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Chapter 1

Introduction

In this dissertation, we consider different problems that all fit within the following framework.

General Problem. We observe n (possibly dependent) random variables X1, . . . ,Xn on a mea-
surable space (X ,X ) which are presumed to have a common distribution P and we aim at
estimating P . When P belongs to a parametric family of distributions {Pθ; θ ∈ Θ} which is
identifiable, we also want to estimate the parameter θ such that P = Pθ.

This includes the generic situation of probability estimation from independent and identi-
cally distributed (i.i.d.) observations but also the estimation of the stationary distribution of
discrete time processes. In this context, we denote by PPPX the class of all probability distribu-
tions on the measurable space (XXX ,XXX ) = (X n,X ⊗n).

Definition 1.1. We call model any (nonvoid) subset MMM of PPPX.

In the case where observations are assumed to be i.i.d., a model MMM should naturally be of
the form

MMM =
{
P⊗n;P ∈ M

}
, (1.1)

where M is a subset of PX , the class of all probability distributions on (X ,X ). In that case,
we might informally make the abuse of calling M the model. We consider the estimation of the
distribution P for different types of models. We first consider the simpler case of independent
observations with mixture models. In a second time we consider models for dependent obser-
vations, namely hidden Markov models or discretely observed diffusion processes. We present
those models with a review of the related literature hereafter.

1.1 Mixture models
Mixture distributions are a flexible tool for modeling heterogeneous data in an independent
context. We illustrate it with the following toy example.

Example 1.1. In a population, a proportion w ∈ (0,1) is diseased and therefore a proportion
1 − w is healthy. We have access to one of the vital signs of each individual that we denote
X. This quantity X is distributed according to a distribution F0 for the healthy population and
according to a distribution F1 ̸= F0 for the diseased population. Therefore the vital sign X
of an individual chosen at random from the overall population is distributed according to the
distribution

P = (1 − w)F0 + wF1. (1.2)

1
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The distribution P is a two-component mixture distribution. Different problems are worth
investigating in this situation such as the estimation of the mixture distribution P , or also the
estimation of the different features of this distribution such as the proportion of diseased w or
the distributions F0 and F1 characterizing each health status. In machine learning, people are
also interested in clustering. In this example it means guessing if an individual i is healthy or
diseased given its vital sign Xi.

Example 1.1 can be generalized to model a wide variety of phenomena. For a complete
introduction to mixture models and an overview of the different applications we refer to the
books of Mclachlan & Peel [71] and Frühwirth-Schnatter [38]. Finite mixture models contain
distributions of the form

Pw,F =
K∑
k=1

wkFk, (1.3)

where K ≥ 1, w belongs to the simplex WK = {w ∈ [0,1]K ;w1 + · · · + wk = 1} and F1, . . . ,FK
are probability distributions on the same measurable space, e.g. (X ,X ) in the situation of the
General Problem. The distribution Pw,F is a mixture with K components, each component
k is characterized by the proportion wk called the weight and the probability Fk called emission
distribution.

One can easily see that the different parameters are not identifiable in general. We can
always add an arbitrary number of components with null weights or merge components, e.g.
Pw,F is also a mixture with one component and emission distribution Pw,F . Therefore one
usually considers mixtures with restrictions on the emission distributions in order to avoid
this problem. The most common example is Gaussian mixture models (GMMs), where all the
emission distributions are Gaussian. In that context, we can define as follows the canonical
number of components of a mixture distribution called the order.

Definition 1.2. Given a fixed class of distributions F , we can define the order of a finite
mixture distribution P as the smallest integer K such that P = Pw,F with F1, . . . ,FK ∈ F .
Therefore the order depends on the class of distributions F ,

We can notice that even if the order is identifiable it does not mean that the parameters are
identifiable as shown by the following example. For real numbers a < b we denote by U(a,b)
the uniform distribution on the segment [a,b]. If F is the class of uniform distributions given
by F = {U(a,b); a < b}, the distribution P = 3

4U(0,3) + 1
4U(1,2) is of order 2 but can also be

written as
P = 1

2U(0,2) + 1
2U(1,3).

Therefore, restricting the emission distributions to a specific class is enough to establish a
canonical number of components. However, it is generally not enough to guarantee that the
parameters are identifiable. Also, one should notice that identifiability can only be up to
relabeling of the components, i.e. we have

Pw,F =
K∑
k=1

wτ(k)Fτ(k)

for any permutation τ on {1,2, . . . ,K}. Sufficient conditions for identifiability have been estab-
lished by Chandra [21], Henna [51] or Atienza et al. [7] for instance. Those conditions allowed to
prove identifiability for some parametric emission models such as normal distributions, gamma
distributions, or Weibull distributions. Gassiat [45] presents a review of the different situations
for which we have identifiability, in a nonparametric context. If the parameters are identifiable
their estimation is a well defined problem. However, one might have to estimate the order of
the target distribution if it is unknown.
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The monograph of Titterington et al. [83] and the book of Frühwirth-Schnatter et al. [39]
provide a good overview of the different statistical procedures that have been developed for
mixture models. Bayesian and likelihood-based approaches are the most commonly used but
methods based on moments or spectral methods have also been considered. As finite mixtures
are used to describe heterogeneous data, they are a common tool in model-based clustering.
McLachlan & Basford [70] give a good overview of the topic, mainly with GMMs. We are
mostly interested in density estimation based on mixtures and the estimation of the different
parameters.

One can look at Figueiredo [37] as a general formulation for the problem of the estimation
of the parameters, with parametric models for the emission distributions. Their approach is
probably the most common one and uses a penalized likelihood criterion to select the order and
estimate the parameters. The sole estimation of the order is also a problem itself that has been
investigated. Dacunha-Castelle & Gassiat [23] provide a convergence rate for their estimator of
the order in parametric models based on moments of the parameters. Kéribin [56] proves the
strong consistency of an estimator of the order based on a penalized likelihood approach. They
prove that the associated estimators of the other parameters are strongly consistent. This type
of result is quite usual, along with results of asymptotic normality for the parameter estimators.

On the other hand, non-asymptotic results are very rare, especially for the estimation of the
parameters. We are only aware of the results of Gadat et al. [40] which consider the following
problem. The true distribution has a density f ∗ with respect to the Lebesgue measure on Rd

given by
f ∗ = (1 − λ∗)ϕ+ λ∗ϕ(· − z∗), (1.4)

where ϕ is a known square integrable density and the parameters (λ∗,z∗) ∈ (0, 1) ×Rd \ {0} are
to be estimated. They prove an oracle inequality for their least squares estimator f̂ of f ∗ with
respect to the L2-loss. Their estimator being of the form f̂ = (1 − λ̂)ϕ+ λ̂ϕ(· − ẑ) it naturally
gives estimators λ̂ and ẑ of λ∗ and z∗. Under some regularity conditions on the density ϕ,
they establish non-asymptotic deviation bounds for the parameter estimators which lead to the
usual 1/

√
n parametric rate with respect to the Euclidean distance, up to a logarithmic factor.

This is for fixed parameters λ∗ and z∗. They also investigate how those rates are deteriorated
when those parameters are allowed to go to 0 with n which corresponds to the limit cases for
identifiability.

Finite mixtures are also used a lot in density (or distribution) estimation as their flexibility
allows them to approximate distributions that are quite complex. We refer to Li & Barron [66]
as a good introduction to the subject. They present the generic approach in a general context.
Let G = {ϕθ; θ ∈ Θ} be a parametric set of densities, typically with respect to the Lebesgue
measure on Rd. A density f is said to have a mixture representation if it can be written as

f(x) = ϕQ(x) =
∫

Θ
ϕθ(x)Q(dθ), (1.5)

where Q is a probability distribution on Θ. Under some conditions on G and Q, such a density
can be well approximated by finite mixtures with emission densities in G, given that the num-
ber of components is large enough. Therefore we can use standard estimation procedures for
finite mixtures to estimate densities with a mixture representation. Different examples have
been considered for the family G. Bochkina & Rousseau [18] consider mixtures of Gamma
distributions, i.e.

ϕθ(x) = xz−1e−zx/θ
(
z

θ

)z 1
Γ(z) ,x,θ ∈ (0,∞),

where z is a parameter that they estimate and Γ is the Gamma function given by

Γ(z) =
∫ ∞

0
tz−1e−tdt,
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for all z in (0,∞). They obtain posterior convergence rate for a Bayesian estimator when the
true density satisfies regularity and tail conditions. Kruijer et al. [59] and Rousseau [77] obtain
similar results with different classes of densities. In [59], they consider location mixtures of
densities of the form

ϕθ(x) = 1
2σΓ

(
1 + 1

p

)e−(|x−θ|/σ)p

,x,θ ∈ R, (1.6)

where σ is a scale parameter they estimate. In [77], they consider mixture of beta-densities,
i.e. for

ϕθ(x) = xa−1(1 − x)b−1 Γ(a)Γ(b)
Γ(a+ b) , θ = (a,b) ∈ (0,∞)2.

Maugis-Rabusseau & Michel [68] consider location mixtures of normal distributions, i.e.

ϕθ(x) = 1√
2πσ2

e− (x−θ)2

2σ2 ,x,θ ∈ R,

where the scale parameter σ depends on the number components which is selected with a penal-
ized likelihood criterion. They establish non-asymptotic deviation bounds for their estimator
with respect to the Hellinger loss and prove it is minimax adaptive to the regularity of the true
density, up to a logarithmic factor.

Even though finite mixtures are flexible and approximate wide classes of distributions, they
can be restrictive to model real phenomenona. For instance, in Example 1.1 there are only two
states which correspond to “sick” or “healthy” and it can appear quite simplistic. One could
refine the model with a high number of components. Another approach is to consider general
mixtures, such as the density ϕQ considered in (1.5).

Example 1.2. Let (Θ,T ) be a measurable space and F = {Fθ; θ ∈ Θ} be a parametric family
of distributions on (X ,X ). Each individual has a health level H in Θ and given H = θ, X is
distributed according to the distribution Fθ ∈ F . Therefore the vital sign X of an individual
chosen at random from the overall population will follow the distribution P given by

P (A) =
∫

Θ
Fθ(A)PH(dθ),∀A ∈ X , (1.7)

where the mixing distribution PH is the distribution of H within the population.

Example 1.1 is a special case where the mixing distribution PH is a discrete distribution
with two support points. The most common problem involving such general mixtures is the
problem of deconvolution, widely studied in the signal processing community. It corresponds
to the model of additive measurement error where observations X1, . . . ,Xn are given by

Xi = Hi + ξi,

where H1, . . . ,Hn are i.i.d. random variables, referred to as the signal, and ξ1, . . . ,ξn are i.i.d.
random variables independent of H, referred to as the noise. If ξi has a density ϕ and Hi has
a distribution PH , then X has a density

f(x) =
∫
Rd
ϕ(x− h)PH(dh), (1.8)

which is given by the convolution of ϕ and PH . Therefore the problem of estimating PH from
observations X1, . . . ,Xn is often called the deconvolution problem. We can see from (1.8) that,
in this case, the distribution ofX is a general location mixture associated with the density ϕ. We
refer to the book Meister [73] for a complete introduction to the subject which includes a review
of estimation methods and results, all of which are asymptotic results, i.e. consistency results,
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convergence rates or asymptotic normality results. We can mention a few non-asymptotic
results. Dedecker et al.[26] prove a bound on the p-Wasserstein loss, p ≥ 1, for their estimator
of PH when observations belong to R and the density ϕ is smooth and known. Gassiat et
al. [47] consider the case where the distribution of the noise is unknown. They provide an
identifiability in the multivariate case with conditions on the structure of the noise and the
signal. They establish convergence rates for the estimator of the density of H based on Fourier
inversion techniques, which is very common for deconvolution problems.

Some results exist for general mixtures that are not based on location families. Genovese
& Wasserman [48] and Ghosal & van der Vaart [49] consider the estimation of P given by
(1.7) where F is the location-scale family of univariate normal distribution. They obtain
convergence rates for a maximum likelihood estimator based on sieves, i.e. finite mixtures,
with respect to the Hellinger loss when the true mixture distribution is compactly supported.
They also consider the case where the mixing distribution satisfies light tail conditions.

1.2 Hidden Markov models
We can build upon Example 1.1 to introduce hidden Markov models with another toy example.
We were only considering the distribution of the vital sign X across the population at a fixed
time. When the vital sign is discretely observed over time we can model its behavior as follows.

Example 1.3. We only consider one individual and observe its daily average vital sign over
n days. We denote by Xi and Hi their average vital sign and their health status on day i
respectively, with the convention Hi = 0 when the individual is healthy and Hi = 1 when sick.
We model (Hi)1≤i≤n as a homogeneous Markov chain and we denote by qa,b = P(Hi+1 = b|Hi =
a), a,b ∈ {0,1}, the transition probabilities. In that case, the distribution of (X1, . . . ,Xn) is
given by

P =
∑

h1,...,hn∈{0,1}
P(H1 = h1, . . . ,Hn = hn)

n⊗
i=1

Fhi

=
∑

h1,...,hn∈{0,1}
P(H1 = h1)qh1,h2 . . . qhn−1,hn

n⊗
i=1

Fhi
. (1.9)

It is called a hidden Markov model as the Markov chain (Hi)i is not observed and (Xi)i is
the only accessible data. As for Example 1.1, different statistical problems are of interest. One
might want to estimate the features of the model, i.e. the transition probabilities (qa,b)a,b∈{0,1},
the initial probabilities P(H1 = 0),P(H1 = 1) and the distributions F0 and F1 characterizing
each health status. Another problem is to find out if the individual is sick at time t given
the values of their vital sign up to time t. People are also interested in predicting Xt+1 given
past observations X1, . . . ,Xt. Those two problems are referred to as filtering and predicting in
machine learning.

We can generalize this example to any number of hidden states. Hidden Markov models
(HMMs) were formally introduced for the first time by Baum & Petrie [14] in 1966.

Definition 1.3. We say that the pair (Xt,Ht)t≥1 is a HMM if:

• (Ht)t≥1 is a Markov chain,

• conditionally on (Ht)t≥1 the variables (Xt)t≥1 are independent,

• and the distribution of Xt only depends on Ht for each t ≥ 1.
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In that case, we shall say that (Xt)t is generated by a HMM.
If we denote by L(Y ) the probability distribution of a random variable Y , we can write the

last two points of the definition as

L ((Xt)t≥1|(Ht)t≥1) =
⊗
t≥1

L(Xt|Ht). (1.10)

HMMs are often represented by dependence graphs of the following form.

Ht−1 Ht Ht+1

Xt−1 Xt Xt+1

Although the process (Ht,Xt)t≥1 is a Markov chain it is not the case for (Xt)t≥1 in general. In
comparison, mixture models are usually represented by the following graph.

Ht Ht+1

Xt Xt+1

. . . . . .

As seen in Example 1.3, homogeneous hidden Markov models can be fully described with the
state space H , the Markov kernel Q (defined below) and initial distribution π of the hid-
den Markov chain (Ht)t≥1, and the conditional distributions (Fh)h∈H of Xt given Ht. The
distributions (Fh)h∈H are called emission distributions.
Definition 1.4. A Markov kernel on a measurable space (H ,H) is an application Q : H × H
such that:

• for all h in H , Q(h,·) is a probability measure on (H ,H);

• for all A in H, the application h 7→ Q(x,A) is measurable.
One can see that mixture models are a special case of hidden Markov models. It corresponds

to the specific situation where there is a distribution w on (H ,H) such that Q(h,·) = w for all
h in H . It implies that the variables H1,H2, . . . ,Hn are i.i.d. with common distribution w.
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Finite state space HMMs correspond to the case where H is finite. Based on (1.10) and
(1.9) we can see that MMM should contain finite mixture distributions on (XXX ,XXX ) with specific
conditions on the weights and the emission distributions. We can always identify the state space
H with {1,2, . . . ,K} and identify the Markov kernel with the transition matrix (Qh,h′)h,h′∈H :=
(P(Ht+1 = h′|Ht = h))h,h′∈H . If τ : {1,2, . . . ,K} → H is a one-to-one map, the distribution
of (Xt)t≥1 can equally be described by the initial distribution π′ = (πτ(k))1≤k≤K , the transition
matrix Q′ = (Qτ(k1),τ(k2))1≤k1,k2≤K and the emission distributions F ′ = (Fτ(k))1≤k≤K . Therefore
we shall say that (Xt)t≥1 is generated by a hidden Markov models with parameters (K,Q′,π′,F ′).

Definition 1.5. Let F ⊂ PX be a class of probability distributions on (X ,X ). We define the
order of (Xt)t, with respect to F , as the minimal value of K such that (Xt)t is generated by a
HMM with parameters (K,Q,π,F ) with F1, . . . ,FK in F .

One should note that, contrary to mixtures, we cannot arbitrarily merge two components
(or states in the context of HMMs) so that restricting emission distributions to a specific class
of probabilities is not necessary. For instance in Example 1.1 we can say that the distribution
P in (1.2) is a mixture with one component and emission distribution (1−w)F0 +wF1 however
we cannot write (Xt,Ht)t as a HMM with one unique state in Example 1.3 in general. It is
only possible if F0 = F1 or if the Markov chain (Ht)t has an absorbing state a which has initial
distribution 1, i.e. if P(Ht+1 = a|Ht = a) = 1 = P(H1 = a). Abraham et al. [2] note that those
cases correspond to X1,X1, . . . ,Xn being independent random variables. They investigate the
possibility to learn the parameters in those limit cases.

As for mixtures, it is easy to see the parameters are at best identifiable up to a permutation
on the state space{1, . . . ,K}. Gassiat et al. [43] and Alexandrovich et al. [3] provide general
results showing that the parameters are identifiable from the distribution of consecutive obser-
vations. Let P(L)

(K,Q,π,F ) denote the distribution of (Y1, . . . ,YL) when (Yt)t≥1 is generated by a
stationary HMM with parameters (K,π,Q,F ), i.e.

P(L)
(K,Q,π,F ) =

∑
1≤k1,...,kL≤K

πk1Qk1,k2 . . . QkL−1,kL

L⊗
l=1

Fkl
, (1.11)

where π is stationary with respect to Q. Under some assumptions, the equality P(L)
(K,Q,π,F ) =

P(L)
(K,Q′,π′,F ′) implies (Q′,π′,F ′) = (Q,π,F ) up to a permutation on {1,2, . . . ,K}. Taking L ≥ 3

is enough under the condition that the emission distributions F1, . . . ,FK are linearly indepen-
dent. If the emission distributions are only distinct, taking L = 2K + 1 is sufficient to have
identifiability.

We refer to the book of Cappé et al. [55] for an exhaustive review of the topic of statistical
inference for finite state space HMMs, particularly for parametric models. As for mixtures,
maximum likelihood and Bayesian approaches are the most popular ones. For a different ap-
proach, we can mention Anandkumar et al. [6] that proposes a method of moments to estimate
the means of the emission distributions. Standard results of consistency and asymptotic nor-
mality for the MLE are given in [55], under the assumption that the order is known. Gassiat [44]
and Gassiat & Boucheron [42] give results of consistency for penalized maximum likelihood es-
timators of the order. We refer to Lehéricy [64] for a recent state of the art in finite state space
HMMs.

Some recent papers adopted a slightly different approach more adapted to nonparametric
estimation which is somewhat similar to the one of Gadat et al.[40] for mixture models given
by (1.4). Following the identifiability results mentioned above, one might believe that the
parameters (Q,π,F ) and (Q′,π′,F ′) should be close to each other if the associated distributions
P(L)

(K,Q,π,F ) and P(L)
(K,Q′,π′,F ′) given by (1.11) are close to each other. Although the reverse is quite
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easy to prove, see Proposition 3.6, this implication has only been proved recently. De Castro et
al. [25] show this is true for the emission densities when the initial distributions and transition
matrices are the same, i.e. π′ = π and Q′ = Q. Lehéricy [63, 65] gets rid of this limitation and
obtain results of the following nature. If F1, . . . ,FK have densities f1, . . . ,fK with respect to a
reference measure ν, we define the associated density

p
(L)
(K,Q,π,f)(x1, . . . ,xL) =

∑
1≤k1,...,kL≤K

πk1Qk1,k2 . . . QkL−1,kL
fk1(x1) . . . fkL

(xL),

with respect to µ = ν⊗L. For square integrable emission densities and under some technical
assumptions, for (Q,π,f) in a neighborhood of (Q∗,π∗,f∗) we have

d2 ((Q,π,f), (Q∗,π∗,f∗)) ≤ c(Q∗,π∗,f∗)
∣∣∣∣∣∣p(3)

(K∗,Q,π,f) − p
(3)
(K∗,Q∗,π∗,f∗)

∣∣∣∣∣∣2
2
, (1.12)

where c(Q∗,π∗,f∗) is a positive constant that depends on the parameters Q∗, π∗ and f∗,

d2 ((Q,π,f), (Q∗,π∗,f∗)) =

inf
τ∈SK∗

{
K∗∑
k=1

(πτ(k) − π∗
k)2 +

∑
1≤k1,k2≤K∗

(Qτ(k1),τ(k2) −Q∗
k1,k2)2 +

K∗∑
k=1

∣∣∣∣∣∣fτ(k) − f ∗
k

∣∣∣∣∣∣2
L2(ν)

}
,

and SK∗ is the set of all permutations on {1,2, . . . ,K∗}. Therefore, it is possible to deduce
deviation bounds for the parameter estimators from a deviation bound on an estimator of
p∗ = p

(3)
(K∗,Q∗,π∗,f∗) when the order K∗ is known. Lehéricy [63] proposes a penalized least squares

estimator that consistently estimates the order. They prove an oracle inequality with respect
to the L2-loss for the estimation of p∗ and deviation bounds for the parameters, conditioned on
the event where the order estimator is exact. They obtain convergence rates for their estimators
that are minimax up to logarithmic factors, and adaptive to the regularity of the true densities
f ∗

1 , . . . ,f
∗
K∗ . It is only adaptive to the worst regularity of the different densities however this

limitation is lifted by Lehéricy [65] which achieves state-by-state adaptivity estimation of the
emission densities given the transition matrix Q∗ and the distribution π∗, or minimax estimators
of them. Abraham et al. [1] consider the estimation of the parameters for nonparametric hidden
Markov models with two states. They show that estimating the smoother emission density first
can improve the estimation of the second emission density.

The same way finite mixtures can be generalized to more complex models, it can be inter-
esting to consider HMMs with state spaces that are not necessarily finite. We can illustrate it
with the following example based on Example 1.2.

Example 1.4. Let (Θ,T ) be a measurable space and F = {Fθ; θ ∈ Θ} be a parametric family of
distributions on (X ,X ) such that θ 7→ Fθ(A) is measurable for all A ∈ X . Each individual has
a health status in Θ. We focus on one individual and denote by Xi and Hi their average vital
sign and health status on day i. Given Hi = θ, Xi is distributed according to the distribution
Fθ. We assume (Hi)i is a homogeneous Markov chain with initial distribution w and Markov
kernel Q. In that case, the distribution P of (X1, . . . ,Xn) is given by

P (A1, . . . ,An) =
∫

Θn
Fh1(A1) . . . Fhn(An)w(dh1)Q(h1,dh2) . . . Q(hn−1,dhn),

for all A1, . . . ,An ∈ X .

As for general mixtures, most of the existing literature on the subject comes from signal
processing and focuses on the following situation. Observations X1, . . . ,Xn are assumed to be
generated by the model

Xi = Hi + ϵi, (1.13)
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where the signal (Hi)i is a Markov chain and the noise (ϵi)i is i.i.d. random variables, indepen-
dent from (Hi)i. This corresponds to a translation hidden Markov model. If (Hi)i is a stationary
Markov chain with initial distribution π and Markov kernel Q, and Φ is the distribution of ϵi,
the distribution P(L)

(π,Q,Φ) of (X1, . . . ,XL) is given by

P(L)
(π,Q,Φ)(A1, . . . ,AL) =

∫
Φ(A1 − h1) . . .Φ(AL − hL)π(dh1)Q(h1,dh2) . . . Q(hL−1,dhL),

for all measurable sets A1, . . . ,AL with A − h = {a − h; a ∈ A}. Even though models such as
(1.13) have been used a lot for applications, there are very few theoretical results, especially
if the distribution of the noise is unknown. Gassiat et al. [46] prove that the parameters are
identifiable from P(2)

(π,Q,Φ) in a fully nonparametric setting. They also prove consistency results
for a least squares estimator and a maximum likelihood estimator of the associated density.

Cases of general HMMs that do not fit within the framework of (1.13) have been investigated
by Douc & Matias [31] and Douc et al. [32]. In [31], they consider a parametric setting for
the emission densities and the Markov kernels and prove the convergence in probability of the
maximum likelihood parameter estimator. They make assumptions that are equivalent to the
standard assumptions for finite state space HMMs however they do not require the true initial
distribution to be stationary but only the Markov kernel to be ergodic. Some assumptions are
relaxed in [32] which contains similar results.

1.3 Diffusion processes
Stochastic differential equations are used to model a wide variety of processes with behaviors
apparently random. Applications are numerous in many different fields and inferring features
of the models used in practice is of great interest. A common framework is to assume that the
observations come from the stationary solution of a stochastic differential equation (SDE) of
the form

dYt = b(Yt)dt+ a(Yt)dBt, (1.14)
where (Bt)t≥0 is a d-dimensional Brownian motion and the functions b : Rd → Rd, a : Rd → Rd×d

are such that everything is well-defined. The features to estimate can be the function a,
called the volatility or diffusion coefficient, the function b, called the drift, and the invariant
distribution associated with equation (1.14).

We mention some standard references on the subject of estimation for diffusion processes to
give a quick overview of the topic. Kessler [57] considers a parametric model for one dimensional
ergodic diffusion. They prove the asymptotic normality of their parameter estimator, obtained
through the minimization of a contrast function, based on discrete observations Yt1 , . . . ,Ytn ,
0 ≤ t1 < · · · < tn−1 < tn < ∞ of a stationary solution (Yt)t of (1.14). Comte et al. [22] consider
a similar situation but in the nonparametric context. They prove non-asymptotic deviation
bounds for their estimators of the drift and the volatility based on least squares. They also
show adaptivity properties for a penalized criterion. The most common approach when it
comes to diffusion processes is based on kernels, using regularity properties of such processes.
For instance, Dalalyan & Reiß [24] consider a nonparametric framework with constant volatility
for a continuous multidimensional observation (Yt)0≤t≤T ∈ (Rd)[0,T ] and use kernel estimators
for the drift function and the invariant density. They obtain asymptotic rates with respect to
the L2-loss when the regularity of the drift function is known.

We can note the following similarity with hidden Markov models when considering discrete
observations of a stationary solution. In some cases, the features of the considered diffusion
model are not accessible through the stationary distribution of the process. For instance, this
is the case in Nickl [75] and Hoffmann & Ray [52] which deduce the feature of interest from the
distribution of consecutive observations.
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1.4 Contribution
This thesis proposes a generic approach to the General Problem with applications to mixture
models, hidden Markov models and diffusion processes. In particular, we want to provide
results for those models under the weakest assumptions possible on the true distribution of
the observations as they can never be checked in practice. We provide a list of standard
assumptions that people usually make and that are problematic/unrealistic/too restrictive.
This is illustrated with examples.

Before we do so, we introduce the Hellinger distance h between probability distributions
defined as follows. For two probability distributions P and Q on a measurable space (X ,X ),

h(P,Q) =

√√√√1
2

∫
X

(√
dP

dµ
(x) −

√
dQ

dµ
(x)
)2

µ(dx) ∈ [0,1], (1.15)

where µ is any positive measure dominating both P and Q, the result being independent of the
choice of µ.

• It is common to assume that the observations X1, . . . ,Xn are i.i.d. with common distribu-
tion P and in addition to assume this distribution belongs to the model. This assumption
is quite important for classical estimators such as the MLE as shown by the following ex-
ample.

Example 1.5. The model contains mixtures of two uniform distributions on segments of
length 1, i.e. the distributions of the form

Pw,a1,a2 = wU(a1,a1 + 1) + (1 − w)U(a2,a2 + 1),w ∈ (0,1), a1 ̸= a2 ∈ R.

Now assume that the true distribution is given by

P = 1
2U(.45 − n−1,1.45 + n−1) + U(3.1 − n−1,4.1 + n−1). (1.16)

The model is a good approximation of the true distribution as h2(P , P1/2,.45,3.1) ≤ 2/n.
However, the likelihood is null for any distribution in the model as soon as there are
observations Xi1 ,Xi2 ,Xi3 such that Xi1 + 1 < Xi2 < Xi3 − 1. In particular, it is implied
by the event{
∃i1,i2,i3, Xi1 ∈ [.45 − n−1,.45),Xi2 ∈ (1.45,1.45 + n−1] and Xi3 ∈ [3.1 − n−1,4.1 + n−1]

}
,

which has probability at least 1 − e−3/8(2 − e−4/10) − (1/2)6 > 0.07 for n ≥ 6. Therefore,
there is at least a 7% chance that the MLE is not defined.

We see that even if the true distribution is very close to the model but not in it, the
maximum likelihood approach fails.

• It seems normal to put conditions on the model that the statistician chooses, usually
because of the loss or the estimation method considered. On the other hand, it is quite
restrictive to also put those conditions on the true distributions. For example, it is very
common to assume that the true distribution admits a density with respect to some
reference measure, usually the Lebesgue measure. In particular, when people use a least
squares approach or when they simply consider the L2-loss, they assume this density to
be square integrable. For instance, this is the case of Lehéricy [63] which assumes the
true distribution is a stationary hidden Markov model with emission densities that are
square integrable and uniformly bounded. If one makes those assumptions they ban some
models from their framework such as the following example.
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Example 1.6. Consider the location mixture model containing distributions of the form

(1 − w)Sα,0 + wSα,z, (1.17)

where α ∈ (0,1) and Sα,z is the distribution defined by the density sα,z with respect to the
Lebesgue measure given by

sα,z : x ∈ R 7→ 1 − α

2|x− z|α
1|x−z|∈(0,1]. (1.18)

One can notice that such densities are unbounded, and they are not square integrable
when α ≥ 1/2. This implies that both the maximum likelihood and the least squares
approaches fail to apply here. We want to propose an approach that would have more
flexibility and allow us to consider such models. To do so, it is natural to work with a
loss that does not require any assumption on the true distribution such as the L1-loss
(equivalent to the total variation distance) or the Hellinger loss.

• Another restriction of standard frameworks is to assume that the observations are equally
distributed. This can easily be wrong in practice. Following Example 1.1, it may happen
that some of the values of the vital sign were erroneously reported. It might also happen
that a measuring instrument is defective such that the observations gathered by this
instrument would not be distributed according to the same distribution as the values
measured by the other instruments. If the proportion of corrupted data is small enough
it should still be possible to estimate the distribution of interest. Similarly, it is quite
common to assume that the observation process is stationary in the case of finite state
space HMMs (see Lehéricy [63] or Abraham et al. [1]) but it appears restrictive and does
not take into account the possibility to have corrupted observations.

Those different points motivate us to work with a statistical framework that is slightly different
from the one we introduced at the beginning of this chapter. We build upon the work of Baraud
et al. [9] and Baraud & Birgé [11] that developed ρ-estimators to solve some of the problems
we just raised among others. However, they did not consider departures from the assumption
that the observations are independent. We provide a way to obtain theoretical guarantees
for ρ-estimators without the independence assumption. Assuming that the observations are
independent is the same as assuming that the joint distribution

P∗ = L(X1, . . . ,Xn)

is equal to the product of the marginal distributions

Pind = L(X1) ⊗ · · · ⊗ L(Xn) = P1 ⊗ · · · ⊗ Pn. (1.19)

We quantify the dependence within the observations through the Kullback-Leibler divergence
K
(
P∗||Pind

)
of P∗ from Pind, defined as follows. For two probability distributions P and Q

on the same measurable space (A ,A), the Kullback-Leibler divergence of P from Q is given by

K(P ||Q) =


∫
A log

(
dP
dQ

(x)
)
P (dx) if P ≪ Q,

+∞ otherwise.
(1.20)

We show that in general we can do as if the observations were independent when K
(
P∗||Pind

)
is small enough (see Section 1.4.4). We illustrate that with the following example.
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Example 1.7. The observations X1, . . . ,Xn are assumed to be i.i.d. with common distribution
the univariate normal distribution N (z,1) and we try to estimate the location parameter z how-
ever the random variable X = (X1, . . . ,Xn) actually follows a multivariate normal distribution
N (z,Σε) where

z = (z, . . . ,z) ∈ Rn and Σε =



1 ε ε2 . . . εn−1

ε
. . . . . . . . . ...

ε2 . . . . . . . . . ε2

... . . . . . . . . . ε
εn−1 . . . ε2 ε 1


∈ Rn×n, (1.21)

where z ∈ R and ε ∈ (−1,1). The assumption that the observations are independent only allows
us to consider the case ε = 0. It might happen that results obtained under this assumption
completely fall apart even for very small values of ε. In this example, we have K

(
P∗||Pind

)
=

n−1
2 ln

(
1

1−ε2

)
and the Theorem 1.4 stated later shows that the performance of the ρ-estimator

is not significantly worse for ϵ of order at most n−1/2.

We can use this flexibility with respect to the independence assumption to consider the
estimation of the stationary distribution of processes such as hidden Markov models or diffusion
processes for instance. But there is no obvious reason for the dependence K

(
P∗||Pind

)
to be

small in general. We propose a way to obtain a smaller dependence for mixing processes by
selecting a subset of the observations. Intuitively, if (Xk)k∈Z is a mixing process the variables
Xk1 and Xk2 are “almost independent” for |k1 − k2| “large enough”. We refer to Bradley [19]
for a review of the different notions of mixing. Based on this idea, for an integer s we build the
subset X(s) of observations as follows

X(s) =
(
X1,X2+s,X1+2(s+1), . . . ,X1+n(s)(s+1)

)
, (1.22)

with n(s) = ⌊(n−1)/(s+1)⌋. It means we take observations separated by blocks of s consecutive
observations. A large value of s gives a smaller dependence term but it also makes the set of
observations used for the estimation smaller. We show that this strategy is efficient for HMMs
and some diffusion processes. The key point is that those processes satisfy strong mixing
properties.

1.4.1 Framework
Let X = (X1,X2, . . . ,Xn) be a random variable on (XXX ,XXX ) = (X ⊗n,X ⊗n), where (X ,X ) is a
measurable space. We denote by P∗ the distribution of X and by Pi = L(Xi) the marginal
distribution of Xi for i ∈ {1, . . . ,n}. We do as if the observations were independent and
identically distributed with common distribution P , i.e. as if the distribution P∗ were of the
form P

n. Therefore we take models MMM of the form given by (1.1). As mentioned earlier, we
measure how far are the observations from being independent through the Kullback-Leibler
divergence of P∗ from the product distribution of the marginals Pind, given by (1.19). For an
estimator P̂ ∈ M of P , we measure its accuracy with the Hellinger-type loss

1
n

n∑
i=1

h2
(
Pi,P̂

)
,

where h denotes the Hellinger distance defined by (1.15). In the ideal situation where the
observations are identically distributed with common distribution P , this loss becomes h2(P ,P̂ ).
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1.4.2 Results of ρ-estimation
The ρ-estimators developed by Baraud et al. [9, 11] are based on robust tests and can be seen
as a refinement of T -estimation developed by Birgé [16]. We illustrate the performance of ρ-
estimators in the context of the General Problem under the independence assumption. Let
M be a class of probability distribution on (X ,X ) and MMM be the associated model on (XXX ,XXX )
given by (1.1).

Theorem 1.1. (Theorem 1 [11])
For independent random variables X1, . . . ,Xn with arbitrary distributions P1, . . . ,Pn, the ρ-

estimator P̂ = P̂ (X,MMM ) ∈ M satisfies

CE
[

1
n

n∑
i=1

h2
(
P̂ ,Pi

)]
≤ inf

Q∈M

1
n

n∑
i=1

h2 (Q,Pi) + D(MMM )
n

, (1.23)

where C is a positive universal constant and D(MMM ) ≥ 1 is a bound on the ρ-dimension of the
model MMM which depends on n.

We mention that there is also a similar result of model selection for ρ-estimator (see Theorem
2 [11]). The ρ-dimension function is formally introduced in [11]. Let us explain the result above
and illustrate the different properties of ρ-estimators. The upper bound in (1.23) is composed
of two terms, the approximation or bias term infQ∈M n−1

n∑
i=1

h2 (Q,Pi) and the dimension term
D(MMM )/n. In the simple situation where the observations are actually i.i.d. with distribution
P in M , the approximation term vanishes and we have

CE
[
h2
(
P̂ ,P

)]
≤ D(MMM )

n
.

One can see that the dimension term determines an upper bound on the convergence rate of
the estimator over M . In most of the applications of ρ-estimation, the rate D(MMM )/n is optimal
up to a logarithmic factor.

The ρ-dimension can be related to more common notions of dimension such as the VC-
dimension that we briefly introduce in Section 1.5, with a few results and references on the
subject. Let M be a class of density functions associated with M , with respect to a σ-finite
positive measure on (X ,X ). If M is VC-subgraph with VC-index V (M ), we can take

D(MMM ) = CV (M ) log n, (1.24)

where MMM is the model given by (1.1) and C is a universal constant.
As we said earlier, assuming that the observations are i.i.d. with common distribution P in

M could be debatable. The bias or approximation term measures how far is the model from
the truth. It accounts for the robustness of the estimator P̂ . We can illustrate it considering
specific types of departures from this assumption.

• If the observations are i.i.d. with common distribution P that does not belong to M ,
from (1.23) we get

CE
[
h2
(
P̂ ,P

)]
≤ h2

(
P ,M

)
+ D(MMM )

n
,

where the notation h2(P ,M ) is defined as follows. For a distribution P ∈ PX and a class of
distributions Q ⊂ PX , we write

h (P,F ) = inf
Q∈Q

h(P,Q).
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We can see that the estimator is robust to misspecification, i.e. the deviation bound is not
significantly worse as long as the distance h

(
P ,M

)
is of order not larger than

√
Dn(M )/n.

• We can also consider the situation where the observations are only obtained after an
alteration of a sample from a distribution P in M , that we model as follows. The observations
X1, . . . ,Xn are given by

Xi = EiX i + (1 − Ei)X i, (1.25)
where the variables X = (X i)1≤i≤n are i.i.d. with common distribution P , the (Ei)i are inde-
pendent Bernoulli variables and (X i)i are independent random variables with arbitrary distri-
butions. For i in {1,2, . . . ,n}, the probability of observing X i instead of X i is qi = P(Ei = 0).
This includes the Hüber ε-contamination model (see [53]) where observations are i.i.d. with
common distribution P of the form

P = (1 − ε)P + εQ. (1.26)

It corresponds to the case where P(Ei = 0) = ε and L(X i) = Q for all i ∈ {1, . . . ,n}. It
also includes adversarial contamination inspired by adversarial machine learning. Before the
statistician is given access to an i.i.d. sample X1, . . . ,Xn, an adversary can select any subset
(X i)i∈I of observations and replace them with any arbitrary values (X i)i∈I . In this thesis we
will rather not use the term adversarial contamination and rather say that the observations
(X i)i∈I are outliers. We can be even more general and not assume that P is necessarily in M
in the situation described by (1.25). In that case we get

C ′E
[
h2
(
P̂ ,P

)]
≤ h2

(
P ,M

)
+ 1
n

n∑
i=1

qi + D(MMM )
n

,

where C ′ = C/(1 +C) is a universal constant and C comes from (1.23). Basically we have split
the approximation term in two terms using the convexity of the squared Hellinger distance. In
this thesis, we repeatedly use the inequality

h2(P,λQ1 + (1 − λ)Q2) ≤ λh2(P,Q1) + (1 − λ)h2(P,Q2), (1.27)

for all distributions P , Q1 and Q2 on (X ,X ) and all λ ∈ [0,1]. The first term h2
(
P ,M

)
accounts for the misspecification, it quantifies how far is the model from the distribution of
interest. The second term n−1

n∑
i=1

qi accounts for the alteration of the data, it quantifies how

far are the observations from being an i.i.d. sample from the distribution P . On average, the
number of contaminated observations is q1 + · · ·+qn, which corresponds to nε (respectively |I|)
in the case of contamination (respectively outliers). As long as those terms are of order not
larger than D(MMM )/n, the upper bound for the risk of the estimator is not significantly worse.
Therefore we shall say that the estimator P̂ is robust to misspecification and to alteration of
the data.

