Martin, P.M., Ouafik, L., Figarella-Branger, D., High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol. 118 (2009), 745–754.
Cuddapah, V.A., Turner, K.L., Seifert, S., Sontheimer, H., Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J. Neurosci. 33 (2013), 1427–1440.
Cuddapah, V.A., Robel, S., Watkins, S., Sontheimer, H., A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15 (2014), 455–465.
Dandy, W.E., Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA 90 (1928), 823–825.
Daubon, T., Léon, C., Clarke, K., Andrique, L., Salabert, L., Darbo, E., Pineau, R., Guérit, S., Maitre, M., Dedieu, S., Jeanne, A., Bailly, S., Feige, J.-J., Miletic, H., Rossi, M., Bello, L., Falciani, F., Bjerkvig, R., Bikfalvi, A., Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat. Commun., 10, 2019, 1146.
De Gooijer, M.C., Guillen Navarro, M., Bernards, R., Wurdinger, T., Van Tellingen, O., An Experimenter's guide to glioblastoma invasion pathways. Trends Mol. Med. 24 (2018), 763–780.
Disanza, A., Mantoani, S., Hertzog, M., Gerboth, S., Frittoli, E., Steffen, A., Berhoerster, K., Kreienkamp, H.J., Milanesi, F., Di Fiore, P.P., Ciliberto, A., Stradal, T.E., Scita, G., Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat. Cell Biol. 8 (2006), 1337–1347.
Fack, F., Tardito, S., Hochart, G., Oudin, A., Zheng, L., Fritah, S., Golebiewska, A., Nazarov, P.V., Bernard, A., Hau, A.C., Keunen, O., Leenders, W., Lund-Johansen, M., Stauber, J., Gottlieb, E., Bjerkvig, R., Niclou, S.P., Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol. Med. 9 (2017), 1681–1695.
Friedl, P., Wolf, K., Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188 (2010), 11–19.
Friedl, P., Locker, J., Sahai, E., Segall, J.E., Classifying collective cancer cell invasion. Nat. Cell Biol. 14 (2012), 777–783.
Giese, A., Bjerkvig, R., Berens, M.E., Westphal, M., Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21 (2003), 1624–1636.
Giladi, M., Schneiderman, R.S., Voloshin, T., Porat, Y., Munster, M., Blat, R., Sherbo, S., Bomzon, Z., Urman, N., Itzhaki, A., Cahal, S., Shteingauz, A., Chaudhry, A., Kirson, E.D., Weinberg, U., Palti, Y., Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci. Rep., 5, 2015, 18046.
Gunal, A., Onguru, O., Safali, M., Beyzadeoglu, M., Fascin expression [corrected] in glial tumors and its prognostic significance in glioblastomas. Neuropathology 28 (2008), 382–386.
Haeger, A., Wolf, K., Zegers, M.M., Friedl, P., Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 25 (2015), 556–566.
Hagemann, C., Anacker, J., Ernestus, R.I., Vince, G.H., A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J. Clin. Oncol. 3 (2012), 67–79.
Hatoum, A., Mohammed, R., Zakieh, O., The unique invasiveness of glioblastoma and possible drug targets on extracellular matrix. Cancer Manag. Res. 11 (2019), 1843–1855.
Hefendehl, J.K., Neher, J.J., Suhs, R.B., Kohsaka, S., Skodras, A., Jucker, M., Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13 (2014), 60–69.
Held-Feindt, J., Paredes, E.B., Blomer, U., Seidenbecher, C., Stark, A.M., Mehdorn, H.M., Mentlein, R., Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int. J. Cancer 118 (2006), 55–61.
Hilpelä, P., Oberbanscheidt, P., Hahne, P., Hund, M., Kalhammer, G., Small, J.V., Bahler, M., SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol. Biol. Cell 14 (2003), 3242–3253.
Hilton, D.M., Aguilar, R.M., Johnston, A.B., Goode, B.L., Species-specific functions of twinfilin in actin filament depolymerization. J. Mol. Biol. 430 (2018), 3323–3336.
