Thèse de doctorat (Mémoires et thèses)
Constitutive Modelling of Non-Linear Isotropic Elasticity Using Deep Regression Neural Networks
CHÂU, Minh Vu
2023
 

Documents


Texte intégral
VuChau_Dissertation.pdf
Preprint Auteur (17.24 MB) Licence Creative Commons - Attribution
Ph.D dissertation by Vu M. Chau
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial Neural Networks; Non-linear Isotropic Elasticity; Constitutive Modelling; Constitutive Requirements; Computational Mechanics
Résumé :
[en] Deep neural networks (DNNs) have emerged as a promising approach for constitutive modelling of advanced materials in computational mechanics. However, achieving physically realistic and stable numerical simulations with DNNs can be challenging, especially when dealing with large deformations, that can lead to non-convergence effects in the presence of local stretch/stress peaks. This PhD dissertation introduces a novel approach for data-driven modelling of non-linear compressible isotropic materials, focusing on predicting the large deformation response of 3D specimens. The proposed methodology formulates the underlying hyperelastic deformation problem in the principal space using principal stretches and principal stresses, in which the corresponding constitutive relation is captured by a deep neural network surrogate model. To ensure constitutive requirements of the model while preserving the robustness of underlying numerical solution schemes, several physics-motivated constraints are imposed on the architecture of the DNN, such as objectivity, growth condition, normalized condition, and Hill’s inequalities. Furthermore, the prediction phase utilizes a constitutive blending approach to overcome divergence in the Newton-Raphson process, which can occur when solving boundary value problems using the Finite Element Method. The work also presents a machine learning finite element pipeline for modelling non-linear compressible isotropic materials, involving determining automatically the hyperparameters, training, and integrating the ANN operator into the finite element solver using symbolic representation. The proposed formalism has been tested through numerical benchmarks, demonstrating its ability to describe non-trivial load-deformation trajectories of 3D test specimens accurately. Overall, the thesis presents a complete and general formalism for data-driven modelling of non-linear compressible isotropic materials that overcomes the limitations of existing approaches.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
CHÂU, Minh Vu  ;  University of Luxembourg
Langue du document :
Anglais
Titre :
Constitutive Modelling of Non-Linear Isotropic Elasticity Using Deep Regression Neural Networks
Date de soutenance :
13 octobre 2023
Nombre de pages :
xviii, 146
Institution :
Unilu - Université du Luxembourg [Faculty of Science, Technology and Medicine], Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Sciences de l'Ingénieur (DIP_DOC_0005_B)
Promoteur :
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Président du jury :
SCHOMMER, Christoph  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Secrétaire :
BEEX, Lars ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Membre du jury :
HABERA, Michal;  Rafinex S.à r.l.
NGUYEN, Khiem;  University of Glasgow [GB] > James Watt School of Engineering > Lecturer
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
PRIDE17/12252781
Subventionnement (détails) :
The Doctoral Training Unit Data-driven computational modelling and applications (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE programme (PRIDE17/12252781) , https://driven.uni.lu/.
Disponible sur ORBilu :
depuis le 29 janvier 2024

Statistiques


Nombre de vues
178 (dont 27 Unilu)
Nombre de téléchargements
86 (dont 7 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu