Signature of surface anisotropy in the spin-flip neutron scattering cross section of spherical nanoparticles: Atomistic simulations and analytical theory
ADAMS, Michael Philipp; SINAGA, Evelyn Pratami; Kachkachi, Hamidet al.
SINAGA, Evelyn Pratami ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Signature of surface anisotropy in the spin-flip neutron scattering cross section of spherical nanoparticles: Atomistic simulations and analytical theory
M. De, P. S. Ghosh, and V. M. Rotello, Applications of nanoparticles in biology, Adv. Mater. 20, 4225 (2008) 0935-9648 10.1002/adma.200703183.
Y. Diebold and M. Calonge, Applications of nanoparticles in ophthalmology, Prog. Ret. Eye Res. 29, 596 (2010) 1350-9462 10.1016/j.preteyeres.2010.08.002.
S. C. Baetke, T. Lammers, and F. Kiessling, Applications of nanoparticles for diagnosis and therapy of cancer, Br. J. Radiol. 88, 20150207 (2015) 0007-1285 10.1259/bjr.20150207.
W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, Industrial applications of nanoparticles, Chem. Soc. Rev. 44, 5793 (2015) 0306-0012 10.1039/C4CS00362D.
X. Han, K. Xu, O. Taratula, and F. Khashayar, Applications of nanoparticles in biomedical imaging, Nanoscale 11, 799 (2019) 2040-3364 10.1039/C8NR07769J.
A. Lak, S. Disch, and P. Bender, Embracing defects and disorder in magnetic nanoparticles, Adv. Sci. 8, 2002682 (2021) 2198-3844 10.1002/advs.202002682.
X. Batlle, C. Moya, M. Escoda-Torroella, Ò. Iglesias, A. Fraile Rodríguez, and A. Labarta, Magnetic nanoparticles: From the nanostructure to the physical properties, J. Magn. Magn. Mater. 543, 168594 (2022) 0304-8853 10.1016/j.jmmm.2021.168594.
A. Lappas, G. Antonaropoulos, K. Brintakis, M. Vasilakaki, K. N. Trohidou, V. Iannotti, G. Ausanio, A. Kostopoulou, M. Abeykoon, I. K. Robinson, and E. S. Bozin, Vacancy-driven noncubic local structure and magnetic anisotropy tailoring in (Equation presented) nanocrystals, Phys. Rev. X 9, 041044 (2019) 2160-3308 10.1103/PhysRevX.9.041044.
A. Michels, Magnetic Small-Angle Neutron Scattering: A Probe for Mesoscale Magnetism Analysis (Oxford University Press, Oxford, 2021).
S. Mühlbauer, D. Honecker, E. A. Périgo, F. Bergner, S. Disch, A. Heinemann, S. Erokhin, D. Berkov, C. Leighton, M. R. Eskildsen, and A. Michels, Magnetic small-angle neutron scattering, Rev. Mod. Phys. 91, 015004 (2019) 0034-6861 10.1103/RevModPhys.91.015004.
D. Honecker, M. Bersweiler, S. Erokhin, D. Berkov, K. Chesnel, D. A. Venero, A. Qdemat, S. Disch, J. K. Jochum, A. Michels, and P. Bender, Using small-angle scattering to guide functional magnetic nanoparticle design, Nanoscale Adv. 4, 1026 (2022) 2516-0230 10.1039/D1NA00482D.
N. Ito, A. Michels, J. Kohlbrecher, J. S. Garitaonandia, K. Suzuki, and J. D. Cashion, Effect of magnetic field annealing on the soft magnetic properties of nanocrystalline materials, J. Magn. Magn. Mater. 316, 458 (2007) 0304-8853 10.1016/j.jmmm.2007.03.121.
A. Michels, F. Döbrich, M. Elmas, A. Ferdinand, J. Markmann, M. Sharp, H. Eckerlebe, J. Kohlbrecher, and R. Birringer, Spin structure of nanocrystalline gadolinium, Europhys. Lett. 81, 66003 (2008) 0295-5075 10.1209/0295-5075/81/66003.
S. Disch, E. Wetterskog, R. P. Hermann, A. Wiedenmann, U. Vainio, G. Salazar-Alvarez, L. Bergström, and T. Brückel, Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering, New J. Phys. 14, 013025 (2012) 1367-2630 10.1088/1367-2630/14/1/013025.
K. L. Krycka, J. A. Borchers, R. A. Booth, Y. Ijiri, K. Hasz, J. J. Rhyne, and S. A. Majetich, Origin of surface canting within (Equation presented) nanoparticles, Phys. Rev. Lett. 113, 147203 (2014) 0031-9007 10.1103/PhysRevLett.113.147203.
K. Hasz, Y. Ijiri, K. L. Krycka, J. A. Borchers, R. A. Booth, S. Oberdick, and S. A. Majetich, Particle moment canting in (Equation presented) nanoparticles, Phys. Rev. B 90, 180405 (R) (2014) 1098-0121 10.1103/PhysRevB.90.180405.