Hoa, N.T., Ge, L., Erickson, K.L., Kruse, C.A., Cornforth, A.N., Kuznetsov, Y., McPherson, A., Martini, F., Jadus, M.R., Fascin-1 knock-down of human glioma cells reduces their microvilli/filopodia while improving their susceptibility to lymphocyte-mediated cytotoxicity. Am. J. Transl. Res. 7 (2015), 271–284.
Holdhoff, M., Ye, X., Supko, J.G., Nabors, L.B., Desai, A.S., Walbert, T., Lesser, G.J., Read, W.L., Lieberman, F.S., Lodge, M.A., Leal, J., Fisher, J.D., Desideri, S., Grossman, S.A., Wahl, R.L., Schiff, D., Timed sequential therapy of the selective T-type calcium channel blocker mibefradil and temozolomide in patients with recurrent high-grade gliomas. Neuro Oncol. 19 (2017), 845–852.
Hou, X., Katahira, T., Ohashi, K., Mizuno, K., Sugiyama, S., Nakamura, H., Coactosin accelerates cell dynamism by promoting actin polymerization. Dev. Biol. 379 (2013), 53–63.
Hwang, J.H., Smith, C.A., Salhia, B., Rutka, J.T., The role of fascin in the migration and invasiveness of malignant glioma cells. Neoplasia 10 (2008), 149–159.
Ikeda, K., Kundu, R.K., Ikeda, S., Kobara, M., Matsubara, H., Quertermous, T., Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ. Res. 99 (2006), 424–433.
Jacquemet, G., Hamidi, H., Ivaska, J., Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36 (2015), 23–31.
Johnston, A.B., Hilton, D.M., McConnell, P., Johnson, B., Harris, M.T., Simone, A., Amarasinghe, G.K., Cooper, J.A., Goode, B.L., A novel mode of capping protein-regulation by twinfilin. eLife, 7, 2018, e41313.
Jung, E., Alfonso, J., Osswald, M., Monyer, H., Wick, W., Winkler, F., Emerging intersections between neuroscience and glioma biology. Nat. Neurosci. 22 (2019), 1951–1960.
Karim, R., Lepeltier, E., Esnault, L., Pigeon, P., Lemaire, L., Lépinoux-Chambaud, C., Clere, N., Jaouen, G., Eyer, J., Piel, G., Passirani, C., Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. Nanoscale 10 (2018), 13485–13501.
Keir, S.T., Chandramohan, V., Hemphill, C.D., Grandal, M.M., Melander, M.C., Pedersen, M.W., Horak, I.D., Kragh, M., Desjardins, A., Friedman, H.S., Bigner, D.D., Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models. J. Neurooncol 138 (2018), 489–498.
Keller, S., Schmidt, M.H.H., EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: combination therapies for an effective treatment. Int. J. Mol. Sci., 18, 2017, 1295.
Kim, E.H., Song, H.S., Yoo, S.H., Yoon, M., Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget 7 (2016), 65125–65136.
Kirson, E.D., Dbalý, V., Tovaryš, F., Vymazal, J., Soustiel, J.F., Itzhaki, A., Mordechovich, D., Steinberg-Shapira, S., Gurvich, Z., Schneiderman, R., Wasserman, Y., Salzberg, M., Ryffel, B., Goldsher, D., Dekel, E., Palti, Y., Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. 104 (2007), 10152–10157.
Kissling, C., Di Santo, S., Tumor treating fields—behind and beyond inhibiting the cancer cell cycle. CNS Neurol. Disord. Drug Targets, 19, 2020 (online ahead of print).
Kobayashi, M., Nishita, M., Mishima, T., Ohashi, K., Mizuno, K., MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 25 (2006), 713–726.
Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., Hall, A., Cdc42 induces filopodia by promoting the formation of an IRSp53: mena complex. Curr. Biol. 11 (2001), 1645–1655.
Kühn, S., Geyer, M., Formins as effector proteins of Rho GTPases. Small GTPases, 5, 2014, e29513.
Kwiatkowska, A., Didier, S., Fortin, S., Chuang, Y., White, T., Berens, M.E., Rushing, E., Eschbacher, J., Tran, N.L., Chan, A., Symons, M., The small GTPase RhoG mediates glioblastoma cell invasion. Mol. Cancer, 11, 2012, 65.
