Doctoral thesis (Dissertations and theses)
Robust estimation for possibly dependent observations: application to mixture and hidden Markov models
LECESTRE, Alexandre
2023
 

Files


Full Text
thesis_LECESTRE.pdf
Author postprint (1.78 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
robust estimation; mixture models; hidden Markov models; diffusion processes; non-parametric statistics
Abstract :
[en] This dissertation presents a detailed investigation of the rho-estimation approach applied to dependent data. The work it contains establishes non-asymptotic deviation bounds with respect to a Hellinger-type loss in the most general context. From there, we obtain non-asymptotic oracle inequalities and robustness properties within the context of mixture models, hidden Markov models, and diffusion processes.
Disciplines :
Mathematics
Author, co-author :
LECESTRE, Alexandre ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Mathematics > Team Yannick BARAUD
Language :
English
Title :
Robust estimation for possibly dependent observations: application to mixture and hidden Markov models
Defense date :
14 December 2023
Institution :
Unilu - University of Luxembourg [Faculty of Science, Technology and Medicine], Esch-sur-Alzette, Luxembourg
Degree :
Docteur en Mathématiques (DIP_DOC_0004_B)
Promotor :
BARAUD, Yannick ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
President :
PODOLSKIJ, Mark  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Secretary :
GASSIA Elisabeth;  Université Paris-Saclay [FR] > Institut de Mathématique d'Orsay
Jury member :
DÜMBGEN Lutz;  UniBe - Universität Bern [CH] > Institut für Mathematische Statistik und Versicherungslehre (IMSV)
REISS Markus;  Humboldt-Universität zu Berlin [DE] > Institut für Mathematik
European Projects :
H2020 - 811017 - SanDAL - ERA Chair in Mathematical Statistics and Data Science for the University of Luxembourg
Funders :
Union Européenne
Available on ORBilu :
since 15 January 2024

Statistics


Number of views
89 (14 by Unilu)
Number of downloads
71 (8 by Unilu)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBilu