[en] PURPOSE: Glioblastoma (GBM) remains an incurable disease despite extensive treatment with surgical resection, irradiation, and temozolomide. In line with many other forms of aggressive cancers, GBM is currently under consideration as a target for immunotherapy. However, GBM tends to be nonimmunogenic and exhibits a microenvironment with few or no effector T cells, a relatively low nonsynonymous somatic mutational load, and a low predicted neoantigen burden. GBM also exploits a multitude of immunosuppressive strategies. METHODS AND MATERIALS: A number of immunotherapeutic approaches have been tested with disappointing results. A rationale exists to combine immunotherapy and radiation therapy, which can induce an immunogenic form of cell death with T-cell activation and tumor infiltration. RESULTS: Various immunotherapy agents, including immune checkpoint modulators, transforming growth factor beta receptor inhibitors, and indoleamine-2,3-dioxygenase inhibitors, have been evaluated with irradiation in preclinical GBM models, with promising results, and are being further tested in clinical trials. CONCLUSIONS: This review aims to present the basic rationale behind this emerging complementary therapeutic approach in GBM, appraise the current preclinical and clinical data, and discuss the future challenges in improving the antitumor immune response.
Disciplines :
Oncology
Author, co-author :
Nesseler, Jean Philippe; Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California.
Schaue, Dorthe; Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California.
McBride, William H; Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California.
Lee, Mi-Heon; Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California.
Kaprealian, Tania; Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, California.
NICLOU, Simone P. ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
Nickers, Philippe; Department of Radiation Oncology, Centre François Baclesse, Esch-sur-Alzette, Luxembourg.
External co-authors :
yes
Language :
English
Title :
Irradiation to Improve the Response to Immunotherapeutic Agents in Glioblastomas.
Price, S.J., Jena, R., Burnet, N.G., et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: An image-guided biopsy study. AJNR Am J Neuroradiol 27 (2006), 1969–1974.
Burger, P.C., Heinz, E.R., Shibata, T., Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68 (1988), 698–704.
Dubrow, R., Darefsky, A.S., Jacobs, D.I., et al. Time trends in glioblastoma multiforme survival: The role of temozolomide. Neurooncol 15 (2013), 1750–1761.
Stupp, R., Mason, W.P., van den Bent, M.J., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352 (2005), 987–996.
Ostrom, Q.T., Bauchet, L., Davis, F.G., et al. The epidemiology of glioma in adults: A “state of the science” review. Neurooncol 16 (2014), 896–913.
Krex, D., Klink, B., Hartmann, C., et al. Long-term survival with glioblastoma multiforme. Brain J Neurol 130 (2007), 2596–2606.
Gilbert, M.R., Wang, M., Aldape, K.D., et al. Dose-dense temozolomide for newly diagnosed glioblastoma: A randomized phase III clinical trial. J Clin Oncol 31 (2013), 4085–4091.
Rivera, A.L., Pelloski, C.E., Gilbert, M.R., et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neurooncol 12 (2010), 116–121.
Hegi, M.E., Diserens, A.C., Gorlia, T., et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352 (2005), 997–1003.
Rizvi, N.A., Hellmann, M.D., Snyder, A., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348 (2015), 124–128.
Chabanon, R.M., Pedrero, M., Lefebvre, C., Marabelle, A., Soria, J.C., Postel-Vinay, S., Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res 22 (2016), 4309–4321.
Blank, C.U., Haanen, J.B., Ribas, A., Schumacher, T.N., Cancer immunology. The “cancer immunogram”. Science 352 (2016), 658–660.
Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., et al. Signatures of mutational processes in human cancer. Nature 500 (2013), 415–421.
Colli, L.M., Machiela, M.J., Myers, T.A., Jessop, L., Yu, K., Chanock, S.J., Burden of nonsynonymous mutations among TCGA cancers and candidate immune checkpoint inhibitor responses. Cancer Res 76 (2016), 3767–3772.
Garg, A.D., Vandenberk, L., Van Woensel, M., et al. Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology, 6, 2017, e1295903.
Verhaak, R.G.W., Hoadley, K.A., Purdom, E., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17 (2010), 98–110.
Noushmehr, H., Weisenberger, D.J., Diefes, K., et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17 (2010), 510–522.
Ceccarelli, M., Barthel, F.P., Malta, T.M., et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164 (2016), 550–563.
Brennan, C.W., Verhaak, R.G.W., McKenna, A., et al. The somatic genomic landscape of glioblastoma. Cell 155 (2013), 462–477.
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455 (2008), 1061–1068.
Bouffet, E., Larouche, V., Campbell, B.B., et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34 (2016), 2206–2211.
Hunter, C., Smith, R., Cahill, D.P., et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66 (2006), 3987–3991.