Lane, J., Martin, T., Weeks, H.P., Jiang, W.G., Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genomics Proteomics 11 (2014), 155–165.
Le, D.M., Besson, A., Fogg, D.K., Choi, K.S., Waisman, D.M., Goodyer, C.G., Rewcastle, B., Yong, V.W., Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J. Neurosci. 23 (2003), 4034–4043.
Lefranc, F., Le Rhun, E., Kiss, R., Weller, M., Glioblastoma quo vadis: will migration and invasiveness reemerge as therapeutic targets?. Cancer Treat. Rev. 68 (2018), 145–154.
Levin, V.A., Phuphanich, S., Glantz, M., Randomized phase II study of temozolomide (TMZ) with and without the metalloprotease (MMP) inhibitor prinomastat in patients (pts) with glioblastoma multiforme (GBM) following best surgery and radiation therapy. Proc. Annu. Meet. Am. Soc. Clin. Oncol., 21, 2002, 26a Abstract 100.
Levin, V.A., Phuphanich, S., Yung, W.K., Forsyth, P.A., Maestro, R.D., Perry, J.R., Fuller, G.N., Baillet, M., Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J. Neurooncol 78 (2006), 295–302.
Li, T., Yi, L., Hai, L., Ma, H., Tao, Z., Zhang, C., Abeysekera, I.R., Zhao, K., Yang, Y., Wang, W., Liu, B., Yu, S., Tong, L., Liu, P., Zhu, M., Ren, B., Lin, Y., Zhang, K., Cheng, C., Huang, Y., Yang, X., The interactome and spatial redistribution feature of Ca(2 +) receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis., 9, 2018, 292.
Louis, D.N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., Ellison, D.W., The 2016 World Health Organization classification of Tumors of the central nervous system: a summary. Acta Neuropathol. 131 (2016), 803–820.
Marienhagen, K., Pedersen, P.H., Terzis, A.J., Laerum, O.D., Arnold, H., Bjerkvig, R., Interactions between fetal rat brain cells and mature brain tissue in vivo and in vitro. Neuropathol. Appl. Neurobiol. 20 (1994), 130–143.
Markovic, D.S., Vinnakota, K., Chirasani, S., Synowitz, M., Raguet, H., Stock, K., Sliwa, M., Lehmann, S., Kalin, R., Van Rooijen, N., Holmbeck, K., Heppner, F.L., Kiwit, J., Matyash, V., Lehnardt, S., Kaminska, B., Glass, R., Kettenmann, H., Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 12530–12535.
McConnell, R.E., Edward van Veen, J., Vidaki, M., Kwiatkowski, A.V., Meyer, A.S., Gertler, F.B., A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion. J. Cell Biol. 213 (2016), 261–274.
Meiser, J., Schuster, A., Pietzke, M., Vande Voorde, J., Athineos, D., Oizel, K., Burgos-Barragan, G., Wit, N., Dhayade, S., Morton, J.P., Dornier, E., Sumpton, D., Mackay, G.M., Blyth, K., Patel, K.J., Niclou, S.P., Vazquez, A., Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun., 9, 2018, 1368.
Mentlein, R., Hattermann, K., Held-Feindt, J., Lost in disruption: role of proteases in glioma invasion and progression. Biochim. Biophys. Acta 1825 (2012), 178–185.
Mischel, P.S., Shai, R., Shi, T., Horvath, S., Lu, K.V., Choe, G., Seligson, D., Kremen, T.J., Palotie, A., Liau, L.M., Cloughesy, T.F., Nelson, S.F., Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22 (2003), 2361–2373.
Morita, T., Hayashi, K., Tumor progression is mediated by thymosin-β4 through a TGFβ/MRTF signaling axis. Mol. Cancer Res. 16 (2018), 880–893.
Nabors, L.B., Mikkelsen, T., Hegi, M.E., Ye, X., Batchelor, T., Lesser, G., Peereboom, D., Rosenfeld, M.R., Olsen, J., Brem, S., Fisher, J.D., Grossman, S.A., A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 118 (2012), 5601–5607.