An estimator being robust to misspecification is interesting in itself but also because it
allows us to consider approximation models. This approach is quite popular in nonparametric
estimation when a class of densities or regression functions is approximated by a simpler class
of functions. It is the case in the situation we described earlier with (1.5) for instance. In our
framework, we will consider nets with respect to the Hellinger distance.

Definition 1.6. We say that M ⊂ PX is an η-net of M ⊂ PX if, for all P in M , there
exists Q in M such that h(P,Q) ≤ η.

We can easily see with Theorem 1.1 what we would obtain with approximate models. Let
M [η] be an η-net of M with respect to the Hellinger distance. If MMM [η] is the associated model
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given by (1.1), the ρ-estimator P̂ = P̂ (X,MMM [η]) satisfies

CE
[

1
n

n∑
i=1

h2
(
P̂ ,Pi

)]
≤ inf

Q∈M

1
n

n∑
i=1

h2 (Q,Pi) + η2 + D(MMM [η])
n

. (1.28)

In particular, for i.i.d. observations with distribution P , we get

CE
[
h2
(
P̂ ,P

)]
≤ h2

(
P ,M

)
+ η2 + D(MMM [η])

n
.

Therefore, we can obtain a uniform bound on the convergence rate over M by balancing the
terms η2 and D(MMM [η])/n.

1.4.3 Mixture models (Chapter 2)
In Chapter 2, we fill a gap in the literature providing non asymptotic guarantees in a very general
framework, along with robustness results. For classes of distributions F1, . . . ,FK ∈ PX , we
define the associated K-component mixture models

M (K,F1, . . . ,FK) =
{

K∑
k=1

wkFk;w ∈ WK , Fk ∈ Fk,∀k ∈ [K]
}
.

We will call the classes F1, . . . ,FK emission models. We assume that the emission models are
dominated by a σ-finite measure µ, typically the Lebesgue measure, and there are classes of
density functions F1, . . . ,FK with respect to µ associated with F1, . . . ,FK . If we denote by MMM
the model given by (1.1) with M ⊂ M (K,F1, . . . ,FK), we prove a bound on the ρ-dimension
that depends on the VC-dimension of the emission density models. We can take

D(MMM ) = C(V1 + · · · + VK) log n, (1.29)

where C is a universal constant and VK is the VC-dimension of Fk. We can deduce the following
deviation bound from this result and the general inequality (1.23).

Theorem 1.2. (Theorem 2.1) For independent random variables X1, . . . ,Xn with arbitrary
distributions P1, . . . ,Pn, the ρ-estimator P̂ = P̂ (X,MMM ) ∈ M satisfies

CE
[

1
n

n∑
i=1

h2
(
Pi,P̂

)]
≤ inf

Q∈M

1
n

n∑
i=1

h2 (Pi,Q) + (V1 + · · · + VK) log n
n

, (1.30)

where C is a positive universal constant.

To our knowledge, there is no similar result of robustness in a general framework for mixture
models. We can obtain risk bounds and convergence rates for the considered models determining
the VC-dimensions V1, . . . ,VK of the corresponding emission models. For instance, if we consider
Example 1.5 we can show that the VC-dimension of the class of uniform densities is 2, and
therefore the ρ-estimator satisfies

CE
[
h2
(
P ,P̂

)]
≤ h2

(
P ,M

)
+ 4 log n

n
≤ 2 + 4 log n

n
.

The fact that the true distribution P does not belong to the model does not deteriorate the
performance of the estimator, contrary to the MLE.

We consider the cases of multivariate location mixtures and multivariate location-scale mix-
tures of normal distributions. Let Cov+∗(d) denote the class of d × d symmetric and positive-
definite matrices.
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Theorem 1.3. (Corollary 2.1)
We assume the observations X1, . . . ,Xn are i.i.d. with common distribution P .

• Let Mls be the d-dimensional Gaussian location-scale mixture model with K component,
i.e.

F1 = · · · = FK =
{
N (µ,Σ);µ ∈ Rd,Σ ∈ Cov+∗(d)

}
.

There is a positive universal constant C > 0 such that the ρ-estimator P̂ on Mls satisfies

CE
[
h2
(
P ,P̂

)]
≤
Kd2

[
1 + log

(
n
d2 ∨K

)]
n

,

for all P ∈ Mls.

• Let Mloc(Σ) be the d-dimensional Gaussian location mixture model associated to the co-
variance matrix Σ ∈ Cov+∗(d), i.e.

F1 = · · · = FK =
{
N (µ,Σ);µ ∈ Rd

}
.

There is a positive universal constant C > 0 such that the ρ-estimator P̂ on Mloc(Σ)
satisfies

CE
[
h2
(
P ,P̂

)]
≤
Kd

[
1 + log

(
n
d

∨K
)]

n
,

for all P ∈ Mloc(Σ).

Those rates are optimal up to a logarithmic factor. Doss et al.[30] obtain the optimal
rate with no logarithmic factor for Gaussian location mixtures with known isotropic covariance
matrix. However, the dependency in the number of components K of their bound is worse than
exponential when it is just linear for our estimator.

We also consider nonparametric settings for s-concave and log-concave emission densities.
Let C be the class of concave functions R → [−∞,∞). We say that a function f : X → R is
s-concave if there exists g in C such thatf = g

1/s
+ for s > 0,

f = (−g)1/s
+ for s ∈ (−1,0).

Similarly we say that such a function f is log-concave if there exists g in C such that

f = exp g. (1.31)

The class of log-concave densities includes many usual parametric densities such as Gaussian,
exponential, logistic or Laplace densities. It is possible to use finite nets to approximate the
class of log-concave (or s-concave) densities that are upper bounded by a uniform constant M .
We follow the approach exposed earlier to obtain (1.28) and deduce a deviation bound for our
estimator based on mixtures of log-concave (or s-concave) densities (see Corollary 2.2). Let M
be the model of all mixtures with K emission densities upper bounded by M and s-concave,
the case s = 0 corresponding to log-concave emission densities. There exists a constant C(M,s)
depending on M and s such that the ρ-estimator P̂ on M satisfies

C(M,s)h2
(
P , P̂

)
≤ K [1 + log (Kn)]

n4/5 ,
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where the observations are i.i.d. with common distribution P in M . The uniform bound on the
convergence rate we obtain is similar to the one obtained by Doss & Wellner [29] for a single
component, i.e. in the case K = 1, up to a logarithmic factor.

We also consider the estimation of a general mixture of normal distributions. It corresponds
to Example 1.2 in the case where the class F is the family of univariate normal distributions.
We consider location-scale mixtures with mixing distribution supported on a compact set, i.e.
distributions with a density with respect to the Lebesgue measure of the form

pη(x) =
∫
R×(0,∞)

e−(x−z)2/2σ2

√
2πσ2

η(d(z,σ2)),

where η is the mixing distribution and there are (finite) positive constants M,σ−,σ+ such that
η([−M,M ] × [σ2

−,σ
2
+]) = 1. Our estimator achieves the same rate as the one given by Ghosal &

van der Vaart [49] with less assumptions on the true distribution.
We can also deduce results for the estimation of the parameters. Our aim is to obtain similar

results as for the estimation of the mixture distribution, in particular we want non-asymptotic
deviation bounds that also allows us to exhibit the robustness of the parameter estimators.
Although identifiability is necessary to ensure that the problem of estimating the parameters is
not ill posed, it is not enough to obtain non-asymptotic results. Our approach is to show that
when two distributions in the model are close to each other then the associated parameters are
also close to each other. Ideally, for a parametric model M = {Pθ,θ ∈ Θ},Θ ⊂ Rd, we would
have an inequality of the form

C(θ)
(
1 ∧ ||θ − θ||22

)
≤ h2 (Pθ,Pθ) ,∀θ ∈ Θ, (1.32)

for each θ ∈ Θ, where C(θ) is a positive constant that depends on θ. In that case, we can
deduce the following result from Theorem 1.2 and the convexity inequality (1.27). For all θ in
Θ, the ρ-estimator P̂ = Pθ̂ on M satisfies

C(θ)E
[
1 ∧ ||θ − θ̂||22

]
≤ 1
n

n∑
i=1

h2 (Pi,Pθ) + (V1 + · · · + VK) log n
n

,

where C(θ) is a positive constant that depends on θ. We can deduce a convergence rate for the
parameter estimators when the model is well specified. We can see that the parameter estima-
tors are robust for similar reasons as for the distribution estimator, as long as the parametric
model we consider satisfies an inequality similar to (1.32). Under this assumption in particular,
we do not worry whether the model is exact or not before considering the estimation of the
parameters. True parameters might not exist but we can always aim for the best approximation
within the model, if the associated distribution is not too far from the true distribution.

We use the theory of Ibragimov & Has’minskĭı [54] to prove inequalities similar to (1.32) for
regular parametric emission models (see Theorem 2.4). We can also use existing results that
relate to the L2-distance between densities instead of the Hellinger distance between distribu-
tions when the considered densities are bounded. Let P = p ·µ and Q = q ·µ be two probability
distributions with bounded densities p and q with respect to a positive measure µ. We have
the inequality

||p− q||22 ≤ 4 (||p||∞ + ||q||∞)h2 (P,Q) . (1.33)
We consider the specific case of two-component location mixtures with one known location
parameter given by (1.4) investigated by Gadat et al. [40]. We show that our method applies to
the different location families they consider, i.e. location families based on a Cauchy, Gaussian,
Laplace or skew Gaussian distribution. We obtain similar results with respect to the Hellinger
distance with weaker assumptions.
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We also consider parameter estimation for the mixture model

M = {Pw,z = (1 − w)Sα,0 + wSα,z;w ∈ (0,1], z ∈ (−∞,0) ∪ (0,∞)} ,

defined earlier in Example 1.6. It does not fit in common frameworks as the emission densities
are unbounded with a singularity. However, we can still obtain an interesting lower bound on
the Hellinger distance. For all w∗ ∈ (0,1] and all z∗ ̸= 0, there is a positive constant C(α,w∗,z∗)
such that for all z ∈ R and all w ∈ [0,1], we have

h2 (Pw∗,z∗ , Pw,z) ≥ C(α,z∗,w∗)
[
(w∗)1/α

(
1 ∧ |z − z∗|1−α

)
+ (w∗ − w)2 (1 ∧ |z∗|)

]
.

This inequality allows us to deduce convergence rates for the estimation of w∗ and z∗ from
Theorem 1.2 (see Theorem 2.7). We obtain the usual 1/

√
n parametric rate, with respect to

the Euclidean distance, for the estimation of the weight w∗, up to a logarithmic factor. The
singularity of the emission densities allows us to obtain a faster convergence rate for the location
parameter z∗. Up to a logarithmic factor, this rate is of order n−1/(1−α) which is minimax and
faster than the parametric rate.

All the results mentioned so far were obtained by considering one mixture model with a fixed
number of components K and fixed emission models F1, . . . ,FK . We can lift this restriction
using model selection. We provide a general result of model selection and focus on two cases:
the selection of the order for a fixed emission model and the selection of the emission models
for a fixed number of components.

The first situation is illustrated with the selection of the order of an estimator based on
mixtures of univariate Gaussian distributions. We prove a uniform bound on the convergence
rate of our estimator over a class of distributions with densities satisfying regularity and tail
conditions. There exists a positive constant Cβ,β such that if the observations are i.i.d. with
distribution P ∈ Hβ with 0 < β ≤ β ≤ β, our estimator P̂ satisfies

Cβ,βE
[
h2(P,P̂ )

]
≤ (log n)

5β
2β+1

n
2β

2β+1
,

where Hβ is a class of distributions with associated densities having regularity index β (see
Theorem 2.11). We obtain the same rate as Maugis-Rabusseau & Michel [68] which is minimax
up to a logarithmic factor and our estimator is adaptive to the regularity of the target density.
However, we do not need to know bounds β and β on β to construct our estimator which is
the case in [68].

In the second situation, the number of components K is fixed but the emission distributions
can belong to different emission models. We consider an application for emission distributions
that are either Gaussian or Cauchy, i.e. distributions of the form

Pw,j,z,σ =
j∑
i=1

wiN (zi,σ2
i ) +

K∑
i=j+1

wiCauchy(zi,σi). (1.34)

We prove that, when the sample is large enough, with high probability we can identify the
number of components corresponding to each type of distribution, i.e. the integer j in the
example above, and the parameter estimators satisfy the inequality

C(w,j,z,σ)
||w − ŵ||2 +

j∗∑
k=1

∣∣∣∣∣∣(zk,σ2
k) − (ẑk,σ̂2

k)
∣∣∣∣∣∣2 ∧ 1 +

K∑
k=j∗+1

||(zk,σk) − (ẑk,σ̂k)||2 ∧ 1


≤ K log n
n

,

where C(w,j,z,σ) is a positive constant depending on Pw,j,z,σ (see Theorem 2.9). To our knowl-
edge, this is the first result of this nature.
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1.4.4 Dealing with dependent observations and applications (Chap-
ter 3)

Robustness to the independence assumption

In Chapter 2 we make the assumption that observations are independent. However, in Chapter
3 we show that our estimator is robust to small deviations from this assumption. We have the
following result for general models MMM of the form (1.1), extending Theorem 1.1.

Theorem 1.4. Theorem 3.1
For (possibly dependent) random variables X1, . . . ,Xn with respective distributions P1, . . . ,Pn,

the ρ-estimator P̂ = P̂ (X,M ) satisfies

CE
[

1
n

n∑
i=1

h2
(
P̂ ,Pi

)]
≤ inf

Q∈M

1
n

n∑
i=1

h2 (Q,Pi) + D(MMM )
n

+
K
(
P∗||Pind

)
n

, (1.35)

where C is a positive universal constant, P∗ is the joint distribution L(X1, . . . ,Xn) and Pind is
the product of the marginal distributions given by (1.19).

One should notice that this result is assumption-free. It is similar to (1.23) with an addi-
tional term that accounts for the dependence within the observations. We can see that this
deviation bound is not significantly worse than the one we would have if the observations were
independent, as long as the quantity K

(
P∗||Pind

)
is of order not larger than D(MMM ).

We show that the robustness to misspecification and alteration of the data is not damaged
by removing the independence assumption. Let X1, . . . ,Xn be observations given by

Xi = EiX i + (1 − Ei)X i, (1.36)

where X = (X i)i is the process of interest, E1, . . . ,En are Bernoulli random variables and
X = (X i)i is the contamination process. For i in {1,2, . . . ,n}, the probability of observing X i

instead of X i is denote by qi = P(Ei = 0).

Definition 1.7. Independent contamination.
We talk about independent contamination of the data if the observations X1, . . . ,Xn are given

by (1.36) and the variables E1, . . . ,En,X1, . . . ,Xn and X are mutually independent.

We show that, in the case of independent contamination, the dependence term is not bigger
than without any contamination, i.e.

K (L(X1, . . . ,Xn)||L(X1) ⊗ · · · ⊗ L(Xn)) ≤ K
(
L(X1, . . . ,Xn)||L(X1) ⊗ · · · ⊗ L(Xn)

)
.

Therefore our estimator is robust to independent contamination.

Proposition 1.1. (Corollary 3.1)
Let the observations X1,X2, . . . ,Xn be given by the contamination described by (1.36). If the
contamination is independent, the ρ-estimator P̂ = P̂ (X,MMM ) satisfies

CE
[

1
n

n∑
i=1

h2
(
P̂ ,P i

)]
≤ inf

Q∈M

1
n

n∑
i=1

h2
(
Q,P i

)
+ 1
n

n∑
i=1

qi + D(MMM )
n

+
K
(
P∗||Pind

)
n

,

where C is a positive universal constant, P∗ = L(X1, . . . ,Xn) and Pind = ⊗n
i=1 P i = ⊗n

i=1 L(X i).

We can see that the deviation bound is not significantly worse as long as the average
contamination rate n−1

n∑
i=1

qi is of order not larger than D(MMM )/n.
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Estimation strategy for mixing processes

Our estimation strategy basically follows the path initiated in (1.22) but is more elaborate
and we use all the observations for a better robustness to independent contamination. We can
still use it to simply explain what type of results we can obtain. In the ideal situation where
X1, . . . ,Xn are (possibly dependent) random variables with common distribution P in M , the
ρ-estimator P̂s = P̂ (X(s),MMM (s)) satisfies

CE
[
h2
(
P , P̂s

)]
≤ D(MMM (s))

n(s) +
K
(
P∗
s||Pind

s

)
n(s) ,

where C is a positive universal constant, MMM (s) =
{
P⊗n(s);P ∈ M

}
, P∗

s = L(X(s)) and Pind
s =

P
⊗n(s). Based on this deviation bound, if one knows how the quantity K

(
P∗
s||Pind

s

)
behaves

with respect to s, they can choose a value of s that balances the two terms, as we already know
that n(s) behaves roughly like n/(s+ 1) and the dimension D(MMM (s)) depends on the choice of
the model and should be known.

We prove that the term K
(
P∗
s||Pind

s

)
/n(s) decreases geometrically with respect to s for

finite state space HMMs and for a class of diffusion processes observed at regular time steps.
It is possible to deduce a bound on the converge rate of our estimator of P . In that case, we
obtain bounds on the convergence rate for the estimation of P by taking s of order log2 n, or
c log n where c is a constant depending on the true distribution. It shows that the number
of observations used for the estimation is of order n/ log2 n, in the latter case, and up to a
logarithmic factor the convergence rate is the same as if the observations were independent.

Hidden Markov models

We follow the strategy discussed earlier relying on the fact that the parameters of a stationary
finite state space hidden Markov model can be deduced from the distribution of consecutive
observations. For integers L and s, and observations X = (X1, . . . ,Xn) we define a new set of
variables

Y(s) = (Y1,Y2+s,Y1+2(s+1), . . . ,Y1+n(s)(s+1)), (1.37)

where n(s) = ⌊(n− L)/(s+ 1)⌋ and

Yi = (Xi, . . . ,Yi+L−1), (1.38)

for i in {1, . . . ,n+ 1 −L}. One can see that distributions of the form P(L)
(K,Q,π,F ) given by (1.11)

are finite mixtures of product distributions therefore we can rely on the work established in
Chapter 2. For classes of distributions F1, . . . ,FK , the associated model for the distribution
of L consecutive observations of a finite state space HMM is given by

H (K,F1, . . . ,FK) =
{
P(L)

(K,Q,π,F );w ∈ WK , Q ∈ TK , Fk ∈ Fk,∀k ∈ [K]
}
.

We use (1.29) to obtain a bound on the ρ-dimension of models based on H (K,F1, . . . ,FK).
Assume F1, . . . ,FK are classes of density functions (with respect to a common σ-finite positive
measure) associated with the emission models F1, . . . ,FK . If we denote by MMM the model given
by (1.1) with M ⊂ H (K,F1, . . . ,FK), we can take

D(MMM ) = CL

 ∑
1≤k1,...,kL≤K

Vk1,...,kL

 log n,
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where C is a universal positive constant and Vk1,...,kL
is the VC-dimension of the product of

density models

Fk1,...,kL
:= {x 7→ fk1(x1) . . . fkL

(xL); fkl
∈ Fkl

,∀l ∈ [L]} ,k1, . . . ,kL ∈ [K],

see Proposition 3.5.
If X is an ergodic finite state space HMM with parameters (K∗,Q∗,π,F ∗), i.e. Q∗ is irre-

ducible and aperiodic, then Q∗ admits exactly one invariant distribution that we denote π∗ and
we define the associated distribution P ∗ given by

P ∗ = P(L)
(K∗,Q∗,π∗,F ∗), (1.39)

where P(L)
(K,Q,π,F ) is given by (1.11). Ergodicity also allows us to bound the dependence term

and to show that most of the distributions (L(Yi))i lie in a small neighborhood of P ∗, making
the stationarity assumption unnecessary. In that case, there exist positive constants C(Q∗) and
c(Q∗) depending on Q∗ such that for s ≥ c(Q∗) log n, the ρ-estimator P̂s = P̂ (Ys,MMM (s)) ∈ M
satisfies

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,M ) + L

 ∑
1≤k1,...,kL≤K

Vk1,...,kL

 (s+ 1) log n
n

,

see Theorem 3.4 and (3.40) in particular. If we know the constant c(Q∗), or eventually an upper
bound c+ on it, we can take s = ⌈c+ log n⌉ which gives

C(Q∗,c+)E
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,M ) + L

 ∑
1≤k1,...,kL≤K

Vk1,...,kL

 log2 n

n
,

and if P ∗ belongs to M we obtain a convergence rate of order n−1 log2 n with respect to the
squared Hellinger distance, which is optimal up to a logarithmic factor. If it is not the case we
can take s of order log2 which establishes a rate with only an additional logarithmic factor. We
obtain a bound of order n−1 log3 for all P ∗ in the subset M ∗ ⊂ M of ergodic HMMs given by

M ∗ :=

P(L)
w,Q,F ∈ M ;

Q irreducible ,
Q aperiodic,
and w = Qw

 .
However, this bound is not uniform as some of the constants depend on the transition matrix
of the true HMM.