A. Günther, D. Honecker, J.-P. Bick, P. Szary, C. D. Dewhurst, U. Keiderling, A. V. Feoktystov, A. Tschöpe, R. Birringer, and A. Michels, Magnetic field dependent small-angle neutron scattering on a Co nanorod array: Evidence for intraparticle spin misalignment, J. Appl. Crystallogr. 47, 992 (2014) 1600-5767 10.1107/S1600576714008413.
T. Maurer, S. Gautrot, F. Ott, G. Chaboussant, F. Zighem, L. Cagnon, and O. Fruchart, Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering, Phys. Rev. B 89, 184423 (2014) 1098-0121 10.1103/PhysRevB.89.184423.
C. L. Dennis, K. L. Krycka, J. A. Borchers, R. D. Desautels, J. van Lierop, N. F. Huls, A. J. Jackson, C. Gruettner, and R. Ivkov, Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field, Adv. Funct. Mater. 25, 4300 (2015) 1616-301X 10.1002/adfm.201500405.
M. Feygenson, J. C. Bauer, Z. Gai, C. Marques, M. C. Aronson, X. Teng, D. Su, V. Stanic, V. S. Urban, K. A. Beyer, and S. Dai, Exchange bias effect in (Equation presented) dumbbell nanoparticles induced by the charge transfer from gold, Phys. Rev. B 92, 054416 (2015) 1098-0121 10.1103/PhysRevB.92.054416.
A. J. Grutter, K. L. Krycka, E. V. Tartakovskaya, J. A. Borchers, K. S. M. Reddy, E. Ortega, A. Ponce, and B. J. H. Stadler, Complex three-dimensional magnetic ordering in segmented nanowire arrays, ACS Nano 11, 8311 (2017) 1936-0851 10.1021/acsnano.7b03488.
L. G. Vivas, R. Yanes, and A. Michels, Small-angle neutron scattering modeling of spin disorder in nanoparticles, Sci. Rep. 7, 13060 (2017) 2045-2322 10.1038/s41598-017-13457-2.
S. D. Oberdick, A. Abdelgawad, C. Moya, S. Mesbahi-Vasey, D. Kepaptsoglou, V. K. Lazarov, R. F. L. Evans, D. Meilak, E. Skoropata, J. van Lierop, I. Hunt-Isaak, H. Pan, Y. Ijiri, K. L. Krycka, J. A. Borchers, and S. A. Majetich, Spin canting across core/shell (Equation presented) nanoparticles, Sci. Rep. 8, 3425 (2018) 2045-2322 10.1038/s41598-018-21626-0.
Y. Ijiri, K. L. Krycka, I. Hunt-Isaak, H. Pan, J. Hsieh, J. A. Borchers, J. J. Rhyne, S. D. Oberdick, A. Abdelgawad, and S. A. Majetich, Correlated spin canting in ordered core-shell (Equation presented) nanoparticle assemblies, Phys. Rev. B 99, 094421 (2019) 2469-9950 10.1103/PhysRevB.99.094421.
P. Bender, D. Honecker, and L. F. Barquín, Supraferromagnetic correlations in clusters of magnetic nanoflowers, Appl. Phys. Lett. 115, 132406 (2019) 0003-6951 10.1063/1.5121234.
M. Bersweiler, P. Bender, L. G. Vivas, M. Albino, M. Petrecca, S. Mühlbauer, S. Erokhin, D. Berkov, C. Sangregorio, and A. Michels, Size-dependent spatial magnetization profile of manganese-zinc ferrite (Equation presented) nanoparticles, Phys. Rev. B 100, 144434 (2019) 2469-9950 10.1103/PhysRevB.100.144434.
D. Zákutná, D. NiŽňanský, L. C. Barnsley, E. Babcock, Z. Salhi, A. Feoktystov, D. Honecker, and S. Disch, Field dependence of magnetic disorder in nanoparticles, Phys. Rev. X 10, 031019 (2020) 2160-3308 10.1103/PhysRevX.10.031019.
P. Bender, J. Leliaert, M. Bersweiler, D. Honecker, and A. Michels, Unraveling nanostructured spin textures in bulk magnets, Small Sci. 1, 2000003 (2021) 2688-4046 10.1002/smsc.202000003.
E. Nomura, M. Chiba, S. Matsuo, C. Noda, S. Kobayashi, J. Manjanna, Y. Kawamura, K. Ohishi, K. Hiroi, and J.-I. Suzuki, Magnetization process of cubic (Equation presented) submicron particles studied by polarized small-angle neutron scattering, AIP Adv. 12, 035034 (2022) 2158-3226 10.1063/9.0000318.
M. Gerina, M. Sanna Angotzi, V. Mameli, V. Gajdošová, D. N. Rainer, M. Dopita, N.-J. Steinke, D. Aurélio, J. Vejpravová, and D. Zákutná, Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles, Nanoscale Adv. 5, 4563 (2023) 2516-0230 10.1039/D3NA00266G.