Okura, H., Golbourn, B.J., Shahzad, U., Agnihotri, S., Sabha, N., Krieger, J.R., Figueiredo, C.A., Chalil, A., Landon-Brace, N., Riemenschneider, A., Arai, H., Smith, C.A., Xu, S., Kaluz, S., Marcus, A.I., Van Meir, E.G., Rutka, J.T., A role for activated Cdc42 in glioblastoma multiforme invasion. Oncotarget 7 (2016), 56958–56975.
Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J., Weil, S., Horstmann, H., Wiestler, B., Syed, M., Huang, L., Ratliff, M., Karimian Jazi, K., Kurz, F.T., Schmenger, T., Lemke, D., Gommel, M., Pauli, M., Liao, Y., Haring, P., Pusch, S., Herl, V., Steinhauser, C., Krunic, D., Jarahian, M., Miletic, H., Berghoff, A.S., Griesbeck, O., Kalamakis, G., Garaschuk, O., Preusser, M., Weiss, S., Liu, H., Heiland, S., Platten, M., Huber, P.E., Kuner, T., Von Deimling, A., Wick, W., Winkler, F., Brain tumour cells interconnect to a functional and resistant network. Nature 528 (2015), 93–98.
Osuka, S., Van Meir, E.G., Overcoming therapeutic resistance in glioblastoma: the way forward. J. Clin. Invest. 127 (2017), 415–426.
Palmgren, S., Vartiainen, M., Lappalainen, P., Twinfilin, a molecular mailman for actin monomers. J. Cell Sci. 115 (2002), 881–886.
Pankova, K., Rosel, D., Novotny, M., Brabek, J., The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67 (2010), 63–71.
Park, J.B., Agnihotri, S., Golbourn, B., Bertrand, K.C., Luck, A., Sabha, N., Smith, C.A., Byron, S., Zadeh, G., Croul, S., Berens, M., Rutka, J.T., Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway. Oncotarget 5 (2014), 9382–9395.
Perry, A., Wesseling, P., Histologic classification of gliomas. Handb. Clin. Neurol. 134 (2016), 71–95.
Pollard, T.D., Cooper, J.A., Actin, a central player in cell shape and movement. Science 326 (2009), 1208–1212.
Puchalski, R.B., Shah, N., Miller, J., Dalley, R., Nomura, S.R., Yoon, J.G., Smith, K.A., Lankerovich, M., Bertagnolli, D., Bickley, K., Boe, A.F., Brouner, K., Butler, S., Caldejon, S., Chapin, M., Datta, S., Dee, N., Desta, T., Dolbeare, T., Dotson, N., Ebbert, A., Feng, D., Feng, X., Fisher, M., Gee, G., Goldy, J., Gourley, L., Gregor, B.W., Gu, G., Hejazinia, N., Hohmann, J., Hothi, P., Howard, R., Joines, K., Kriedberg, A., Kuan, L., Lau, C., Lee, F., Lee, H., Lemon, T., Long, F., Mastan, N., Mott, E., Murthy, C., Ngo, K., Olson, E., Reding, M., Riley, Z., Rosen, D., Sandman, D., Shapovalova, N., Slaughterbeck, C.R., Sodt, A., Stockdale, G., Szafer, A., Wakeman, W., Wohnoutka, P.E., White, S.J., Marsh, D., Rostomily, R.C., Ng, L., Dang, C., Jones, A., Keogh, B., Gittleman, H.R., Barnholtz-Sloan, J.S., Cimino, P.J., Uppin, M.S., Keene, C.D., Farrokhi, F.R., Lathia, J.D., Berens, M.E., Iavarone, A., Bernard, A., Lein, E., Phillips, J.W., Rostad, S.W., Cobbs, C., Hawrylycz, M.J., Foltz, G.D., An anatomic transcriptional atlas of human glioblastoma. Science 360 (2018), 660–663.
Rahimi-Balaei, M., Bergen, H., Kong, J., Marzban, H., Neuronal migration during development of the cerebellum. Front. Cell. Neurosci., 12, 2018, 484.
Röhrig, U., Gerisch, G., Morozova, L., Schleicher, M., Wegner, A., Coactosin interferes with the capping of actin filaments. FEBS Lett. 374 (1995), 284–286.