Wykosky, J., Gibo, D.M., Stanton, C., Debinski, W., Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res 14 (2008), 199–208.
Kahlon, K.S., Brown, C., Cooper, L.J.N., Raubitschek, A., Forman, S.J., Jensen, M.C., Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 64 (2004), 9160–9166.
Zhang, J.G., Kruse, C.A., Driggers, L., et al. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol 88 (2008), 65–76.
Liu, G., Ying, H., Zeng, G., Wheeler, C.J., Black, K.L., Yu, J.S., HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64 (2004), 4980–4986.
Ahmed, N., Salsman, V.S., Kew, Y., et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16 (2010), 474–485.
Fenstermaker, R.A., Ciesielski, M.J., Challenges in the development of a survivin vaccine (SurVaxM) for malignant glioma. Expert Rev Vaccines 13 (2014), 377–385.
Liu, R., Mitchell, D.A., Survivin as an immunotherapeutic target for adult and pediatric malignant brain tumors. Cancer Immunol Immunother 59 (2010), 183–193.
Dziurzynski, K., Chang, S.M., Heimberger, A.B., et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neurooncol 14 (2012), 246–255.
Engelhardt, B., Carare, R.O., Bechmann, I., Flügel, A., Laman, J.D., Weller, R.O., Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132 (2016), 317–338.
Louveau, A., Harris, T.H., Kipnis, J., Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36 (2015), 569–577.
Qin, D.X., Zheng, R., Tang, J., Li, J.X., Hu, Y.H., Influence of radiation on the blood-brain barrier and optimum time of chemotherapy. Int J Radiat Oncol Biol Phys 19 (1990), 1507–1510.
Mlecnik, B., Bindea, G., Angell, H.K., et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44 (2016), 698–711.
Bachmayr-Heyda, A., Aust, S., Heinze, G., et al. Prognostic impact of tumor infiltrating CD8+ T cells in association with cell proliferation in ovarian cancer patients—a study of the OVCAD consortium. BMC Cancer, 13, 2013, 422.
Mao, Y., Qu, Q., Chen, X., Huang, O., Wu, J., Shen, K., The prognostic value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. PloS One, 11, 2016, e0152500.
Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., Hacohen, N., Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160 (2015), 48–61.
Rutledge, W.C., Kong, J., Gao, J., et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19 (2013), 4951–4960.
Kmiecik, J., Poli, A., Brons, N.H.C., et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol 264 (2013), 71–83.
Kim, Y.H., Jung, T.Y., Jung, S., et al. Tumour-infiltrating T-cell subpopulations in glioblastomas. Br J Neurosurg 26 (2012), 21–27.
Lohr, J., Ratliff, T., Huppertz, A., et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17 (2011), 4296–4308.
Han, S., Zhang, C., Li, Q., et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110 (2014), 2560–2568.
Thomas, A.A., Fisher, J.L., Rahme, G.J., et al. Regulatory T cells are not a strong predictor of survival for patients with glioblastoma. Neurooncol 17 (2015), 801–809.
Heimberger, A.B., Abou-Ghazal, M., Reina-Ortiz, C., et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14 (2008), 5166–5172.
Chang, A.L., Miska, J., Wainwright, D.A., et al. CCL2 Produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76 (2016), 5671–5682.
Jordan, J.T., Sun, W., Hussain, S.F., DeAngulo, G., Prabhu, S.S., Heimberger, A.B., Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57 (2008), 123–131.
Jacobs, J.F.M., Idema, A.J., Bol, K.F., et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neurooncol 11 (2009), 394–402.
Yue, Q., Zhang, X., Ye, H.X., et al. The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J Neurooncol 116 (2014), 251–259.
Hambardzumyan, D., Gutmann, D.H., Kettenmann, H., The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19 (2016), 20–27.
Wang, S.C., Hong, J.H., Hsueh, C., Chiang, C.S., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Investig J Tech Methods Pathol 92 (2012), 151–162.
Kioi, M., Vogel, H., Schultz, G., Hoffman, R.M., Harsh, G.R., Brown, J.M., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120 (2010), 694–705.
Platten, M., Kretz, A., Naumann, U., et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54 (2003), 388–392.
Pyonteck, S.M., Akkari, L., Schuhmacher, A.J., et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19 (2013), 1264–1272.
Coniglio, S.J., Eugenin, E., Dobrenis, K., et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med Camb Mass 18 (2012), 519–527.
Zhou, W., Ke, S.Q., Huang, Z., et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17 (2015), 170–182.
Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., Kaminska, B., Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PloS One, 6, 2011, e23902.
Wu, A., Wei, J., Kong, L.Y., et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neurooncol 12 (2010), 1113–1125.