We show a bound for the VC-dimensions Vk1,...,kL
when all the emission models are expo-

nential families, i.e. for all k the emission model has a associated class of densities Fk given
by

Fk :=
{
fθ : x 7→ e⟨ηk(θ),Tk(x)⟩+Ak(θ)+Bk(x); θ ∈ Θk

}
,

where Θk is a non-empty set, T : X → Rdk and B : X → R are measurable functions,
η : Θ → Rdk is such that Ak(θ) := − log

∫
X e⟨ηk(θ),Tk(x)⟩+Bk(x)ν(dx) is well-defined. In that case,

we have Vk1,...,kL
≤ 3 + dk1 + · · · + dkL

for all k1, . . . ,kL such that

D(MMM ) ≤ C
[
3KL + LKL−1(d1 + · · · + dK)

]
,

where C is a positive universal constant (see Proposition 3.1). Exponential families include
usual parametric models such as normal, exponential, gamma or beta distributions for example.
We consider the cases of location and location-scale families of multivariate normal distributions
and provide bounds on the convergence rate for the estimation of P ∗ in Theorem 3.7.
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As for mixture models, we can deduce deviation bounds for the parameter estimators when
the Hellinger distance between distributions is lower bounded by a distance between the corre-
sponding parameters (see (1.32)). We use the theory of Ibragimov & Has’minskĭı [54] to prove
such an inequality for models with exponential families as emission models and satisfying some
regularity conditions. We obtain the expected parametric rate for the parameter estimators,
up to a logarithmic factor. We illustrate this result for finite state space HMMs with emission
distributions that are exponential distributions in Theorem 3.9. If the observations come from
a HMM with an ergodic transition matrix Q and emission distributions E(θ1), . . . ,E(θK), for
s = ⌈log2 n⌉ our parameter estimators satisfy

C(Q,θ)E
[
||w − ŵ||2 + ||Q− Q̂||2 +

K∑
k=1

(θk − θ̂k)2 ∧ 1
]

≤ K3 log3 n

n
,

where w is the stationary distribution with respect to Q, C(w,Q,θ) is a positive constant
depending on the true parameters and E(θ) is the exponential distribution with parameter θ.

We can also consider nonparametric estimation with finite nets as an approximation, follow-
ing the approach of (1.28). We illustrate it for emission models containing distributions with
densities that are log-concave. Under the ergodicity assumption and if the emission distribu-
tions have a log-concave density with respect to the Lebesgue measure, there exist a positive
constants C(P ∗) such that for s = ⌈log2 n⌉ we have

C(P ∗)E
[
h2
(
P ∗, P̂s

)]
≤ L2KL logad n

nbd
,

where the constants ad and bd depend on the dimension d and are given in Theorem 3.5. The
convergence rates are similar to the ones obtained for density estimation of a log-concave density
from i.i.d. observation (see Kim & Samworth [58] and Kur et al. [60]). We only obtain worse
logarithmic terms due to the higher complexity of the model and the dependence within the
observations. It is possible to deduce deviation bounds for the parameter estimators under
additional assumptions, using inequality (1.33) and the results of Lehéricy [63], such as (1.12).

We also consider an atypical example inspired by Example 1.6. We take L = 2 and believe
that P ∗ is of the form

Pw,z,q = (1 − w)Sα,0 ⊗ (q0,1Sα,z + (1 − q0,1)Sα,0) + wSα,z ⊗ (q1,0Sα,0 + (1 − q1,0)Sα,z) .

This corresponds to a translation hidden Markov model with two states, one of which is known.
If the true distribution is an ergodic finite state space HMM and P ∗ is actually of the form
Pw,z,q, for s = ⌈log2 n⌉ our parameter estimators satisfy

C (P ∗)E
[
(w − ŵ)2 + (q12 − q̂12)2 + (q21 − q̂21)2 + (|z − ẑ| ∧ 1)1−α

]
≤ log3 n

n
,

where C(P ∗) is a positive constant that depends on P ∗. We obtain the usual 1/
√
n parametric

rate, with respect to the Euclidean distance, for the estimation of the transition probabilities
q0,1,q1,0 and of the stationary distribution w, up to a logarithmic factor. As in the case of
mixtures, we obtain the faster rate n−1/(1−α) for the location parameter z, up to a logarithmic
factor.

Diffusion processes

In Section 3.3, we consider the problem of estimating the invariant distribution of the stochastic
differential equation

dYt = dBt − ∇U(Yt)dt, (1.40)
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where (Bt)t≥0 is a d-dimensional Brownian motion, d ≥ 1. Under some conditions on U : Rd →
R this equation is well defined and the associated invariant distribution P has a density p with
respect to the Lebesgue measure given by

p(y) = e−2U(y)∫
Rd e−2U(y)dy

.

We consider the estimation of P from discrete observations X1, . . . ,Xn assuming they are given
by Xi = Yti , where (Yt)t is a stationary solution of (1.40) and 0 ≤ t1 < · · · < tn−1 < tn < ∞.
For the sake of simplicity we consider a constant time step ∆t > 0 such that ti+1 = ti + ∆t

Strict convexity of U is a sufficient condition for everything to be well-defined and it has
two interesting consequences. In that case, the distribution P has a log-concave density with
respect to the Lebesgue measure. There is a rich literature on log-concave density estimation in
the i.i.d. context, particularly for the maximum likelihood estimator. Dümbgen & Rufibach [34]
and Schuhmacher & Dümbgen [81] established consistency results for the maximum likelihood.
Dümbgen et al. [35] investigated the approximation properties of log-concave densities. More
recently, Kim & Samworth [58] and Kur et al. [60] proved non-asymptotic results for the maxi-
mum likelihood estimator with respect to the squared Hellinger distance. We can rely on some
of the different results contained in those papers to consider the estimation of P .

We obtain a risk bound for our estimator P̂ of P in any dimension. There is a positive
constant c(U) such that for s ≥ c(U) log n we have

C(U,∆t)E
[
h2
(
P ,P̂s

)]
≤ (s+ 1) logad n

nbd
,

where ad and bd are constants given in Theorem 3.2 that depend on the dimension d. We obtain
convergence rates that are similar to the ones of Kim & Samworth [58] and Kur et al. [60] for
i.i.d. observations. We only obtain worse powers of log n except in the 3-dimensional case. To
our knowledge, the approach we propose is quite new in the context of diffusion processes. In
particular, there are no comparable results of robust estimation in a similar framework.

Selection of the spacing parameter

The procedure described by (1.22) requires the statistician to specify the spacing parameter s
giving the subset X(s) of observations to be used for the estimation. One needs some knowledge
on the true distribution in order to choose a satisfactory value of s. This is restrictive as we
want to avoid making any assumption on the true distribution of the observations. In Section
3.5, we propose a strategy to automatically select a value of s from a second set of observations.
For a subset M of PX and independent sets of observations

X(1) :=
(
X

(1)
1 , . . . ,X(1)

n1

)
and X(2) :=

(
X

(2)
1 , . . . ,X(2)

n2

)
we consider the following procedure. We use the first set X(1) to get an estimator P̂s =
P̂
(
X(1,s),MMM (s)

)
for different values of s in a set S. In a second time, we use X(2) to select a

value ŝ in S and our final estimator is P̂ = P̂ŝ. We show under minimal assumptions that our
estimator performs almost as good as if we knew the optimal value for s. We also show that
the estimator is still robust to independent contamination and we present an application to
finite state space hidden Markov models.

1.4.5 Model selection for finite state space HMMs (Chapter 4)
For the sake of simplicity, we do not consider the possibility to use model selection in Chapter
3. We extend this framework in Chapter 4 with model selection for finite state space HMMs,
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allowing us to consider different possible values for the order K and/or different emission
models. For the sake of simplicity, we consider the two situations separately. For the selection
of the order, we can show that if the true distribution belongs to the model with order K∗,
we do not underestimate K∗ for n large enough. For the estimation of the distribution P ∗

given by (1.39), the estimator achieves the same rate as if K∗ was known. We illustrate this
with an application with Poisson emission distributions. For the selection of the emission
models, we take the example of multivariate Gaussian emission models. We define classes of
covariance matrices fixing some of the coefficients to be null and associate a class of multivariate
normal distributions to each class of covariance matrices. We consider those classes as potential
emission models and use model selection with a penalty related to the number of zeros in the
covariance matrices. We show that the dependence on the dimension in the risk bound can be
improved if the true covariance matrices of the emission distributions are sparse, which is very
interesting in high dimensions.

1.4.6 General HMMs (Chapter 5)
We present another extension in Chapter 5 considering hidden Markov models with a general
state space. We consider the case of univariate normal emission distributions. The model
assumes that observations X1, . . . ,Xn are given by

Xi = zi + σ2
i εi,

where (zi,σ2
i )i is a Markov chain on R×(0,∞) and ε1, . . . ,εn are i.i.d. standard normal distribu-

tions. We prove a result of identifiability from the distribution of two consecutive observations.
If (hi)i = (zi,σ2

i )i is a Markov chain with Markov kernel Q and initial distribution π stationary
with respect to Q, the distribution Pπ,Q of (Xi,Xi+1) has a density with respect to the Lebesgue
measure given by

pπ,Q(x1,x2) = (2π)−1
∫
σ−1

1 e
− (x1−z1)2

2σ2
1 σ−1

2 e
− (x2−z2)2

2σ2
2 Q(h1,dh2)π(dh1).

We prove that such distributions can be well approximated by finite mixtures of multivariate
normal distributions when π and Q are supported on a compact set. We build an estimator
of Pπ,Q based on such mixtures and prove a bound on its convergence rate. To our knowledge,
this is the first non-asymptotic result for a general HMMs that are not translation HMMs. In
our case, it corresponds to the situation where the variance σ2

i is constant.

1.5 Reminder of Vapnik-Chervonenkis theory
For a more detailed introduction to VC-subgraph classes we refer the reader to Van der Vaart &
Wellner [84] (Section 2.6.5) and Baraud et al. [9] (Section 8). The VC-dimension was originally
introduced by Vapnik & Chervonenkis [85] to measure the complexity of a model in binary
classification. Let C be a collection of subsets of a set X . We say that C shatters a set
S = {x1, . . . ,xk} ⊂ X if each subset of S can be obtained by taking its intersection C ∩ S
with some set C ∈ C. This means that a classification algorithm based on C can learn a perfect
classifier for the sample S.

Definition 1.8. The VC-dimension of C is the largest cardinality |S| of a set S ⊂ X that C
shatters. We say that C is a VC-class (of sets) if its VC-dimension V (C) is finite. We can also
use the VC-index V (C) given by V (C) = V (C) + 1.
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This notion can be extended to classes of real-valued functions through the classes of sets
given by their subgraph. Let F be a collection of functions X → R ∪ {+∞}. For f in F we
define its subgraph by Cf = {(x,t) ∈ X × R; f(x) > t}.

Definition 1.9. The VC-dimension of the class of functions F is the VC-dimension of the
class of sets CF = {Cf ; f ∈ F}. We say that F is a VC-class or a VC-subgraph class if its
VC-dimension V (F) is finite.

We can also use the notion of VC-index for classes of functions. The remarks below imme-
diately follow from this definition.

• If F is VC-subgraph with dimension V , then any subset G ⊂ F is VC-subgraph with
dimension at most V .

• If F is a finite set, F is VC-subgraph and its dimension is not larger than V = log2(|F |)∨
1.

We can state some results that give an idea of the VC-dimension in some cases. The following
one relates the dimension of a finite-dimensional vector space of functions to its VC-dimension.

Proposition 1.2. (Lemma 2.6.15 [84])
Any finite-dimensional vector space F of measurable functions f : X → R with dimension
d(F) is VC-subgraph with VC-dimension smaller than or equal to d(F) + 1.

The result below allows us to establish bounds on the VC-dimension that are more compli-
cated than simple vector spaces.

Proposition 1.3. (Proposition 42 [9])
Let F be VC-subgraph with VC-dimension V on a set X .

1. For all function g : X → R, the class of functions F +g = {f+g, f ∈ F} is VC-subgraph
with VC-dimension not larger than V .

2. For all monotone function φ on R, the class of functions φ(F) = {φ ◦ f, f ∈ F} is
VC-subgraph with VC-dimension not larger than V .

With the two propositions above, we can already prove that any exponential family of
densities is VC-subgraph. For multivariate normal densities for instance, we can see that we
recover the usual notion of dimension in parametric models, up to an additive constant.

Proposition 1.4. (Lemma 2.1)
Let d ≥ 1. Let Cov+∗(d) be the set of d × d symmetric and positive-definite matrices. For
µ ∈ Rd and Σ ∈ Cov+∗(d), we denote by gµ,Σ the density function of N (µ,Σ) with respect to
the Lebesgue measure given by

gµ,Σ(x) := 1√
(2π)d|Σ|

exp
(

−1
2(x− µ)TΣ−1(x− µ)

)
.

Let Gd be the location-scale family of densities given by Gd :=
{
gµ,Σ;µ ∈ Rd,Σ ∈ Cov+∗

}
. For a

fixed Σ, we denote by Gloc(Σ) the associated location family given by Gloc(Σ) :=
{
gµ;Σ;µ ∈ Rd

}
.

The sets Gd and Gloc(Σ) are VC-subgraph with VC-index bounded by 3 + d(d+3)
2 and 3 +d respec-

tively.
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1.6 Possible extensions
We can identify different directions in which the work of this thesis can be extended.

• We considered continuous mixtures of Gaussian distributions and HMMs with general
state space with Gaussian emission distributions. This could be generalized to other
location or location-scale parametric families for the emission distribution and eventually
to a nonparametric framework.

• Our framework focuses on cases where observations are identically distributed or close to
it. This does not allow us to investigate time series with trends or cycles for example.

• We provided some results similar to (1.12) to lower bound the Hellinger distance between
distributions by a distance on the parameters for specific cases of mixture models and
hidden Markov models. It would be interesting to investigate further the problem of
deducing the parameters from the distribution of interest in cases that have not been
treated or eventually other types of latent variable models.

• We considered a specific class of stochastic differential equations. The approach could
be easily extended to other diffusion processes. The main difficulty is to bound the
dependence term. To do so we need to investigate the quantity

K (L(Xt,Xt+s)||L(Xt) ⊗ L(Xt+s)) ,t,s > 0.

1.7 Organization of the thesis
Chapter 2 is based on the paper Lecestre [62] published in ESAIM: PS and is dedicated to
mixture models. We consider observations that are not necessarily independent in Chapter 3
and present applications to finite state space HMMs and a type of diffusion processes. This
chapter is based on the arXiv paper Lecestre [61]. The last two chapters are ongoing projects
that extend the applications to hidden Markov models presented in Chapter 3. Chapter 4
presents a general result of model selection for finite state space HMMs with applications to
the selection of the order and the selection of the emission models. Chapter 5 deals with
estimation for general state space hidden Markov models for the particular case of normal
emission distributions.



Chapter 2

Robust estimation in finite mixture
models

27



28 Chapter 2. Finite mixture models

Abstract

We observe a n-sample, the distribution of which is assumed to belong, or at least to be close
enough, to a given mixture model. We propose an estimator of this distribution that belongs to
our model and possesses some robustness properties with respect to a possible misspecification
of it. We establish a non-asymptotic deviation bound for the Hellinger distance between the
target distribution and its estimator when the model consists of a mixture of densities that
belong to VC-subgraph classes. Under suitable assumptions and when the mixture model is
well-specified, we derive risk bounds for the parameters of the mixture. Finally, we design a
statistical procedure that allows us to select from the data the number of components as well
as suitable models for each of the densities that are involved in the mixture. These models are
chosen among a collection of candidate ones and we show that our selection rule combined with
our estimation strategy result in an estimator which satisfies an oracle-type inequality.

2.1 Introduction
Mixture models are a flexible tool for modeling heterogeneous data, e.g. from a population
consisting of multiple hidden homogeneous subpopulations. Finite mixture models are models
containing distribution of the form

Pw,F =
K∑
k=1

wkFk, (2.1)

where K ≥ 2, each Fk belongs to a specific class of probability distributions (e.g. nor-
mal distributions in the case of Gaussian mixture models) and w belongs to the simplex
WK =

{
w ∈ [0,1]K ;w1 + · · · + wk = 1

}
. For a complete introduction to mixture models and

an overview of the different applications we refer to the books of Mclachlan & Peel [71] and
Frühwirth-Schnatter [38].

Assume we have a sample X := (X1, . . . ,Xn) of i.i.d. data, each coordinate following the
probability distribution P ∗. The majority of the statistical methods based on finite mixture
models aim to solve one of the following problems: density estimation (estimation of P ∗), pa-
rameter estimation (estimation of w∗ and/or F ∗ assuming P ∗ = Pw∗,F ∗) and clustering. The
monographs of Everitt & Hand [36] or Titterington et al.[83] provide a good overview of the
different estimation methods that have been developed for mixture models such as maximum
likelihood, minimum chi-square, moments method and Bayesian approaches. Although al-
gorithms are numerous, theoretical guarantees are mostly asymptotic and restricted to very
specific situations. To our knowledge, only a few non-asymptotic results have been established
in the case of density estimation based on Gaussian Mixture Models (GMMs). The approxi-
mation and entropy properties of Gaussian mixture sieves have been investigated by Kruijer et
al.[59], Ghosal & van der Vaart [49] and Genovese & Wasserman [48] where bounds on the con-
vergence rate are given for the MLE and Bayesian estimators. Similarly, Maugis & Michel [69]
use a penalized version of the MLE to build a Gaussian mixture estimator with non asymptotic
adaptive properties proven in [68]. However, those results rely on relatively strong assumptions
and estimators are not proved to be robust to small departures from those assumptions.
This paper aims to provide non-asymptotic results in a very general setting. In our framework,
the data are assumed to be independent but not necessarily i.i.d. Our mixture model con-
sists of probabilities of the form (2.1) where the Fk admit densities, called emission densities,
that belong to classes of function that are VC-subgraph. We investigate the performances of
ρ-estimators, as defined by Baraud and Birgé [11], on finite mixture models. This paper only
focuses on the theoretical aspects and performances. We do not consider here the problem of
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computing estimators in practice. Our main result, Theorem 2.1, is an exponential deviation
inequality for the risk of the estimator P̂ , which is measured with an Hellinger-type loss. We
get an upper bound on the risk that is the sum of two terms. The first one is an approxima-
tion term which provides a measure of the distance between the true distribution of the data
and our mixture model. The second term is a complexity term that depends on the classes
containing the emission densities and which is proportional to the sum of their VC-indices.
We deduce from this deviation bound that the estimator is not only robust with respect to
model misspecification but also to contamination and the presence of outliers among the data
set. Dealing with models that may be approximate allows us to build estimators that possess
properties over wider classes of distribution. Ghosal & Van der Vaart [49] used finite location-
scale Gaussian mixtures to approximate general Gaussian mixtures with compactly supported
mixing distribution. They consider mixtures with scale parameters lying between two constants
that depend on the true distribution. By using a similar approximation (see Proposition 2.1),
we show in Theorem 2.3 that our estimator achieves the same rate of convergence but without
any restriction on the scale parameters so that the model we consider does not depend on the
true mixing distribution. In particular, our result is insensitive to translation or rescaling.

Under suitable identifiability assumptions and when the distribution of the data belongs to
our model, hence is of the form (2.1), we also analyze the performance of our estimators of the
parameters w1, . . . ,wK and F1, . . . ,FK . In order to establish convergence rates, we relate the
Hellinger distance between the distribution of the data and its estimator to a suitable distance
between the corresponding parameters. A general technique is using Fisher’s information and
results of Ibragimov & Has’minskĭı [54] for regular parametric models. We can also use other
results specific to parameter estimation in mixture models such as what Gadat et al.[41] proved
in the context of two component mixtures with one known component. In both situations,
we obtain, up to a logarithmic parameter, the usual 1/

√
n-rate of convergence for regular

parametric models. We also provide with Theorem 2.7 the example of a parametric model
for which our techniques allow us to establish faster convergence rates while classical methods
based on the likelihood or the least-squares fail to apply and hence give nothing.

In many applications, starting with a single mixture model may be restrictive and a more
reasonable approach is to consider candidate ones for estimating the number of components of
the mixture and proposing suitable models for the emission densities. To tackle this problem,
we design a model selection procedure from which we establish, under suitable assumptions, an
oracle-type inequality. We consider several illustrations of this strategy. For example, we use a
penalized estimator to select the number of components of a Gaussian mixture estimator and
obtain similar adaptivity results as Maugis-Rabusseau & Michel [68]. We also consider a model
with a fixed number of components but each emission density can either belong to the Gaussian
or to the Cauchy location-scale family. We prove that if we know the number of components,
we can estimate consistently the proportions of Gaussian and Cauchy components as well as
their location and scale parameters. To our knowledge, this result is the first of its kind.

The extension of the theory of ρ-estimation to mixture models is based on Proposition 2.3
below. The proof of this result relies on an upper bound for the expectation of the supremum
of an empirical process over a mixture of VC-subgraph classes. It generalizes the result that
was previously established for a single VC-subgraph class. The key argument in the proof is
the uniform entropy property of VC-subgraph classes that still holds for the overall density
mixture model with lower bounded weights.

The paper is organized as follows. We describe our statistical framework in Section 2.2. In
Section 2.3, we present the construction of the estimator on a single mixture model. We state
the general result for density estimation on a single model and illustrate the performance of the
estimator on the specific example of GMMs. The problem of estimating the parameters of the
mixture is addressed in the subsection 2.3.5. Finally, Section 2.4 is devoted to model selection
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criterion and the properties of the estimator on the selected model. The appendix contains all
the proofs that are gathered in the same sections when they are related. Those sections include
the main results, density estimation, the parametric estimation in regular parametric models,
the case of two-component mixtures with one known component and the lemmas.

2.2 The statistical framework
We observe n independent random variables X1,X2, . . . ,Xn with respective marginal distri-
butions P ∗

1 ,P
∗
2 , . . . ,P

∗
n on the measurable space (X ,X ). We model the joint distribution

P∗ = P ∗
1 ⊗ P ∗

2 ⊗ · · · ⊗ P ∗
n of X = (X1,X2, . . . ,Xn) by a probability of the form P

⊗n doing
as if the observations were i.i.d. with common distribution P . We assume that P is a mix-
ture of the form (2.1) where K is a positive integer, the wk some positive weights that satisfy∑K
k=1 wk = 1, and Fk probability distributions. In order to model each of these probabilities

we introduce a collection
{
F k,λ; k ≥ 1,λ ∈ Λk

}
of possible models and assume that for each

k ∈ {1, . . . ,K}, Fk belongs to ∪λ∈Λk
F k,λ. We denote by QK the family of distributions of the

previous form. For each k ≥ 1, we call Fk an emission probability, F k,λ an emission model,
and Ek =

{
F k,λ;λ ∈ Λk

}
an emission family. Based on the observation of X, our aim is to

design an estimator P̂ of P of the form

P̂ =
K̂∑
k=1

ŵkF̂k ∈
⋃
K≥1

QK (2.2)

where K̂, (ŵk)1≤k≤K̂ and (F̂k)k are estimators of K, (wk)k and (Fk)k respectively. There are a
lot of possibilities for the collections Λk, depending on the estimation strategy (nonparametric,
polynomial basis, wavelets, ...). We illustrate it in detail with the following example of usual
parametric models on R.

Example 2.1. Let us take Λk = {1,2,3} with

• the Gaussian location-scale family,

F k,1 = G = {N (µ,σ) ;µ ∈ R, σ > 0} ; (2.3)

• the Cauchy location-scale family,

F k,2 = C = {Cauchy (µ,σ) ;µ ∈ R, σ > 0} ;

• and the Laplace location-scale family,

F k,3 = L = {Laplace (µ,σ) ;µ ∈ R, σ > 0} .

The classical situation that has been considered in the literature corresponds to the case
where the collection

{
F k,λ; k ≥ 1, λ ∈ Λk

}
reduces to a single emission model F , for example

the family of Gaussian distributions, and the problem is to estimate K and the emission proba-
bilities Fk under the assumption that they all belong to F . This assumption is quite restrictive
and we rather consider a collection Ek of candidate models for Fk that may even depend on
k. We say that Ek is simple when it reduces to a single emission model F k and composite
otherwise.
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In order to evaluate the performance of the estimator P̂ , we introduce on the set PPP of all
product probabilities on (X n,X ⊗n) the Hellinger-type distance h defined by

h(Q,Q′) =
√√√√ n∑
i=1

h2(Qi,Q′
i), for Q =

n⊗
i=1

Qi,Q′ =
n⊗
i=1

Q′
i ∈ PPP, (2.4)

where h is the Hellinger distance on the set P of probability distributions on (X ,X ). We
recall that for Q, Q′ in P

h2(Q,Q′) = 1
2

∫ (√
dQ

dµ
−
√
dQ′

dµ

)2

dµ,

where µ is a measure that dominates both Q and Q′, the result being independent of µ.

Assumption 2.1. For all k ≥ 1, the set Λk is at most countable (which means finite or
countable) and such that for all λ in Λk, F k,λ contains an at most countable subset Fk,λ which
is dense in F k,λ with respect to the Hellinger distance h.

This assumption is only made for technical reasons, i.e. it ensures the measurability of
the different objects considered in the proofs. But it is not really restrictive as, from a very
practical point of view, one would only deal with rational numbers which already restrict to
countable models. Moreover, one can check that Fk,1 = {N (µ,σ);µ ∈ Q,σ ∈ Q ∩ (0,∞)} satisfy
our assumption in the context of Example 2.1. It holds as well for Fk,2, Fk,3 and Fk,4 with
the same construction. Given Assumption 2.1 we can fix some notation. The countability
condition implies that there exists a σ-finite measure µ that dominates all the F k,λ for k ≥ 1
and λ ∈ Λk. Throughout this paper, we fix such a measure µ and associate to each emission
model F k,λ a family of density distributions Fk,λ such that F k,λ =

{
f · µ; f ∈ Fk,λ

}
. In all the

different examples considered in the rest of the paper µ is the Lebesgue measure. As explained,
Assumption 2.1 is necessary for very technical reasons. The next assumption allows us to bound
the “dimension” of the model (see the introduction or Proposition 2.3).

Assumption 2.2. For all k ≥ 1 and λ ∈ Λk, the family of density distributions Fk,λ is VC-
subgraph with VC-index smaller than or equal to Vk,λ ≥ 1.

In order to avoid too much technicality in the core of this paper, we dedicated Section 2.F
to VC-subgraph classes of functions with the definition and proofs of the different results. The
next lemma shows that the VC-index corresponds to what we expect as the “dimension” of the
model in the case of multivariate for normal distributions.

Lemma 2.1. Let d ≥ 1. Let Cov+∗(d) be the set of d × d symmetric and positive-definite
matrices. For µ ∈ Rd and Σ ∈ Cov+∗(d), we denote by gµ,Σ the density function of N (µ,Σ)
with respect to the Lebesgue measure given by

gµ,Σ(x) := 1√
(2π)d|Σ|

exp
(

−1
2(x− µ)TΣ−1(x− µ)

)
.

Let Gd be the location-scale family of densities given by Gd :=
{
gµ,Σ;µ ∈ Rd,Σ ∈ Cov+∗

}
. For a

fixed Σ, we denote by Gloc(Σ) the associated location family given by Gloc(Σ) :=
{
gµ;Σ;µ ∈ Rd

}
.

The sets Gd and Gloc(Σ) are VC-subgraph with VC-index bounded by 3 + d(d+3)
2 and 3 +d respec-

tively.
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The dependence in d is linear and quadratic for the location family and location-scale family
respectively, as for the number of parameters needed to describe each class. Throughout this
paper we shall use the following notation. For P = P1 ⊗ · · · ⊗ Pn ∈ PPP and A ⊂ P, we write

h2 (P,A ) = inf
Q∈A

h2
(
P,Q⊗n

)
= inf

Q∈A

n∑
i=1

h2(Pi,Q).

For x ∈ R, ⌊x⌋ is the only integer satisfying ⌊x⌋ ≤ x < ⌊x⌋ + 1 and similarly ⌈x⌉ denotes the
integer satisfying ⌈x⌉ − 1 < x ≤ ⌈x⌉. Moreover, if x > 0 we write log+(x) = log(x) ∨ 0. If A is
a finite set, we denote its cardinal by |A| and if A is infinite, we write |A| = ∞. For k in N∗,
we denote by [k] the set {1,2, . . . ,k}. The notation C(θ) will mean that the constant C = C(θ)
depends on the parameter or set of parameters θ.

2.3 Estimation on a mixture model based on simple emis-
sion families

In this section, we assume that the Ek =
{
F k

}
are simple for all k ≥ 1 and that P belongs

to QK for some known value of K ≥ 1. This means that we know that P is a mixture of at
most K emission probabilities F1, . . . ,FK and that Fk belongs to F k for all k ∈ [K]. Under
Assumption 2.2, we denote by Vk the VC-index of F k.

2.3.1 Construction of the estimator on QK

For δ in (0,1/K], we define the subset QK,δ of QK by

QK,δ :=
{

K∑
k=1

wkFk ∈ QK ;w ∈ WK ∩ ([δ,1] ∩ Q)K , Fk ∈ Fk

}
(2.5)

where the Fk are the countable and dense subsets of F k provided by Assumption 2.1. We
associate to QK,δ the family QK,δ of densities with respect to µ and the ρ-estimator P̂δ of P
based on the family QK,δ. We recall that P̂δ is defined as follows. Given

ψ : [0,+ ∞] → [−1,1]
x 7→ x−1

x+1
, (2.6)

we set for x = (x1,...,xn) ∈ X n and q,q′ ∈ QK,δ

T(x,q,q′) :=
n∑
i=1

ψ


√√√√q′ (xi)
q (xi)

 , (2.7)

with the convention 0/0 = 1 and a/0 = +∞ for all a > 0, and

Υ(X,q) := sup
q′∈QK,δ

T(X,q,q′). (2.8)

The ρ-estimator P̂δ is any measurable element of the closure (with respect to the Hellinger
distance) of the set

EEE (ψ,X) :=
{
Q = q · µ; q ∈ QK,δ,Υ(X,q) < inf

q′∈QK,δ

Υ(X,q′) + 11.36
}
. (2.9)
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This construction follows [11] and the constant 11.36 is given by (7) in [11]. This constant
does not play an essential role and can be replaced by any smaller positive number. Ideally,
one would take an estimator that achieves the infimum but it might happen that no minimizer
exists. Using (2.9) allows us to avoid this problem without significantly deteriorating the
deviation bounds we obtain for our estimator.

As explained earlier, we only focus on the theoretical aspects in this paper. Although ρ-
estimators have been developed to obtain theoretical rather than computational properties, it is
possible to actually compute the estimators in practice for some models and to run simulations,
as in Baraud & Chen [12] (Section 5).

2.3.2 The performance of the estimator
The following result holds.

Theorem 2.1. Let δ ∈ (0,1/K] and ξ > 0. Assume that Assumptions 2.1 and 2.2 hold and set
V = V1 + · · · + VK. Any ρ-estimator P̂δ on QK,δ satisfies with probability at least 1 − e−ξ,

h2
(

P∗,
(
P̂δ
)⊗n

)
≤ c0

[
h2 (P∗,QK) + n(K − 1)δ

]
(2.10)

+ c1116.1V
[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ),

where c0 = 300, c1 = 5014. In particular, for the choice δ = V
n(K−1)

∧ 1
K

, the resulting estimator
P̂ = P̂δ satisfies

Ch2
(
P∗, P̂⊗n

)
≤ h2(P∗,QK) + V

[
1 + log

(
Kn

V ∧ n

)]
+ ξ, (2.11)

with probability at least 1 − e−ξ, where C is a positive universal constant.

The proof of the theorem is postponed to Section 2.B.2. One can notice that the bound we
obtain does not depend on the space X , e.g. on the dimension d in the case X = Rd, but only
on the VC-indices V1, . . . ,VK and on δ. Inequality (2.10) shows the influence of the choice of
the parameter δ on the performance of the estimator P̂δ. Hereafter, we shall choose δ as in the
second part of Theorem 2.1 and therefore only comment on inequality (2.11). Given P in QK ,
it follows from the triangle inequality and the fact that (a+ b)2 ≤ 2a2 + 2b2 for all non-negative
numbers a and b, that

nh2
(
P , P̂

)
= h2

(
P

⊗n
, P̂⊗n

)
≤ 2h2

(
P∗, P̂⊗n

)
+ 2h2

(
P∗, P

⊗n)
.

We immediately derive from (2.11) that on a set of probability at least 1 − e−ξ

Ch2
(
P ,P̂

)
≤ 1
n

n∑
i=1

h2(P ∗
i ,P ) +

V log
(
Kn

/
V
)

+ ξ

n
. (2.12)

In the ideal situation where the observations are i.i.d. with common distribution P ∈ QK , we
obtain that

Ch2
(
P , P̂

)
≤
V log

(
Kn

/
V
)

+ ξ

n
.
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Integrating this result with respect to ξ and the fact that P is arbitrary in QK leads to the
uniform risk bound

sup
P∈QK

E
[
h2
(
P , P̂

)]
≤ C ′V log

(
Kn

/
V
)

n
, (2.13)

where C ′ is a positive universal constant. This means that up to a logarithmic factor, the
estimator P̂ uniformly converges over QK at the rate 1/

√
n with respect to the Hellinger

distance. One knows that when working with the Hellinger distance, no estimator can do
better that this 1/

√
n rate (see (1.1) in [15]).

We can see that we only need to bound the quantity V to deduce deviation inequalities in
specific cases. Therefore, we can already get a bound on the convergence rate for Gaussian
mixtures with Lemma 2.1.

Corollary 2.1. • Let QK be the Gaussian location-scale mixture model, i.e. F 1 = · · · =
FK =

{
N (µ,Σ);µ ∈ Rd,Σ ∈ Cov+∗(d)

}
. There is a positive universal constant C > 0

such that, for any ρ-estimator P̂ = P̂δ on QK,δ, for all P ∈ QK and for all ξ > 0, we
have

Ch2
(
P ,P̂

)
≤
Kd2

[
1 + log

(
n
d2 ∨K

)]
+ ξ

n
,

with probability at least 1 − e−ξ.

• Let QK be the Gaussian location mixture model associated to a fixed covariance matrix
Σ ∈ Cov+∗(d), i.e. F 1 = · · · = FK =

{
N (µ,Σ);µ ∈ Rd

}
. There is a positive universal

constant C > 0 such that, for any ρ-estimator P̂ = P̂δ on QK,δ, for all P ∈ QK and for
all ξ > 0, we have

Ch2
(
P , P̂

)
≤
Kd

[
1 + log

(
n
d

∨K
)]

+ ξ

n
,

with probability at least 1 − e−ξ.

Those rates would be optimal if the logarithmic factor was necessary. Doss et al.[30] proved
it is not the case for Gaussian location mixtures with known isotropic covariance matrix. They
provide an estimator that achieves the minimax rate

√
d/n with respect to the Hellinger dis-

tance. However, the dependency in K of their bound in (1.12) is worse than exponential when
it is just linear for our estimator.

Our assumption that the families of density functions Fk are VC-subgraph is actually weak
since it includes situations where these models consist of unbounded densities or densities
which are not in L2 which to our knowledge have never been considered in the literature. A
concrete example of such situations is the following one. Let g be some non-increasing function
on (0, + ∞) which is unbounded, nonnegative and satisfies

∫+∞
0 g(x)dx = 1

2 and F k is the
translation model associated to the family of densities

{
x 7→ g(|x− θ|)1|x−θ|>0; θ ∈ R

}
for all

k ∈ {1, . . . ,K}. It follows from Proposition 42-(vi) of Baraud et al.[9] that the VC-index of Fk

is not larger than 10.
When the data are independent but not i.i.d., we derive from inequality (2.12) that the

estimator P̂ performs almost as well as in the i.i.d. case as long as the marginals P ∗
1 , . . . ,P

∗
n

are close enough to P . This means that the estimator is robust with respect to a possible
misspecification of the model and the departure from the assumption that the data are i.i.d.
In particular, this includes the situations where the dataset contains some outliers or has been
contaminated. Consider Hüber’s contamination model where a proportion ϵ of the data is
contaminated, i.e. we have P ∗ = (1 − ϵ)P + ϵQ, where P is the probability distribution we
want to estimate and Q is the distribution of the contaminated data. In this situation, for any
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probability distribution Q, using (2.12) and the convexity property of the Hellinger distance
we get

Ch2
(
P ,P̂

)
≤ ϵ+ V log (n) + ξ

n
. (2.14)

We can see that there is no perturbation of the convergence rate as long as the contamination
rate ϵ remains small as compared to V log(n)/n. Contrary to other loss functions, the Hellinger
distance does not allow to obtain a better rate than

√
ϵ in the general case (see Birgé [17]).

Inequality (2.18), stated later, also allows to consider misspecification for the emission models
for example.

2.3.3 The case of totally bounded emission models
We might also consider emission models for which we do not have any bound on the VC-index.
For a subset N of P and η ∈ [0,1], the η-covering number N(η,N ,h) of N , with respect
to the Hellinger distance, is the minimum number of balls Bh(Pi,η), i = 1, . . . ,N , necessary to
cover N . In that case, the set N [η] = {Pi; i = 1, . . . ,N} constitutes a finite approximation of
N , i.e. for all Q in N there exists i ∈ {1, . . . ,N} such that h (Q,Pi) ≤ η. We say that N is
totally bounded (for the Hellinger distance) if its η-covering number is finite for all η ∈ (0,1].
A direct consequence of the definition of VC-subgraph classes is that any finite set F of real-
valued functions is VC-subgraph with VC-index at most V (F) ≤ log2 (|F|). Consequently, we
can still use ρ-estimation for models that are not proven to satisfy Assumption 2.2 but still are
such that emission models are totally bounded.

Theorem 2.2. Let F k be a totally bounded class of distributions for all k ∈ {1, . . . ,K} with
K ≥ 2. Let QK be the mixture model defined by

QK =
{

K∑
k=1

wkFk;w ∈ WK , Fk ∈ F k, ∀k ∈ {1, . . . ,K}
}
.

Assume there are constants Ak ≥ 1 and αk such that log2 N(η,Fk,h) ≤
(
Ak

η

)αk for all k in [K]
and for all η ∈ (0,1). Let ϵ be in (0,1). For k in [K], let Fk[ϵ] be a minimal ϵ-net of F k such
that |Fk[ϵ]| = N(ϵ,Fk,h). Let QK,δ[ϵ] be the countable model defined by

QK,δ[ϵ] = {Pw,F ;w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ Fk[ϵ],∀k ∈ {1, . . . ,K}} .