Rotoli, D., Perez-Rodriguez, N.D., Morales, M., Maeso, M.D., Avila, J., Mobasheri, A., Martin-Vasallo, P., IQGAP1 in Podosomes/Invadosomes is involved in the progression of glioblastoma multiforme depending on the tumor status. Int. J. Mol. Sci., 18, 2017, 150.
Sakariassen, P.O., Prestegarden, L., Wang, J., Skaftnesmo, K.O., Mahesparan, R., Molthoff, C., Sminia, P., Sundlisaeter, E., Misra, A., Tysnes, B.B., Chekenya, M., Peters, H., Lende, G., Kalland, K.H., Oyan, A.M., Petersen, K., Jonassen, I., Van Der Kogel, A., Feuerstein, B.G., Terzis, A.J., Bjerkvig, R., Enger, P.O., Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 16466–16471.
Scherer, H.J., Structural development in gliomas. Am. J. Cancer 34 (1938), 333–351.
Schiapparelli, P., Guerrero-Cazares, H., Magana-Maldonado, R., Hamilla, S.M., Ganaha, S., Goulin Lippi Fernandes, E., Huang, C.H., Aranda-Espinoza, H., Devreotes, P., Quinones-Hinojosa, A., NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine 21 (2017), 94–103.
Shi, L., Liu, H., Wang, Y., Chong, Y., Wang, J., Liu, G., Zhang, X., Chen, X., Li, H., Niu, M., Liang, J., Yu, R., Liu, X., SWAP-70 promotes glioblastoma cellular migration and invasion by regulating the expression of CD44s. Cancer Cell Int., 19, 2019, 305.
Silginer, M., Weller, M., Stupp, R., Roth, P., Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis., 8, 2017, e2753.
Solga, R., Behrens, J., Ziemann, A., Riou, A., Berwanger, C., Becker, L., Garrett, L., De Angelis, M.H., Fischer, L., Coras, R., Barkovits, K., Marcus, K., Mahabir, E., Eichinger, L., Schroder, R., Noegel, A.A., Clemen, C.S., CRN2 binds to TIMP4 and MMP14 and promotes perivascular invasion of glioblastoma cells. Eur. J. Cell Biol., 98, 2019, 151046.
Stupp, R., Mason, W.P., Van Den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R.C., Ludwin, S.K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J.G., Eisenhauer, E., Mirimanoff, R.O., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352 (2005), 987–996.
Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y.K., Aldape, K.D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J.P., Wick, W., Tarnawski, R., Nam, D.H., Hau, P., Weyerbrock, A., Taphoorn, M.J., Shen, C.C., Rao, N., Thurzo, L., Herrlinger, U., Gupta, T., Kortmann, R.D., Adamska, K., McBain, C., Brandes, A.A., Tonn, J.C., Schnell, O., Wiegel, T., Kim, C.Y., Nabors, L.B., Reardon, D.A., Van Den Bent, M.J., Hicking, C., Markivskyy, A., Picard, M., Weller, M., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15 (2014), 1100–1108.
Stupp, R., Taillibert, S., Kanner, A.A., Kesari, S., Steinberg, D.M., Toms, S.A., Taylor, L.P., Lieberman, F., Silvani, A., Fink, K.L., Barnett, G.H., Zhu, J.J., Henson, J.W., Engelhard, H.H., Chen, T.C., Tran, D.D., Sroubek, J., Tran, N.D., Hottinger, A.F., Landolfi, J., Desai, R., Caroli, M., Kew, Y., Honnorat, J., Idbaih, A., Kirson, E.D., Weinberg, U., Palti, Y., Hegi, M.E., Ram, Z., Maintenance therapy with tumor-treating fields plus Temozolomide vs Temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314 (2015), 2535–2543.
Sun, H.Q., Yamamoto, M., Mejillano, M., Yin, H.L., Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274 (1999), 33179–33182.
Svitkina, T., The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol., 10, 2018, a018267.
Taddei, M.L., Giannoni, E., Comito, G., Chiarugi, P., Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 341 (2013), 80–96.
Taillibert, S., Le Rhun, E., Chamberlain, M.C., Tumor treating fields: a new standard treatment for glioblastoma?. Curr. Opin. Neurol. 28 (2015), 659–664.