Z. Nedelkoski, D. Kepaptsoglou, L. Lari, T. Wen, R. A. Booth, S. D. Oberdick, P. L. Galindo, Q. M. Ramasse, R. F. L. Evans, S. Majetich, and V. K. Lazarov, Origin of reduced magnetization and domain formation in small magnetite nanoparticles, Sci. Rep. 7, 45997 (2017) 2045-2322 10.1038/srep45997.
T. Köhler, A. Feoktystov, O. Petracic, N. Nandakumaran, A. Cervellino, and T. Brückel, Signature of antiphase boundaries in iron oxide nanoparticles, J. Appl. Crystallogr. 54, 1719 (2021) 1600-5767 10.1107/S1600576721010128.
L. G. Vivas, R. Yanes, D. Berkov, S. Erokhin, M. Bersweiler, D. Honecker, P. Bender, and A. Michels, Toward understanding complex spin textures in nanoparticles by magnetic neutron scattering, Phys. Rev. Lett. 125, 117201 (2020) 0031-9007 10.1103/PhysRevLett.125.117201.
E. Pratami Sinaga, M. P. Adams, M. Bersweiler, L. G. Vivas, E. H. Hasdeo, J. Leliaert, P. Bender, D. Honecker, and A. Michels, Micromagnetic simulation of neutron scattering from spherical nanoparticles: Effect of pore-type defects, Phys. Rev. B 107, 014416 (2023) 2469-9950 10.1103/PhysRevB.107.014416.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.109.024429 for several videos that display the SANS observables during the magnetization-reversal process for different sign combinations of the cubic/uniaxial core and surface anisotropy constants.
M. P. Adams, A. Michels, and H. Kachkachi, Magnetic meutron scattering from spherical nanoparticles with néel surface anisotropy: atomistic simulations, J. Appl. Crystallogr. 55, 1488 (2022) 1600-5767 10.1107/S1600576722008949.
L. Néel, Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Radium 15, 225 (1954) 0368-3842 10.1051/jphysrad:01954001504022500.
S. A. Pathak and R. Hertel, Three-dimensional chiral magnetization structures in FeGe nanospheres, Phys. Rev. B 103, 104414 (2021) 2469-9950 10.1103/PhysRevB.103.104414.
D. V. Berkov, Magnetization dynamics including thermal fluctuations: Basic phenomenology, fast remagnetization processes and transitions over high-energy barriers, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller and S. Parkin (Wiley, Chichester, 2007), Vol. 2: Micromagnetism ed., pp. 795-823.
L. Baňas, Numerical methods for the Landau-Lifshitz-Gilbert equation, in Numerical Analysis and its Applications, edited by Z. Li, L. Vulkov, and J. Waśniewski (Springer, Berlin, 2005), pp. 158-165.
U. Gradmann, Magnetic surface anisotropies, J. Magn. Magn. Mater. 54-57, 733 (1986) 0304-8853 10.1016/0304-8853(86)90230-1.
R. C. O'Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000).
H. Kachkachi and M. Dimian, Hysteretic properties of a magnetic particle with strong surface anisotropy, Phys. Rev. B 66, 174419 (2002) 0163-1829 10.1103/PhysRevB.66.174419.
H. Kachkachi and E. Bonet, Surface-induced cubic anisotropy in nanomagnets, Phys. Rev. B 73, 224402 (2006) 1098-0121 10.1103/PhysRevB.73.224402.
C. E. Krill and R. Birringer, Estimating grain-size distributions in nanocrystalline materials from x-Ray diffraction profile analysis, Philos. Mag. A 77, 621 (1998) 0141-8610 10.1080/01418619808224072.
M. P. Adams, E. P. Sinaga, and A. Michels, On the angular anisotropy of the randomly averaged magnetic neutron scattering cross section of nanoparticles, IUCrJ 10, 261 (2023) 2052-2525 10.1107/S205225252300180X.
M. P. Adams, A. Michels, and H. Kachkachi, Spatial magnetization profile in spherical nanomagnets with surface anisotropy: Green's function approach, Phys. Scr. 98, 105512 (2023) 0031-8949 10.1088/1402-4896/acf5b0.
M. P. Adams, A. Michels, and H. Kachkachi, Magnetic neutron scattering from spherical nanoparticles with néel surface anisotropy: Analytical treatment, J. Appl. Crystallogr. 55, 1475 (2022) 1600-5767 10.1107/S1600576722008925.
https://vampire.york.ac.uk/ (accessed December 2023).
We emphasize that in the spin-flip SANS cross section (Equation presented) [Eq. (5) without the chiral function] the combinations of the cross-correlation functions (Equation presented) cancel out their imaginary parts (more specifically, in terms (Equation presented)), which is why only the real-parts of the (Equation presented) are effective.