Take δ = V
n(K−1) ∧ 1

K
with

V =
K∑
k=1

log2 (|Fk[ϵ]|) ≤
K∑
k=1

(
Ak
ϵ

)αk

,

where ϵ = n− 1
αmax+2 and αmax = max1≤k≤K αk. There exists a positive constant C such that for

any ρ-estimator P̂ = P̂δ on QK,δ[ϵ], for all ξ > 0, we have

Ch2
(

P∗,
(
P̂δ
)⊗n

)
≤ h2 (P∗,QK) + n

αmax
αmax+2

K∑
k=1

Aαk
k [1 + log (Kn)] + ξ,

with probability at least 1 − e−ξ. In particular, if the observations are i.i.d. with common
distribution P ∗ ∈ P we have

Ch2
(
P ∗, P̂δ

)
≤ h2

(
P ,QK

)
+ n− 2

αmax+2

K∑
k=1

Aαk
k [1 + log (Kn)] + ξ

n
,
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This theorem is proved in Section 2.B.3 (page 60) and we illustrate it with the following
example. Doss & Wellner [29] provide a bound on the entropy for classes of log-concave and
s-concave densities. Let C = {φ : R → [−∞,∞);φ is a closed, proper concave function} where
proper and closed are defined in [76] (Sections 4 and 7). For 0 < M < ∞ and s > −1, let PM,s

be the class of densities defined by

PM,s =
{
p ∈ Ps; sup

x∈R
p(x) ≤ M, 1/M ≤ p(x) for all |x| ≤ 1

}
,

where Ps = {p :
∫
pdλ = 1}⋂hs ◦ C, λ is the Lebesgue measure on R and hs : R → R is defined

by

hs(y) =


ey, s = 0
(−y)1/s

+ , s ∈ (−1,0),
y

1/s
+ , s > 0.

We fix such values of M and s. Let QK be the density model of mixtures of s-concave densities
(or log-concave for s = 0) defined by

QK =
{

K∑
k=1

wkfk;w ∈ WK , fk ∈ PM,s

}
,

with K ≥ 2. Let QK be the class of distributions associated to QK . The class PM,s is not
proven to be VC-subgraph but it is totally bounded. As a direct consequence of Theorem 3.1
of Doss & Wellner [29], there exists a positive constant A, depending only on M and s, such
that for all ϵ in (0,1], we have

log2 N(ϵ,PM,s,h) ≤ Aϵ−1/2.

In particular, it means there exists a ϵ-net PM,s[ϵ] such that log2 (|PM,s[ϵ]|) ≤ (A2/ϵ)1/2. Let
QK,δ[ϵ] be the countable density model given by

QK,δ[ϵ] =
{

K∑
k=1

wkfk;w ∈ WK , wk ≥ δ, wk ∈ Q, fk ∈ PM,s[ϵ]
}
.

One can check that QK,δ[ϵ] is also a ϵ-net of QK,δ with respect to the Hellinger distance using
inequality (2.18) hereafter page 38. The application of Theorem 2.2 on this example gives the
following result.

Corollary 2.2. Assume there exists P ∗ in P such that P∗ = (P ∗)⊗n. Take ϵ = n−2/5 and
δ = n−4/5 ∧ K−1. Let P̂ = P̂δ be a ρ-estimator on QK,δ[ϵ]. There exists a constant C(M,s)
such that for all ξ > 0, we have

C(M,s)h2
(
P ∗, P̂

)
≤ h2 (P ∗,QK) + K

n4/5 [1 + log (Kn)] + ξ

n
,

with probability at least 1 − e−ξ.

This corollary provides a risk bound over the class of distributions associated to mixtures
of s-concave densities. Up to a logarithmic factor, the estimator P̂ uniformly converges over
QK at the rate n−2/5 with respect to the Hellinger distance, which is the same rate given in
Theorem 3.2 of Doss & Wellner [29] for the MLE over the model PM,s, i.e. for K = 1.
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2.3.4 Application to the estimation of a general Gaussian mixture
We denote by ϕσ the density function of the normal distribution (with respect to the Lebesgue
measure on R) with mean 0 and variance σ2 > 0, i.e.

ϕσ : x 7→ 1√
2πσ2

e− x2
2σ2 . (2.15)

We assume P ∗ is of the following form or is close enough to a distribution of the form

pH(x) =
∫
ϕσ(x− z)dH(z,σ),∀x ∈ R.

We say that pH is the Gaussian mixture density with mixing distribution H. We want to
approximate any distribution of this form with finite Gaussian mixtures, i.e. distribution with
densities of the same form with mixing distribution supported on a finite set. For a mixing
measure H on R×R+∗, we denote by supp(H) its support. To obtain an approximation result,
we need to consider mixing measures H that are supported on a compact set, i.e. there exist
A ≥ 0 and R ≥ 1 such that supp(H) ⊂ [−A,A] × [1,R]. The Hellinger distance being invariant
to translation and rescaling, we consider the following class of densities. For A > 0 and R ≥ 1
we define

C(A,R) =
{
pH ; ∃l ∈ R,∃s > 0, supp(H) ⊂ [l − sA, l + sA] × [s,sR]

}

and we denote by C (A,R) the associated class of distributions. We denote by Gmix,K the
Gaussian mixture model with K components associated to the class of densities Gmix,K defined
by

Gmix,K :=
{

K∑
k=1

wkϕσk
(· − zk);w ∈ WK , σk ∈ (0,+ ∞), zk ∈ R,∀k ∈ {1, . . . ,K}

}
. (2.16)

This situation corresponds to Fk = G1 for all k ∈ {1, . . . ,K}. We can approximate the class
C (A,R) with the model Gmix,K as indicated by the following result.

Proposition 2.1. For K ≥ 2 (24A2 + 1)2, we have

sup
PH∈C (A,R)

h2 (PH ,Gmix,K) ≤ 1
2 exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4 +R

]
.

This proposition allows us to obtain a deviation bound on the estimation over C (A,R), with
Theorem 2.1. Its proof is postponed to Section 2.C.2.

Theorem 2.3. For R ≥ 1 and n ≥ e, we take K = K(R,n) := ⌈864R4 log2(n)⌉. Let P̂
be a ρ-estimator on GK,δ with δ as in (2.11) and assume the true distribution is i.i.d., i.e.
P∗ = (P ∗)⊗n. There exists a numeric constant C > 0, hence not depending on R, such that for
all ξ > 0, with probability at least 1 − e−ξ, we have

Ch2
(
P ∗, P̂

)
≤ h2 (P ∗,C (A,R)) + R4 log3(n) + ξ

n
, (2.17)

for A = A(R,n) :=
√

12
√

3−1
24 R log1/2(n).
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This result is proven in Section 2.C.1. Therefore, for a fixed R, we obtain a rate of
log3/2(n)/

√
n over C (∞,R) := ⋃

A>0 C (A,R) with respect to the Hellinger distance. We can
also consider larger classes of distributions, with R increasing as n increases but it would deteri-
orate this rate. Our result is still an improvement of Theorem 4.2 from [49] as it requires weaker
assumptions. Their result is sensitive to translation or scaling and they have to specify bounds
0 < σ < σ in the model such that H∗ is supported on a compact set [−a,a] × [σ,σ]. Moreover,
our estimator is robust, to contamination for instance. Assume we have an ϵ contamination
rate of our data, i.e. P ∗ is of the form P ∗ = (1 − ϵ)P + ϵQ with ϵ ∈ (0,1), P ∈ C (A(R,n),R)
and Q is any probability distribution. Then, our estimator satisfies Ch2(P ∗,P̂ ) ≤ ϵ+ R4 log3(n)+ξ

n

on an event of probability 1 − e−ξ. As long as ϵ remains small as compared to R4 log3(n)/n,
the rate is not deteriorated by the contamination.

2.3.5 Parameter estimation
We say that ŵ and F̂ are ρ-estimators if the resulting mixture distribution P̂ given by

P̂ =
K∑
k=1

ŵkF̂k

is a ρ-estimator. We have a general result for the performance of P̂ but not for ŵ and F̂ .
Hopefully we those parameter estimators would inherit the properties of P̂ under additional
assumptions. Some results about the robust estimation of parameters exist in the machine
learning community, see Diakonikolas et al.[28] for instance. As before, the available results are
all restricted to specific cases such as Gaussian mixture models. Convexity properties ensure
that we always have the upper bound

h (Pw,F , Pv,G) ≤ inf
τ∈SK

{
h(w, v ◦ τ) + max

k∈[K]
h
(
Fk, Gτ(k)

)}
, (2.18)

for all mixing weights and emission distributions (see Lemma 2.8), where SK denotes the set of
all permutations of [K] and WK is seen as the set of probability distributions on [K] and justify
the notation h(w,v ◦ τ). Therefore, a good estimation of the mixing weights w = (w1, . . . ,wK)
and of the emission distributions F = (F1, . . . ,FK) ensures a good estimation of the mixture
distributions Pw,F . However the converse is not true as the parameters are not even identifiable
in general.

Example 2.2. Let F be the set of uniform distributions U(a,b) the uniform distribution on
the interval (a,b) of positive lengths. Then the parameters w and F in the mixture model

Q2 =
{
w1F1 + (1 − w1)F2;w1 ∈ (0,1), F1,F2 ∈ F

}
are not identifiable since

3
4U(0,1) + 1

4U(1/3,2/3) = 1
2U(0,2/3) + 1

2U(1/3,1).

We shall say that P = Pw,F is identifiable (with respect to the model) if for all v in WK

and all G in F1 × · · · × FK , we have

Pw,F = Pv,G ⇒ ∃τ ∈ SK ,∀k ∈ [K],wk = vτ(k) and Fk = Gτ(k),

There is a wide literature about identifiability that includes the works of Teicher [82] and Sap-
atinas [79] for example. Allman et al.[4] provides identifiability conditions in a nonparametric
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framework but this is quite unusual. In this section, we will consider a unique parametric model
for the emission models, i.e. we have F 1, . . . ,FK ⊂ {Fθ; θ ∈ Θ} with Θ ⊂ Rd and assume
Pw∗,Fθ∗ is the true distribution or the best approximation within the model. Identifiability is
a minimum requirement for the parameter estimators to be meaningful but we can hardly get
more than consistency with it.

There is one approach that allows not to consider the identifiability issue is to consider the
estimation of the mixing distribution instead of the parameters themselves, i.e. w∗

1δθ∗
1

+ · · · +
w∗
Kδθ∗

K
where δx is the Dirac measure in x. Most results are given for the L1-Wassertein metric

W1 which can be defined as follow for Θ ⊂ R. For probability distributions G1,G2 on Θ, we
have

W1(G1,G2) := sup
f∈Lip(1)

∫
Θ
f(dG1 − dG2), (2.19)

where Lip(1) is the class of Lipschitz functions with Lipschitz constant at most 1. Heinrich &
Kahn [50] establish minimax rates of estimation for mixing distribution under some regularity
and strong identifiability conditions. Wu & Yang [87] prove that their denoised method of
moments for univariate Gaussian mixtures provides an estimator of the mixing distribution
that reaches the optimal rate with respect to W1. They also prove an oracle bound for density
estimation in the case of misspecification similar to (2.14), for the total variation distance
instead of the Hellinger distance. However, they only consider misspecified distributions that
are sub-Gaussian and in dimension one.

Our approach is to derive bounds on the convergence rates for the parameter estimators
from (2.11). Typically, we are looking for an inequality of the form

h(Pw∗,Fθ∗ ,Pw,Fθ
) ≥ C(w∗,θ∗)

[
K∑
k=1

dΘ(θ∗
k,θk) + dW(w∗,w)

]
,∀w ∈ WK ,∀θ ∈ Θ, (2.20)

where C(w∗,θ∗) is positive, dΘ is a distance on Θ and dW is a distance on WK . Intuitively, if we
can estimate each parameter individually we should be able to estimate the mixing distribution
as well. Formally, for Θ ⊂ R, we have

W1

(
K∑
k=1

w∗
kδθ∗

k
,
K∑
k=1

wkδθk

)
≤

K∑
k=1

|θ∗
k − θk| + max

i
|θ∗
i | ·

K∑
k=1

|w∗
k − wk|,∀w ∈ WK ,∀θ ∈ ΘK ,

which is a direct consequence of (2.19). One can see that when dΘ and dWK
in (2.20) are the

L1 distance we can deduce a bound for the estimation of the mixing distribution. The main
difficulty remains to obtain a lower bound on the Hellinger distance between mixtures. There
are still some situations where we do have such a lower bound.

Regular parametric model

Let K be an integer larger than 1. We consider parametric emission models associated to
density models Fk = {fk(·;α), α ∈ Ak}, where Ak is a subset of Rdk for all k ∈ {1, . . . ,K}. It is
always possible to find a countable dense subset of Ak with respect to the Euclidean distance
on Rdk . We assume there is a reasonably good connection between the Hellinger distance on
the emission models and the Euclidean distances on the parameter spaces such that a dense
subset of Ak would translate into a dense subset of the emission model with respect to the
Hellinger distance. This assumption is very weak and does not seem to be restrictive in any
way. In the different examples we consider we can always consider Ak ∩ Qdk as a dense subset
of Ak. Therefore Assumption 2.1 is satisfied with Fk = {fk(·;α), α ∈ Bk}. We denote by QK

the distribution model associated to the mixture density model

QK =
{
p(·; θ) =

K−1∑
k=1

wkfk(·; zk) + (1 − w1 − · · · − wK−1)fK(·;αK); θ = (w,α) ∈ Θ
}
,
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where Θ is an open convex subset of
{
w ∈ (0,1)K−1;

K−1∑
k=1

wk < 1
}

× A1 × · · · × AK . To be in

the context of regular parametric models consider by Ibragimov & Has’minskĭı [54] we need to
make some assumptions.
Assumption 2.3. The classes of functions F1, . . . ,FK satisfy the following regularity condi-
tions.

a) The function z 7→ fk(x; z) is continuous on Ak (with respect to the Euclidean distance)
for µ-almost all x ∈ X , for all k ∈ {1, . . . ,K}.

b) For all k ∈ {1, . . . ,K}, for µ-almost all x ∈ X the function u 7→ fk(x;u) is differentiable
at the point u = α and for all j ∈ {1, . . . ,dk}, we have∫

X

∣∣∣∣∣∂fk(x;α)
∂αj

∣∣∣∣∣
2
µ(dx)
fk(x;α) < ∞.

c) The function θ 7→ ψ(·; θ) = ∂
∂θ
p1/2(·; θ) is continuous in the space L2(µ).

d) The class of densities Fk is VC-subgraph with VC-index not larger than Vk for all k ∈
{1, . . . ,K}. We write V = V1 = · · · + Vk.

The work of Ibragimov & Has’minskĭı [54] allows to derive a deviation inequality on the
Euclidean distance between parameters using Fisher’s information.
Theorem 2.4. Let θ be in Θ. Assume the Fisher’s information matrix

I
(
θ
)

=
∫

X

∂p
(
x; θ

)
∂θ

∂p
(
x; θ

)
∂θ

T µ(dx)
p
(
x; θ

)
is definite positive and inf ||θ−θ||≥a

θ∈Θ
h2 (Pθ,Pθ) > 0 for all a > 0. Let P̂ = Pŵ,F̂ be a ρ-estimator

on QK,δ, with δ as in (2.11). There exists a positive constant C
(
θ
)

such that for all ξ > 0,
with probability at least 1 − e−ξ, we have

C
(
θ
)(

||w − ŵ||2 +
K∑
k=1

1 ∧ ||αk − α̂k||2
)

≤ 1
n

[
h2
(
P∗,P⊗n

θ

)
+ V log(n) + ξ

]
. (2.21)

And assuming P ∗ = Pθ, we obtain the usual parametric convergence rate up to a logarithmic
factor for the parameter estimators.

This result is proven in Section 2.D.1. Following the proof and Theorem 7.6 [54], the best
constant C

(
θ
)

depends on the smallest eigenvalue of the Fisher’s information matrix I
(
θ
)

and the geometry induced by the Hellinger distance around θ in Θ. Inequality (2.21) proves
that even if “true parameters” might not exist the parameter estimators can be meaningful as
long as P∗ is relatively close to the model. The Gaussian mixture model is the most common
mixture model and it is a regular parametric model. Let K ≥ 2 and for all k in [K] take
Fk = G1, where G1 is given in Lemma 2.1. We define a binary relation on R × (0,∞) by

(z1,σ1) > (z2,σ2) ⇔

σ1 > σ2;
or σ1 = σ2 and z1 > z2.

(2.22)

We consider the parameters θ = (w1, . . . ,wK−1,z1,σ
2
1, . . . ,zK ,σ

2
K) belonging to the set

Θ =
{
θ ∈ (0,1)K−1 × (R × R∗)K ;

K−1∑
k=1

wk < 1, (z1,σ1) > · · · > (zK ,σK)
}
.
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Theorem 2.5. Assume P ∗ = Pθ =
K∑
k=1

wkN (zk,σ2
k) such that (z1,σ1) > · · · > (zK ,σK) are all

distinct and inf
1≤k≤K

wk > 0. Let P̂ be a ρ-estimator on GK,δ, with δ as in (2.11). There exists a

positive constant C
(
θ
)

such that, for all ξ > 0, we have

C
(
θ
)(K−1∑

k=1
||wk − ŵk||2 +

K∑
k=1

∣∣∣∣∣∣(zk,σ2
k

)
−
(
ẑk,σ̂

2
k

)∣∣∣∣∣∣2 ∧ 1
)

≤ 5K log(n) + ξ

n
, (2.23)

with probability at least 1 − e−ξ.

This result is proven in Section 2.D.3. Our estimator reaches the optimal rate of conver-
gence up to a logarithmic factor. One can notice that the assumption of ordered couples of
parameters (zj,σ2

j ) can be replaced by considering distinct couples only and taking the infimum
over permutation of the hidden states in (2.23).

Connection with the L2-distance

We can use results from the literature that do not apply to the Hellinger distance but to other
ones such as the L2-distance between densities. There is a general inequality between the L2
and Hellinger distances when the density functions are bounded, i.e.

||p− q||22 ≤ 4 (||p||∞ + ||q||∞)h2(P,Q). (2.24)

Assume one can prove an inequality of the following type. For any w,v in WK and any fk,gk
in Fk for all k ∈ {1, . . . ,K} such that the resulting mixtures belong to our model, we have

c

(
d2

W(w,v) + max
k∈[K]

d2
F (fk,gk)

)
≤
∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

wkfk −
K∑
k=1

vkgk

∣∣∣∣∣
∣∣∣∣∣
2

2
, (2.25)

where dW is a distance on WK and dF is a distance on ⋃
1≤k≤K Fk. Moreover, assuming the

density models Fk are uniformly bounded, i.e.

sup
k∈[K]

sup
f∈Fk

||f ||∞ =: U < ∞, (2.26)

we get

d2
W(w,v) + max

k∈[K]
d2
F (fk,gτ(k)) ≤ 8U

c
h2
(

K∑
k=1

wkFk,
K∑
k=1

vkGk

)
.

Here again, a density estimation result implies a result for the parameter estimation. We can
apply this method to the special case of a two-component mixture model with one known
component. Let ϕ be a density function on Rd with respect to the Lebesgue measure. We
consider the 2-component mixture model Q associated to the class of densities

Q =
{
x 7→ pw,z(x) = (1 − w)ϕ(x) + wϕ(x− z);w ∈ [0,1], z ∈ Rd

}
, (2.27)

with F1 = {ϕ} and F2 =
{
x 7→ ϕ(x− z); z ∈ Rd

}
. Gadat et al.[41] proved an inequality such

as (2.25) in this situation. They still require the following assumptions on ϕ.

Assumption 2.4. The function ϕ belongs to C3
(
Rd
)

∩ L2
(
Rd
)
. For any M > 0, there exists

a function g in L2
(
Rd
)

such that

∀x ∈ Rd,∀z ∈ [−M,M ]d, |ϕ(x) − ϕ(x− z)| ≤ ||z||g(x)

and ∫
g2(x)ϕ−1(x)dx < +∞.
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In this context, we have the desired inequality with respect to the L2-distance.

Proposition 2.2. (inequality (7.11) [41])
Under Assumption 2.4, for all M > 0, there exists a positive constant c(ϕ,M) such that for all
z1,z2 ∈ [−M,M ]d and w1,w2 ∈ (0,1),

c(ϕ,M)||z1||2
(
||z2||2 (w1 − w2)2 + w2

1 ||z1 − z2||2
)

≤ ||pw1,z1 − pw2,z2||22.

One can notice that Assumption 2.4 implies that ϕ is bounded (see Assumption (HS) in
[41]). Hence, we can deduce a deviation inequality for ρ-estimators of parameters.