Toshima, J., Toshima, J.Y., Amano, T., Yang, N., Narumiya, S., Mizuno, K., Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12 (2001), 1131–1145.
Van Den Bent, M., Eoli, M., Sepulveda, J.M., Smits, M., Walenkamp, A., Frenel, J.-S., Franceschi, E., Clement, P.M., Chinot, O., De Vos, F., Whenham, N., Sanghera, P., Weller, M., Dubbink, H.J., French, P., Looman, J., Dey, J., Krause, S., Ansell, P., Nuyens, S., Spruyt, M., Brilhante, J., Coens, C., Gorlia, T., Golfinopoulos, V., INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 22 (2020), 684–693.
Van Lith, S.A.M., Molenaar, R., Van Noorden, C.J.F., Leenders, W.P.J., Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas. Neuro Oncol. 16 (2014), 1669–1670.
Vartiainen, M.K., Sarkkinen, E.M., Matilainen, T., Salminen, M., Lappalainen, P., Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. J. Biol. Chem. 278 (2003), 34347–34355.
Venkataramani, V., Tanev, D.I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler, T., Korber, C., Kardorff, M., Ratliff, M., Xie, R., Horstmann, H., Messer, M., Paik, S.P., Knabbe, J., Sahm, F., Kurz, F.T., Acikgoz, A.A., Herrmannsdorfer, F., Agarwal, A., Bergles, D.E., Chalmers, A., Miletic, H., Turcan, S., Mawrin, C., Hanggi, D., Liu, H.K., Wick, W., Winkler, F., Kuner, T., Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573 (2019), 532–538.
Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M., Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., Woo, P.J., Taylor, K.R., Agarwal, A., Regev, A., Brang, D., Vogel, H., Hervey-Jumper, S., Bergles, D.E., Suva, M.L., Malenka, R.C., Monje, M., Electrical and synaptic integration of glioma into neural circuits. Nature 573 (2019), 539–545.
Wang, X., Bjorklund, S., Wasik, A.M., Grandien, A., Andersson, P., Kimby, E., Dahlman-Wright, K., Zhao, C., Christensson, B., Sander, B., Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma. PLoS One 5 (2010), 1570–1579.
Wang, J., Miletic, H., Sakariassen, P.O., Huszthy, P.C., Jacobsen, H., Brekka, N., Li, X., Zhao, P., Mork, S., Chekenya, M., Bjerkvig, R., Enger, P.O., A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer, 9, 2009, 465.
Weigle, B., Ebner, R., Temme, A., Schwind, S., Schmitz, M., Kiessling, A., Rieger, M.A., Schackert, G., Schackert, H.K., Rieber, E.P., Highly specific overexpression of the transcription factor SOX11 in human malignant gliomas. Oncol. Rep. 13 (2005), 139–144.
Weil, S., Osswald, M., Solecki, G., Grosch, J., Jung, E., Lemke, D., Ratliff, M., Hanggi, D., Wick, W., Winkler, F., Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19 (2017), 1316–1326.
Wick, A., Desjardins, A., Suarez, C., Forsyth, P., Gueorguieva, I., Burkholder, T., Cleverly, A.L., Estrem, S.T., Wang, S., Lahn, M.M., Guba, S.C., Capper, D., Rodon, J., Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest. New Drugs 38 (2020), 1570–1579.
Yamaguchi, H., Condeelis, J., Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773 (2007), 642–652.
Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., Mizuno, K., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393 (1998), 809–812.
Ziemann, A., Hess, S., Bhuwania, R., Linder, S., Kloppenburg, P., Noegel, A.A., Clemen, C.S., CRN2 enhances the invasiveness of glioblastoma cells. Neuro Oncol. 15 (2013), 548–561.
Zimmermann, D.R., Dours-Zimmermann, M.T., Extracellular matrix of the central nervous system: from neglect to challenge. Histochem. Cell Biol. 130 (2008), 635–653.
Zucchini, C., Manara, M.C., Pinca, R.S., De Sanctis, P., Guerzoni, C., Sciandra, M., Lollini, P.L., Cenacchi, G., Picci, P., Valvassori, L., Scotlandi, K., CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity. Oncogene 33 (2014), 1912–1921.