Hussain, S.F., Yang, D., Suki, D., Grimm, E., Heimberger, A.B., Innate immune functions of microglia isolated from human glioma patients. J Transl Med, 4, 2006, 15.
Szulzewsky, F., Pelz, A., Feng, X., et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PloS One, 10, 2015, e0116644.
Gabrusiewicz, K., Rodriguez, B., Wei, J., et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight, 1, 2016.
Zhang, L., Alizadeh, D., Van Handel, M., Kortylewski, M., Yu, H., Badie, B., Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57 (2009), 1458–1467.
Hussain, S.F., Kong, L.Y., Jordan, J., et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67 (2007), 9630–9636.
Wick, W., Platten, M., Weller, M., Glioma cell invasion: Regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53 (2001), 177–185.
Markovic, D.S., Vinnakota, K., Chirasani, S., et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106 (2009), 12530–12535.
Gielen, P.R., Schulte, B.M., Kers-Rebel, E.D., et al. Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol 74 (2015), 390–400.
Gielen, P.R., Schulte, B.M., Kers-Rebel, E.D., et al. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neurooncol 18 (2016), 1253–1264.
Dubinski, D., Wölfer, J., Hasselblatt, M., et al. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neurooncol 18 (2016), 807–818.
Berghoff, A.S., Kiesel, B., Widhalm, G., et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neurooncol 17 (2015), 1064–1075.
Nduom, E.K., Wei, J., Yaghi, N.K., et al. PD-L1 expression and prognostic impact in glioblastoma. Neurooncol 18 (2016), 195–205.
Reardon, D.A., Gokhale, P.C., Klein, S.R., et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4 (2016), 124–135.
Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., Anderson, A.C., Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207 (2010), 2187–2194.
Kim, J.E., Patel, M.A., Mangraviti, A., et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 23 (2017), 124–136.
Liu, Z., Han, H., He, X., et al. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol Lett 11 (2016), 1829–1834.
Willingham, S.B., Volkmer, J.P., Gentles, A.J., et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109 (2012), 6662–6667.
Weller, M., Weinstock, C., Will, C., et al. CD95-dependent T-cell killing by glioma cells expressing CD95 ligand: More on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol Biochem 7 (1997), 282–288.
Roth, P., Mittelbronn, M., Wick, W., Meyermann, R., Tatagiba, M., Weller, M., Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 67 (2007), 3540–3544.
Bruna, A., Darken, R.S., Rojo, F., et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11 (2007), 147–160.
Zhang, M., Herion, T.W., Timke, C., et al. Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia N Y N 13 (2011), 537–549.
Zhang, M., Kleber, S., Röhrich, M., et al. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71 (2011), 7155–7167.
Rodon, J., Carducci, M.A., Sepulveda-Sánchez, J.M., et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 21 (2015), 553–560.
den Hollander, M.W., Bensch, F., Glaudemans, A.W.J.M., et al. TGF-β antibody uptake in recurrent high-grade glioma imaged with 89Zr-Fresolimumab PET. J Nucl Med 56 (2015), 1310–1314.
Bogdahn, U., Hau, P., Stockhammer, G., et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neurooncol 13 (2011), 132–142.
Weller, M., Roth, P., Preusser, M., et al. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 13 (2017), 363–374.
Mitsuka, K., Kawataki, T., Satoh, E., Asahara, T., Horikoshi, T., Kinouchi, H., Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery 72 (2013), 1031–1038 discussion 1038-1039.
Wainwright, D.A., Balyasnikova, I.V., Chang, A.L., et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18 (2012), 6110–6121.
Zhai, L., Ladomersky, E., Lauing, K.L., et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 23 (2017), 6650–6660.
Hanihara, M., Kawataki, T., Oh-Oka, K., Mitsuka, K., Nakao, A., Kinouchi, H., Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J Neurosurg 124 (2016), 1594–1601.
Wainwright, D.A., Chang, A.L., Dey, M., et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20 (2014), 5290–5301.
Zhu, X., Fujita, M., Snyder, L.A., Okada, H., Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 104 (2011), 83–92.
Silginer, M., Nagy, S., Happold, C., Schneider, H., Weller, M., Roth, P., Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neurooncol 19 (2017), 1338–1349.
Duarte, C.W., Willey, C.D., Zhi, D., et al. Expression signature of IFN/STAT1 signaling genes predicts poor survival outcome in glioblastoma multiforme in a subtype-specific manner. PloS One, 7, 2012, e29653.
Ohkuri, T., Ghosh, A., Kosaka, A., et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2 (2014), 1199–1208.
Lichtor, T., Libermann, T.A., Coexpression of interleukin-1 beta and interleukin-6 in human brain tumors. Neurosurgery 34 (1994), 669–672 discussion 672-673.
Huettner, C., Paulus, W., Roggendorf, W., Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146 (1995), 317–322.
Sawamura, Y., Diserens, A.C., de Tribolet, N., In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 9 (1990), 125–130.
Bambury, R.M., Teo, M.Y., Power, D.G., et al. The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J Neurooncol 114 (2013), 149–154.
Raychaudhuri, B., Rayman, P., Ireland, J., et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neurooncol 13 (2011), 591–599.
Grossman, S.A., Ye, X., Lesser, G., et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17 (2011), 5473–5480.
Fecci, P.E., Mitchell, D.A., Whitesides, J.F., et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res, 66, 2006, 32943302.
Fadul, C.E., Fisher, J.L., Gui, J., Hampton, T.H., Côté, A.L., Ernstoff, M.S., Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neurooncol 13 (2011), 393–400.
Weller, M., Butowski, N., Tran, D.D., et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol 18 (2017), 1373–1385.
Liau, L.M., Ashkan, K., Tran, D.D., et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med, 16, 2018, 142.
Johnson, L.A., Scholler, J., Ohkuri, T., et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med, 7, 2015, 275ra22.
Brown, C.E., Badie, B., Barish, M.E., et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21 (2015), 4062–4072.
Brown, C.E., Alizadeh, D., Starr, R., et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375 (2016), 2561–2569.
Ahmed, N., Brawley, V., Hegde, M., et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol 3 (2017), 1094–1101.
Chow, K.K.H., Naik, S., Kakarla, S., et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther J Am Soc Gene Ther 21 (2013), 629–637.
Reits, E.A., Hodge, J.W., Herberts, C.A., et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203 (2006), 1259–1271.
Obeid, M., Tesniere, A., Ghiringhelli, F., et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13 (2007), 54–61.
Apetoh, L., Ghiringhelli, F., Tesniere, A., et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13 (2007), 1050–1059.
Michaud, M., Martins, I., Sukkurwala, A.Q., et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334 (2011), 1573–1577.
Deng, L., Liang, H., Xu, M., et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41 (2014), 843–852.
Lugade, A.A., Moran, J.P., Gerber, S.A., Rose, R.C., Frelinger, J.G., Lord, E.M., Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol Baltim 174 (2005), 7516–7523.
Rudqvist, N.P., Pilones, K.A., Lhuillier, C., et al. Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells. Cancer Immunol Res 6 (2018), 139–150.
Chakraborty, M., Abrams, S.I., Camphausen, K., et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170 (2003), 6338–6347.
Kim, J.Y., Son, Y.O., Park, S.W., et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38 (2006), 474–484.
Weiss, T., Schneider, H., Silginer, M., et al. NKG2D-dependent anti-tumor effects of chemotherapy and radiotherapy against glioblastoma. Clin Cancer Res 24 (2018), 882–895.
Newcomb, E.W., Demaria, S., Lukyanov, Y., et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12 (2006), 4730–4737.
Zeng, J., See, A.P., Phallen, J., et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86 (2013), 343–349.
Sharma, P., Allison, J.P., The future of immune checkpoint therapy. Science 348 (2015), 56–61.
Belcaid, Z., Phallen, J.A., Zeng, J., et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PloS One, 9, 2014, e101764.
Newcomb, E.W., Lukyanov, Y., Kawashima, N., et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 173 (2010), 426–432.
Patel, M.A., Kim, J.E., Theodros, D., et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer, 4, 2016, 28.
Li, M., Bolduc, A.R., Hoda, M.N., et al. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer, 2, 2014, 21.
Weiss, T., Weller, M., Guckenberger, M., Sentman, C.L., Roth, P., NKG2D-based CAR-T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res 78 (2018), 1031–1043.
Butowski, N., Chang, S.M., Junck, L., et al. A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: A North American Brain Tumor Consortium (NABTC01-05). J Neurooncol 91 (2009), 175–182.
Yovino, S., Kleinberg, L., Grossman, S.A., Narayanan, M., Ford, E., The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest 31 (2013), 140–144.
Schaue, D., Ratikan, J.A., Iwamoto, K.S., McBride, W.H., Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83 (2012), 1306–1310.
Lee, Y., Auh, S.L., Wang, Y., et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood 114 (2009), 589–595.
Chandra, R.A., Wilhite, T.J., Balboni, T.A., et al. A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology, 4, 2015, e1046028.
Vanpouille-Box, C., Alard, A., Aryankalayil, M.J., et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun, 8, 2017, 15618.
Okada, H., Weller, M., Huang, R., et al. Immunotherapy response assessment in neuro-oncology: A report of the RANO working group. Lancet Oncol 16 (2015), e534–e542.