Theorem 2.6. We assume F2 has a finite VC-index V , w∗ ∈ (0,1] and z∗ ̸= 0. For δ as in
(2.11), there exists a positive constant C(ϕ,w∗,z∗) and an integer n0 = n0(ϕ,w∗,z∗) such that
for any ρ-estimator P̂ = Pŵ,ẑ on Qδ, n ≥ n0 and for all ξ ∈ (0,ξn), we have

C(ϕ,z∗,w∗)
(
(w∗ − ŵ)2 +

(
||z∗ − ẑ||2 ∧ 1

))
≤ ξ + (V + 1) log(n)

n
,

with probability at least 1 − e−ξ, where ξn = (1 + V )[1 + log(2n/(1 + V ))]).

This result is proven in Section 2.E.1. It implies the consistency of ẑ and consequently the
consistency of ŵ if z∗ ̸= 0, the parameter w∗ being ill defined if z∗ = 0. We can deduce a
bound on the convergence rate for ẑ and also for λ̂ but only for n large enough. It is similar
to Theorem 3.1 of Gadat et al.[41] with a smaller power for the logarithmic term. This slight
improvement is allowed by the VC assumption. Furthermore, we do not need to know a value
of M such that z∗ ∈ [−M,M ] or to specify it in the model. The examples of translation families
taken by Gadat et al.[41] (Section 6) all satisfy the VC assumption.

Lemma 2.2. We have the following VC-subgraph classes of density functions.

• The Cauchy location-scale family C of density functions, given hereafter by (2.30), is
VC-subgraph with VC-index V (C) ≤ 5.

• As a consequence of Lemma 2.1, the univariate normal location-scale family G1 is VC-
subgraph with VC-index at most 5.

• The Laplace location family L of density functions defined by

L =
{
x 7→ 1

2e
−|x−z|; z ∈ R

}

is VC-subgraph with VC-index V (L) ≤ 29.

• The location family of densities SGα associated to the skew Gaussian density defined by

SGα =
{
x 7→ 2ϕ1(x− z)

∫ x−z

−∞
ϕ1(αt)dt; z ∈ R

}

is VC-subgraph with VC-index V (SGα) ≤ 10 for all α ∈ R, where ϕ1 is given by (2.15).

This lemma is proven in Section 2.F. By inclusion, if the bound holds for the location-scale
family it also holds for the location family with fixed scale parameter.
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Proving a lower bound for a specific example

In some specific situations, it is relatively easy to prove a lower bound on the Hellinger distance.
This is what we do in the following example and it allows us to obtain faster rates than the
usual parametric one. Let α be in (0,1). We denote by sα the probability density function with
respect to the Lebesgue measure on R defined by

sα : x ∈ R 7→ 1 − α

2|x|α
1|x|∈(0,1].

We consider Q as in (2.27) with ϕ = sα and for w ∈ [0,1] and z ∈ R, we write

pw,z = (1 − w)sα + wsα(· − z).

We can prove that the Hellinger distance h(Pw,z,Pw′,z′) is lower bounded by some distance
between the parameters which leads to the following theorem.

Theorem 2.7. For w∗ > 0 and z∗ ̸= 0, there is a positive constant C(α,z∗,w∗) such that, for
any ρ-estimator P̂ = Pŵ,ẑ on Qδ with δ = 10/n and n ≥ 20, for all ξ > 0, with probability at
least 1 − e−ξ we have

C(α,z∗,w∗)
[
1 ∧ |ẑ − z∗|1−α + (w∗ − ŵ)2

]
≤ log(n) + ξ

n
.

This result is proven in Section 2.E.2. It implies rather directly that our estimators ŵ and
ẑ estimate w∗ and z∗ at a rate which is at worst

√
(log n)/n and (n−1 log n)1/(1−α) respectively.

This latter rate is faster than the usual 1/
√
n-rate for all α ∈ (0,1). Up to the logarithmic

factors, these rates are optimal. For ẑ, it a consequence of Theorem 1.1 in [54] (Chapter VI),
noticing that sα has a singularity of order −α in 0, and with the fact that we cannot do better
than 1/

√
n for the Hellinger distance. One can notice that both maximum likelihood and least

squares approaches do not apply here since we consider density functions that are unbounded,
and not even square integrable for α ∈ [1/2,1).

2.4 Model selection
In Section 2.3 we consider estimation on a model with a fixed order K and simple emission
families. We use model selection to overcome this restriction in this section and consider
composite emission families and/or models with different orders.

2.4.1 Construction of the estimator
Let Θ be a subset of ⋃

K≥1
{K} ×

K∏
k=1

Λk.

Let δ : Θ → (0,1] be such that for θ = (K,λ1, . . . ,λK) ∈ Θ, δ(θ) ∈ (0,1/K]. We write

Qδ(θ) =
{

K∑
k=1

wkFk;w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ Fk,∀k ∈ [K]
}
.

We define Qδ by
Qδ =

⋃
θ∈Θ

Qδ(θ).
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We associate to Qδ the family Qδ of densities with respect to µ and the ρ-estimator P̂δ of P
based on the family Qδ. Assuming we have a penalty function pen : Qδ → R, we set

Υ(X,q) = sup
q′∈Qδ

[T(X,q,q′) − pen(q′)] + pen(q), (2.28)

for all q ∈ Qδ. The ρ-estimator P̂δ is any measurable element of the closure (with respect to
the Hellinger distance) of the set EEE (ψ,X), as defined by (2.9). One can notice that a constant
penalty function does not have any impact on the definition of Υ and brings us back to the
previous situation.

2.4.2 Estimation on a mixture model based on composite emission
families

Let K be larger than or equal to 2. Let L be a subset of ∏K
k=1 Λk and define Θ by Θ = {K}×L,

i.e. K is fixed. For λ = (λ1, . . . ,λK) ∈ L, the model Q(λ) is a subset of{
K∑
k=1

wkFk;w ∈ WK , Fk ∈ F λk
,∀k ∈ [K]

}

and we define its countable subset Qδ(λ) by

Qδ =
{

K∑
k=1

wkFk ∈ Q(λ);w ∈ WK , wk ≥ δ(λ), wk ∈ Q, Fk ∈ Fλk
,∀k ∈ [K]

}
,

where δ is any function L → (0,1/K], and Qδ = ⋃
λ∈L Qδ(λ). Under Assumption 2.2, we write

V (λ) = V (λ1) + · · · + V (λK).

Theorem 2.8. Let ∆ be a mapping L → R+ such that ∑
λ∈L

e−∆(λ) ≤ 1. Let pen be the penalty
function defined by

pen(q) = κ inf
λ∈L|Q∈Q(λ)

[
116.1V (λ)

[
5.82 + log

(
(K + 1)2

δ(λ)

)
+ log+

(
n

V (λ)

)]
+ ∆(λ)

]
, (2.29)

where κ is given by (19) in [9]. Assume there is P ∗ in P such that P∗ = (P ∗)⊗n. For the
choice δ(λ) = V (λ)

n(K−1)
∧ 1

K
, there is a positive constant C such that the resulting estimator P̂ = P̂δ

satisfies the following. For all ξ > 0, with probability at least 1 − e−ξ we have

Ch2(P ∗,P̂ ) ≤ inf
λ∈L

{
h2(P ∗,Q(λ)) + 1

n

(
V (λ)

[
1 + log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ) + ξ

)}
.

The constant C is universal, in particular it does not depend on K or on the choice of the
model.

This proof of this theorem is postponed to Section 2.B.4. It is a general result for the
situation where you know the number K of subpopulations, or at least want to fix it for the
estimation, but are hesitating on the models for the emission distributions. For instance, let us
consider Gaussian and Cauchy location-scale families for the composite emission families, an
example simpler than Example 2.1. For all k ∈ {1, . . . ,K}, we take Λk = {1,2} with F 1 = G
and F 2 = C , where C is the Cauchy location-scale family of distributions associated to the
density class

C =

x 7→ 1
πσ

1
1 +

(
x−z
σ

)2 ; z ∈ R, σ > 0

 . (2.30)
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We consider the model Q = ∪0≤j≤KQj with

Qj =


j∑

k=1
wkN (zk,σ2

k) +
K∑

k=j+1
wkCauchy(zk,σk);

(z1,σ1) > · · · > (zj,σj),
(zj+1,σj+1) > · · · > (zK ,σK)

 ,
where the order> on the parameters (zk,σk) is defined by (2.22) and allows to have identifiability
properties again here. Lemma 2.2 gives the same bound on the VC-indices of G1 and C therefore
(2.29) provides a constant penalty function, hence we will consider a null penalty function.

Theorem 2.9. Assume P ∗ =
j∗∑
k=1

wkN (zk,σ2
k) +

K∑
k=j∗+1

wkCauchy(zk,σk) ∈ Qj∗ with (z1,σ1) >

· · · > (zl∗ ,σl∗) and (zl∗+1,σl∗+1) > · · · > (zK ,σK). Let P̂ be a ρ-estimator on Qδ with δ = 5
n

∧ 1
K

and a null penalty. There exists an integer n0(P ∗) and a positive constant C(P ∗) such that for
n ≥ n0(P ∗) there exists an event of probability 1 − (n(K + 1))−K on which P̂ ∈ Qj∗ and

C(P ∗)
||w − ŵ||2 +

j∗∑
k=1

∣∣∣∣∣∣(zk,σ2
k) − (ẑk,σ̂2

k)
∣∣∣∣∣∣2 ∧ 1 +

K∑
k=j∗+1

||(zk,σk) − (ẑk,σ̂k)||2 ∧ 1


≤ K log(n(K + 1))
n

.

This result is proven in Section 2.D.2. Following the proof, the constant C (P ∗) depends
both on the distance between P ∗ and the “wrong models” Qj,j ̸= j∗ and on the smallest eigen
value of the Fisher’s information matrix (within the regular parametric model Qj∗). Theorem
2.9 shows that it is possible to identify the true emission models for n large enough and if this
identification is established we can also estimate the different parameters. This seems to be
somehow original as we did not find any result of this kind in the literature.

2.4.3 Selection of the order K
We consider Θ of the form Θ = ⋃

K∈K
{K} × {λ}K , where K is a subset of {1, . . . ,n}. For

K ∈ K , we write F = F λ and F = Fλ its countable and dense subset given by Assumption
2.1. For K ∈ K , the model Q(K) is a subset of{

K∑
k=1

wkFk;w ∈ WK , Fk ∈ F ,∀k ∈ [K]
}
.

We define Qδ(K) :=
{

K∑
k=1

wkFk ∈ Q(K);w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ F ,∀k ∈ [K]
}

and Qδ =⋃
K∈K Qδ(K), where δ : K → (0,1] satisfies δ(K) ≤ 1/K. Under Assumption 2.2, we denote

by V the VC-index of F , therefore V (K) = K × V . If P̂ = P̂δ is a ρ-estimator on Qδ, we
denote by K̂ the smallest integer K in K such that P̂ ∈ Qδ(K).

Theorem 2.10. Let ∆ be a function K → R+ satisfying ∑
K∈K

e−∆(K) ≤ 1. We consider the
penalty function defined by

pen(q) = κ inf
K∈K |Q∈Q(K)

[
116.1KV

[
5.82 + log

(
(K + 1)2

δ(K)

)
+ log+

(
n

KV

)]
+ ∆(K)

]
, (2.31)

where κ is given by (19) in [9]. Assume there exists P ∗ in P such that P∗ = (P ∗)⊗n. For the
choice δ(1) = 1 and δ(K) = V

n

∧ 1
K

for K ≥ 2, there is a positive constant C such that any
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ρ-estimator P̂ = P̂δ on Qδ satisfies the following. For all ξ > 0, with probability at least 1−e−ξ

we have
Ch2(P ∗,P̂ ) ≤ inf

K∈K

{
h2(P ∗,Q(K)) + KV log(n) + ξ + ∆(K)

n

}
. (2.32)

The constant C is universal, in particular it does not depend on F and therefore neither on V .

This result is proven in Section 2.B.5. It gives an oracle inequality and it provides a way to
determine the number of clusters if one wants to use mixture models in order to do clustering.
It is also interesting in the context of density estimation. Once again, we take advantage of the
approximation properties of GMMs to use our estimator for density estimation on a wider class.
We use the approximation result proven by Maugis & Michel [68]. Let β > 0, r = ⌊β⌋ and
k ∈ N such that β ∈ (2k, 2k+2]. Let also P be the 8-tuple of parameters (γ, l+, L, ϵ, C, α, ξ,M)
where L is a polynomial function on R and the other parameters are positive constants. We
define the density class H(β,P) of all densities p satisfying the following conditions.

• For all x and y such that |y − x| ≤ γ,

(log p)(r)(x) − (log p)(r)(y) ≤ r!L(x)|y − x|β−r.

Furthermore for all j ∈ {0, . . . ,r},

|(log p)(j)(0)| ≤ l+.

• We have
max
1≤j≤r

∫
R

∣∣∣(log p)(j)(x)
∣∣∣ 2β+ϵ

j p(x)dx ∨
∫
R

|L(x)|2+ ϵ
β p(x)dx ≤ C.

• For all x ∈ R, p(x) ≤ Mψ(x).

• The function f is strictly positive, non-decreasing on (−∞,−α) and non-increasing on
(α,∞). For all x ∈ [−α, α] we have p(x) ≥ ξ .

This class of functions can be approximated by Gaussian mixture models, the quality of the
approximation depending on the regularity parameter β.

Lemma 2.3. (Lemma 6.1 in [68])
For 0 < β < β, there exists a set of parameters P(β,β) and a positive constant cβ,β such that

for all β ∈
[
β, β

]
, all p ∈ H

(
β,P(β,β)

)
and all K ≥ 2, we have

h2 (P,Gmix,K) ≤ cβ,β
(logK)3β

K2β ,

where Gmix,K is given by (2.16).

We consider K = {2, . . . ,n}, ∆(K) = K and the penalty function pen as in (2.31).

Theorem 2.11. Let P̂ = P̂δ be a ρ-estimator on Qδ with δ as in (2.32). For 0 < β < β,
there exist a positive constant Cβ,β such that for any p∗ in H

(
β,P(β,β)

)
with β ∈

[
β,β

]
, for

all ξ > 0, we have

h2(P ∗,P̂ ) ≤ Cβ,β

(log n)
5β

2β+1

n
2β

2β+1
+ ξ

n

 ,
with probability at least 1 − e−ξ.
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This theorem is proven in Section 2.C.3. It provides an upper bound on the convergence
rate of our estimator of order (log n)5β/(4β+2)n−β/(2β+1). It is the same rate obtained in Theorem
2.9 of Maugis & Michel [68] and therefore our estimator as well is minimax adaptive to the
regularity β, up to a power of log(n). Moreover, in our setting there is no need to specify β

nor β in our model i.e. there is no condition on the location and scale parameters of each
component. Intuitively, this would allow us to obtain a better approximation bound but we
did not have time to look into that direction.
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Appendix

2.A Main result
In this section we prove the main result of this paper, Proposition 2.3, which gives an upper
bound on the ρ-dimension for finite mixture models. The ρ-dimension function is properly
introduced in [11]. Bounding the ρ-dimension is the key element as it allows to obtain the
general result Theorem 2.12 as a direct application of Theorem 2 [11]. We recall definitions
from [11] that we adapt to our context, in particular the function ψ defined by (2.6) satisfies
Assumption 2 of Baraud & Birgé [11] with a0 = 4, a1 = 3/8 and a2

2 = 3
√

2 (see Proposition 3
[11]) which gives the different constants. Let M be a countable subset of P. For y > 0 and
P ∈ P we write

BM
(
P ,y

)
=
{
Q ∈ M ; h2

(
P∗,P

⊗n)+ h2
(
P∗,Q⊗n

)
< y2

}
.

If Q is a set of probability density functions with respect to a σ-finite measure ν such that
M ∪ {P} = {q · ν; q ∈ M}, we write

w
(
ν,M,M ,P ,y

)
=
 sup
Q∈BM (P ,y)

|T (X,p,q) − EP∗ [T (X,p,q)]|
 .

Similarly, we define wM
(
P ,y

)
= inf(ν,M) w

(
ν,M,M ,P ,y

)
, where the infimum is taken over all

couples (ν,M) such that M is the class of density functions associated to M with respect to
ν, σ-finite measure. We can now define the ρ-dimension function of M by

DM
(
P∗,P

⊗n) =
[
β2 sup

{
y2; wQ

(
P ,y

)
>

3y2

64

}]∨
1,

with β =
√

3
25+1/4 . Following the notation established in Section 2.4, we need to bound the

ρ-dimension function over each Qδ(θ) in order to apply Theorem 2 [11].
Proposition 2.3. Under Assumption 2.2, for θ = (K,λ1, . . . ,λK) ∈ Θ, we write

V (θ) = V1,λ1 + · · · + VK,λK
,

where Vk,λk
is an upper bound on the VC-index of Fk,λk

. For all P ∈ PPP and P ∈ Qδ, we have
the following bound

DQδ(θ)
(
P,P⊗n) ≤ Dn (δ, θ) := 545.3V (θ)

[
5.82 + log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)]
. (2.33)

2.A.1 Proof of Proposition 2.3
The strategy of the proof is based on the following remark. One can notice that if for some
pair (ν,Q) there is y0 such that w

(
ν,Q,Q,P ,y

)
≤ 3y2

64 for all y ≥ y0, then we have

DQ
(
P∗,P

⊗n) ≤ (βy0)2∨ 1. (2.34)

Let θ′ be an element of Θ such that P belongs to Qδ(θ′). Following notation of Section 2.4, we
prove such an inequality for the pair (µ,Qδ(θ) ∪ {p}) where p is the density function in Qδ(θ′)
associated to P . To bound w

(
ν,Q,Q,P ,y

)
, we are going to bound the entropy of BQδ(θ)

(
P ,y

)
which is possible since each emission model is associated to VC-subgraph classes of density
functions (see Assumption 2.2). For a metric space (A ,d) and ϵ > 0, we denote by N(ϵ,A ,d)
the minimal number of balls of radius ϵ needed to cover A . The next lemma provides a bound
on the covering number for our model, up to some modification.
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Lemma 2.4. For θ = (K,λ1, . . . ,λK), we write V (θ) = V1,λ1 + · · · + VK,λK
and we define

FQδ(θ)
(
P
)

:=
{
ψ

(√
q

p

)
; q ∈ Qδ(θ)

}
.

For any probability distribution R, we have

∀ϵ ≤ 2, logN
(
ϵ,FQδ(θ)

(
P
)
, || · ||L2(R)

)
≤ V (θ) log

(
e1+1/e8(K + 1)2

δ(θ)

)
+2V (θ) log(1/ϵ). (2.35)

The next lemma is an intermediate result in the proof of Theorem 2 [12]. It allows to bound
the expectation of the supremum of an empirical process from a bound on the covering number
on the considered space of functions.

Lemma 2.5. Let F be an at most countable set of measurable functions X → R such that for
any probability distribution P on (X ,X ), we have

log(N(ϵ,F ,|| · ||L2(P ))) ≤ a+ b log(1/ϵ).

Let X1, . . . ,Xn be n independent random variables with values in (X ,X ). We define Z(F) by

Z(F) = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi) − E [f(Xi)])
∣∣∣∣∣

and assume supf∈F
1
n

n∑
i=1

E [f 2(Xi)] ≤ σ2 ≤ 1. Let q ∈ (0,1). We have

E [Z(F)] ≤ 32A2 + A2
√

2nσ2,

with A = 1+q
1−q

(
1 + b

log 2+2a+b log(1/q)

)√
log 2 + 2a+ b log(1/q) + 2b log(1/σ).

Let y be a positive real number. We set

Fδ,θ,y

(
P
)

=
{
ψ

(√
q

p

)
;Q = q · µ ∈ Qδ(θ),h2

(
P∗,P

)
+ h2

(
P∗,P̂

)
< y2

}
⊂ FQδ(θ)

(
P
)
.

Since ψ satisfies Assumption 2 [11] and given Lemma 2.4, we can apply Lemma 2.5 with
σ2 = (3

√
2y2/n) ∧ 1,

a = V (θ) log
(
e1+1/e8(K + 1)2

δ(θ)

)
and b = 2V (θ).

We get

wQδ(θ)
(
µ,Qδ(θ) ∪ {p},Qδ(θ),P ,y

)
≤ E [Z (Fδ,θ,y)] ≤ 32A2 + A2

√
2nσ2,

with A given in Lemma 2.5. Let us try to find a simple upper bound for it. In our situation,
dropping the dependency on θ in the notation, we have

b

log 2 + 2a+ b log(1/q) = 2V
log 2 + 2V log

(
e1+1/e8(K+1)2

δ

)
+ 2V log(1/q)

≤ 1
log

(
e1+1/e8(K+1)2

δq

)
≤ 1

log
(
e1+1/e8K(K+1)2

q

) ≤ 1
log

(
e1+1/e24×32

q

) ,
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hence

A ≤ 1 + q

1 − q

1 + 1
log

(
e1+1/e24×32

q

)

√√√√2V

[
log

(
e1+1/e213/4

q

)
+ log

(
(K + 1)2

δσ2

)]
.

For q = 1/9, we have

A ≤ 5
4

(
1 + 1

1 + 1
e

+ 4 log(6)

)√√√√2V
[

1
e

+ 1 + log (213/4 × 9) + log
(

(K + 1)2

δσ2

)]

≤ 5
4 × 1.12

√√√√2V
[
5.82 + log

(
(K + 1)2

δσ2

)]

= 2.8

√√√√2V
[
5.82 + log

(
(K + 1)2

δσ2

)]
.

Finally,
wQδ(θ)

(
µ,Qδ(θ) ∪ {p},P ,y

)
≤ C0

√
nV σ2L (σ,δ,θ) + C1VL (σ,δ,θ) (2.36)

with L (σ,δ,θ) = 5.82 + log
(

(K+1)2

δσ2

)
, C0 = 2.8 × 4 = 11.2 and C1 = 26 × 2.82. Then we follow

the proof of Proposition 6 [12]. For D ≥ β2

3
√

2V = 2−11V and y ≥ β−1
√
D, we have

L (σ,δ,θ) = 5.82 + log
(

(K + 1)2

δ

)
+ log+

(
n

3
√

2y2

)

≤ 5.82 + log
(

(K + 1)2

δ

)
+ log+

(
β2n

3
√

2D

)

= 5.82 + log
(

(K + 1)2

δ

)
+ log+

(
n

211D

)

≤ 5.82 + log
(

(K + 1)2

δ

)
+ log+

(
n

V

)
= L.

We combine it with (2.36) and since y ≥ β−1
√
D we get

wQδ(θ)(µ,Qδ(θ) ∪ {p},P ,y) ≤ 11.2 ×
√

3
√

2y
√
V L+ 26 × 2.82V L

= 3y2

64

64 × 11.2 × 21/4
√
V L√

3y
+ 212 × 2.82V L

3y2


≤ 3y2

64

64 × 11.2 × 21/4
√
V L√

3β−1
√
D

+ 212 × 2.82V L

3β−2D


= 3y2

64

2 × 11.2
√
V L√
D

+ 2
√

2 × 2.82V L

D

 .

For D = 545.3V L ≥ V L
[√

11.22 + 2
√

2 × 2.82 + 11.2
]2

we have D ≥ 2−11V since L ≥ 5.82.

Moreover, for all y ≥ y0 = β−1
√
D, we have wQδ(θ)(µ,Qδ(θ) ∪ {p},P ,y) ≤ 3y2

64 which allows to
conclude with (2.34). We now turn to the proofs of the two lemmas.
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Proof of Lemma 2.5
The lemma is an intermediate result in the proof of Theorem 2 of Baraud & Chen [12]. We
write Z(f) = supf∈F

∣∣∣∣ n∑
i=1

ϵif(Xi)
∣∣∣∣ where ϵ1, . . . ,ϵn are i.i.d. Rademacher random variables. We

follow the proof with h(x) = a+b log(1/x) in (39) and everything stays the same up to equation
(42). We get

E
[
Z(F)

]
≤

√
2n1 + q

1 − q

∫ B

0

√
log 2 + 2a+ b log(1/q) + 2b log(1/u)du,

with B =
√
σ2 + 8E[Z(F)]

n
∧ 1. With Lemma 2 [12], we have

E
[
Z(F)

]
≤ 16A2 + A

√
2nσ2,

withA = 1+q
1−q

(
1 + b

log 2+2a+b log(1/q)

)√
log 2 + 2a+ b log(1/q) + 2b log(1/σ). Classical symmetriza-

tion arguments imply

E [Z(F)] ≤ 2E
[
Z(F)

]
≤ 32A2 + A

√
2nσ2.

Proof of Lemma 2.4
We write ϕ = ψ

(√
·/p
)
. We drop the dependency on θ in this proof.

Lemma 2.6. For any probability distribution R on (X ,X ), for w,v ∈ WK such that wk,vk ≥ δ
for k = 1, . . . ,K and for any probability densities q1, . . . ,qK ,r1, . . . ,rK, we have

||ϕ ◦ (w1q1 + · · · + wkqK) − ϕ ◦ (v1r1 + · · · + vKrK)||L2(R)

≤ 1√
δ

K∑
k=1

||ϕ ◦ qk − ϕ ◦ rk||L2(R) + 2
δ

||w − v||∞, (2.37)

where ||w − v||∞ = max
k∈[K]

|wk − vk|.

This lemma implies that for any probability distribution R on (X ,X ), we have

logN
(
ϵ,FQδ(θ)

(
P
)
,|| · ||L2(R)

)
≤ logN (ϵK+1,WK ,|| · ||∞) (2.38)

+
K∑
k=1

logN
(
ϵk,ϕ ◦ Fk,|| · ||L2(R)

)
,

where ϕ ◦ Fk :=
{
ϕ ◦ f

∣∣∣∣∣F ∈ Fk

}
for k = 1, . . . ,K and ϵ = ϵ1+···+ϵK√

δ
+ 2ϵK+1

δ
. Let us bound the

covering numbers involved in the latter inequality. From Proposition 42 in [9] and Lemma 1
in [12], we have the following bound . For any probability measure R on (X ,X ) and for all
ϵk ∈ (0,2), we have

logN
(
ϵk,ϕ ◦ Fk, ||·||L2(R)

)
≤ log

(
eVk(8e)Vk−1

)
+ 2(Vk − 1) log(1/ϵk). (2.39)

We also need a bound on the covering number of WK . For ϵK+1 > 0, we have

logN (ϵK+1,WK ,|| · ||∞) ≤ K log
(

3
ϵK+1

)
. (2.40)
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The proof comes at the end on page 53. We can now combine (2.38), (2.39) and (2.40). For
ϵ ∈ (0,2) and δ ∈ (0,1/K], we take

ϵK+1 = ϵ
δ

2
K

K +
K∑
k=1

2(Vk − 1)
and ϵj = ϵ

√
δ

2(Vj − 1)

K +
K∑
k=1

2(Vk − 1)
,j = 1, . . . ,K.

We get

logN
(
ϵ,FQδ(θ)

(
P
)
,|| · ||L2(R)

)
≤ K log

(
3

ϵK+1

)
+ log

(
eK
(∏

k

Vk

)
(8e)

∑
k

(Vk−1)
)

+
K∑
k=1

2(Vk − 1) log(1/ϵk)

= K log

 6
ϵδ

K +
K∑
k=1

2(Vk − 1)

K


+ log

(
eK
(∏

k

Vk

)
(8e)V−K

)

+
K∑
k=1

2(Vk − 1) log

 1
ϵ
√
δ

K +
K∑
j=1

2(Vj − 1)

2(Vk − 1)



= log



[
K +

K∑
j=1

2(Vj − 1)
]K+

K∑
j=1

2(Vj−1)

KK ×∏K
k=1[2(Vk − 1)]2(Vk−1)


+ V log

[∏
k

Vk

]1/V


+ log
6KeV 8V−K

δV

+ (2V −K) log(1/ϵ).

The following inequalities allow to simplify this. For all x1, . . . ,xn ≥ 0 such that x1+· · ·+xn > 0,
we have

log
(

(x1 + · · · + xn)x1+···+xn

xx1
1 . . . xxn

n

)
≤ (x1 + · · · + xn) log(n), (2.41)

(
n∏
i=1

xi

) 1
x1+···+xn

≤
(
e

1
e

) 1
nn

≤ e1/e. (2.42)

Then, we get

logN
(
ϵ,FQδ(θ)

(
P
)
,|| · ||L2(R)

)
≤

K +
K∑
j=1

2(Vj − 1)
 log(K + 1) + V log

(
e1/e

)

+ log
eV 8V

δV

+ (2V −K) log(1/ϵ)

≤ V log
(
e1+1/e8(K + 1)2

δ

)
+ 2V log(1/ϵ).
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To conclude we need to prove (2.41), (2.42) and (2.40).

Proof of (2.41) and (2.42)

• In a first time, we assume x1 + · · · + xn = 1, i.e. x ∈ Wn. Then

log
(

(x1 + · · · + xn)x1+···+xn

xx1
1 . . . xxn

n

)
= −

n∑
i=1

xi log(xi) and
(

n∏
i=1

xi

) 1
x1+···+xn

=
n∏
i=1

xi.

Both functions x 7→ −
n∑
i=1

xi log(xi) and x 7→
n∏
i=1

xi are bounded and attains a maximum on Wn

for x1 = · · · = xn = 1/n, such that

−
n∑
i=1

xi log (xi) ≤ log(n) and
n∏
i=1

xi ≤
( 1
n

)n
.

• In the generic case, we define s(x) := x1 + · · · + xn > 0 and y in Wn by yi = xi/s(x) for
i = 1, . . . ,n. We have

log
(

(x1 + · · · + xn)x1+···+xn

xx1
1 . . . xxn

n

)
= s(x) ×

[
−

n∑
i=1

yi log(yi)
]

≤ (x1 + · · · + xn) log(n)

and (
n∏
i=1

xi

) 1
x1+···+xn

= s(x)1/s(x) ×
(

n∏
i=1

yi

)1/s(x)

≤ s(x)1/s(x) ×
( 1
nn

)1/s(x)

≤
(
e1/e

) 1
nn
.

The last inequality comes from ∀x > 0, x1/x ≤ e1/e and we get (2.42) with e ≥ 1 and nn ≥ 1.

Proof of (2.40)

Let ϵ ∈ (0,1). Let N be an integer greater than 1
ϵ
. We define

WK,N :=
{
w ∈ WK

∣∣∣∣∣∀k ∈ [K], ∃dk ∈ N, wk = dk
N

}
.

• One can easily see that there is a bijection between MK,N and the set

DK,N :=
{
d1, . . . ,dK ∈ N

∣∣∣∣∣
K∑
k=1

dk = N

}
.

We have the following bound |DK,N | =
(
N+K−1

N

)
≤ (N + 1)K .

• Let w be in WK . For k ∈ [K], we write ak = ⌊Nwk⌋. We define s(a) ∈ N and d ∈ DK,N

by s(a) := a1 + · · · + aK ≤ N and

∀k ∈ [K], dk := ak + 1s(a)+k≤N ∈ [⌊Nwk⌋, ⌊Nwk⌋ + 1] .

Therefore, we have v ∈ WK,N defined by vk = dk

N
, such that

∀k ∈ [K], |wk − vk| ≤ 1/N,

i.e. ||w − v||∞ ≤ 1/N ≤ ϵ.
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Therefore WK,N is a ϵ-net of WK with respect to ||·||∞ and for N = ⌈1/ϵ⌉ ≥ 1/ϵ we have

log(N(ϵ,WK ,d)) ≤ log (|WK,N |) = log (|DK,N |)

≤ K log(1 +N) ≤ K log
(3
ϵ

)
.

This concludes the proof of Lemma 2.4.

Proof of Lemma 2.6
The result is just the combination of the two following claims and the triangle inequality.

• First claim: For any probability distribution R, any nonnegative measurable functions
q1,q2,g and any w ∈ (0,1) we have

||ϕ ◦ (wq1 + (1 − w)g) − ϕ ◦ (wq2 + (1 − w)g)||L2(R) ≤ 1√
w

||ϕ ◦ q1 − ϕ ◦ q2||L2(R) .

(2.43)

• Second claim: Let g1, . . . ,gK be K densities. For w,v ∈ WK,δ, we have

||ϕ ◦ (w1g1 + · · · + wKgK) − ϕ ◦ (v1g1 + · · · + vKgK)||L2(R) ≤ 2
δ

||w − v||∞. (2.44)

Combining those inequalities, we have∣∣∣∣∣
∣∣∣∣∣ϕ ◦

(
K∑
k=1

wkfk

)
− ϕ ◦

(
K∑
k=1

vkgk

)∣∣∣∣∣
∣∣∣∣∣
L2(R)

≤
∣∣∣∣∣
∣∣∣∣∣ϕ ◦

(
K∑
k=1

wkfk

)
− ϕ ◦

(
K∑
k=1

vkfk

)∣∣∣∣∣
∣∣∣∣∣
L2(R)

+
K∑
k=1

||ϕ ◦ (hk−1) − ϕ ◦ (hk)||L2(R)

≤ 2
δ

||w − v||∞ +
K∑
k=1

1
√
νk

||ϕ ◦ (gk) − ϕ ◦ (fk)||L2(R)

≤ 2
δ

||w − v||∞ + 1√
δ

K∑
k=1

||ϕ ◦ (gk) − ϕ ◦ (fk)||L2(R) ,

with hk =
k∑
j=1

vjgj +
K∑

j=k+1
vjfj.

• Proof of (2.43).
For two probability densities f1 and f2, for x such that p(x) > 0 and f1(x) + f2(x) > 0,
computation gives

|ϕ ◦ f1(x) − ϕ ◦ f2(x)| =
∣∣∣∣ψ (√f1/p(x)

)
− ψ

(√
f2/p(x)

)∣∣∣∣
=

∣∣∣∣∣∣
√

f1
p

(x) − 1√
f1
p

(x) + 1
−

√
f2
p

(x) − 1√
f2
p

(x) + 1

∣∣∣∣∣∣
=

2
∣∣∣√f1

p
(x) −

√
f2
p

(x)
∣∣∣(√

f1
p

(x) + 1
) (√

f2
p

(x) + 1
)

=
2
∣∣∣f1
p

(x) − f2
p

(x)
∣∣∣(√

f1
p

(x) + 1
) (√

f2
p

(x) + 1
) (√

f1
p

(x) +
√

f2
p

(x)
) . (2.45)
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For f1 = wq1 + (1 − w)g and f2 = wq2 + (1 − w)g, dropping x in the notation, we get

|ϕ ◦ (wq1 + (1 − w)g) − ϕ ◦ (wq2 + (1 − w)g)|

=
2w

∣∣∣ q1−q2
p

∣∣∣(√
wq1+(1−w)g

p
+ 1

)(√
wq2+(1−w)g

p
+ 1

)(√
wq1+(1−w)g

p
+
√

wq2+(1−w)g
p

)

=
2
∣∣∣ q1−q2

p

∣∣∣(√
q1
p

+ 1
)(√

q2
p

+ 1
)(√

q1
p

+
√

q2
p

)

×
w
(√

q1
p

+ 1
)(√

q2
p

+ 1
)(√

q1
p

+
√

q2
p

)
(√

wq1+(1−w)g
p

+ 1
)(√

wq2+(1−w)g
p

+ 1
)(√

wq1+(1−w)g
p

+
√

wq2+(1−w)g
p

)

= |ϕ ◦ q1 − ϕ ◦ q2| ×

√
w
(√

q1
p

+ 1
)

(√
wq1+(1−w)g

p
+ 1

) ×

√
w
(√

q2
p

+ 1
)

√
wq2+(1−w)g

p
+ 1

×

√
q1
p

+
√

q2
p√

wq1+(1−w)g
p

+
√

wq2+(1−w)g
p

.

For w ∈ (0,1) and any y1,y2,z ≥ 0 such that y1 + y2 + z > 0, we have
√
y1 + √

y2√
wy1 + (1 − w)z +

√
wy2 + (1 − w)z

×
√
w
(√

y1 + 1
)

√
wy1 + (1 − w)z + 1

×
√
w
(√

y2 + 1
)

√
wy2 + (1 − w)z + 1

≤
√
y1 + √

y2√
wy1 + √

wy2
×

√
w
(√

y1 + 1
)

√
wy1 + 1 ×

√
w
(√

y2 + 1
)

√
wy2 + 1 ≤ 1√

w
.

Finally, for x such that p(x) > 0 and q1(x) + q2(x) + g(x) > 0, we have

|ϕ ◦ (wq1 + (1 − w)g)(x) − ϕ ◦ (wq2 + (1 − w)g)(x)| ≤ 1√
w

|ϕ ◦ q1(x) − ϕ ◦ q2(x)| .

(2.46)
We now considered the atypical cases given the convention established in section 2.3.1. If
q1(x) = q2(x) = r(x) = 0, we have

|ϕ ◦ (wq1 + (1 − w)g)(x) − ϕ ◦ (wq2 + (1 − w)g)(x)| = 0

whether p(x) is positive or not. This equality is also true when p(x) = 0, q1(x)+g(x) > 0
and q2(x) + g(x) > 0. The last case is for p(x) = q1(x) = g(x) = 0 and q2(x) > 0 (q1 and
q2 being interchangeable). We have

|ϕ ◦ (wq1 + (1 − w)g)(x) − ϕ ◦ (wq2 + (1 − w)g)(x)|

= 1 = |ϕ ◦ q1(x) − ϕ ◦ q2(x)| ≤ 1√
w

|ϕ ◦ q1(x) − ϕ ◦ q2(x)| .

Therefore, inequality (2.46) is always valid and taking the L2(R) norm provides the desired
result.
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• Proof of (2.44).
–We first prove an inequality for mixtures with fixed emission densities. Let r and q be
any probability densities on (X ,X ). Let w and v be in (0,1). Using (2.45) and dropping
x in the notation, for r ̸= q we have

|ϕ ◦ (wr + (1 − w)q) − ϕ ◦ (vr + (1 − v)q)|

=
2 |w − v|

∣∣∣ r−q
p

∣∣∣(√
wr+(1−w)q

p
+ 1

)(√
vr+(1−v)q

p
+ 1

)(√
wr+(1−w)q

p
+
√

vr+(1−v)q
p

)

≤



2|w−v|| r−q
p |(√

w|r−q|+(1−w)q
p

+1
)(√

v|r−q|+(1−v)q
p

+1
)(√

w|r−q|+(1−w)q
p

+
√

v|r−q|+(1−v)q
p

) , if r > q

2|w−v|| r−q
p |(√

(1−w)|q−r|+wr
p

+1
)(√

(1−v)|q−r|+vr
p

+1
)(√

(1−w)|q−r|+wr
p

+
√

(1−v)|q−r|+vr
p

) , if r < q.

≤



2|√w−
√
v|
√

| r−q
p |(√

w|r−q|
p

+1
)(√

v|r−q|
p

+1
) , if r > q

2|√1−w−
√

1−v|
√

| r−q
p |(√

(1−w)|q−r|
p

+1
)(√

(1−v)|q−r|
p

+1
) , if r < q.

One can easily check that the function x 7→
√
x

(√
αx+1)

(√
βx+1

) is bounded above by
(
α1/4 + β1/4

)−2
. Therefore, we get

|ϕ ◦ (wr + (1 − w)q) − ϕ ◦ (vr + (1 − v)q)|

≤ 2
 |

√
w −

√
v|

(w1/4 + v1/4)2
∨ ∣∣∣√1 − w −

√
1 − v

∣∣∣
((1 − w)1/4 + (1 − v)1/4)2


= 2


∣∣∣w1/4 − v1/4

∣∣∣
w1/4 + v1/4

∨ ∣∣∣(1 − w)1/4 − (1 − v)1/4
∣∣∣

(1 − w)1/4 + (1 − v)1/4

 .
The inequality obviously stands for x such that r(x) = q(x). Therefore we can take the
L2(R)-norm and get

||ϕ ◦ (wr + (1 − w)q) − ϕ ◦ (vr + (1 − v)q)||

≤ 2

∣∣∣w1/4 − v1/4

∣∣∣
w1/4 + v1/4

∨ ∣∣∣(1 − w)1/4 − (1 − v)1/4
∣∣∣

(1 − w)1/4 + (1 − v)1/4

 . (2.47)

–We can now prove (2.44). Let g1, . . . ,gK be K probability densities. Let w,v ∈ WK,δ.
If w = v the proof is obvious. Therefore we consider w ̸= v. The idea is to rewrite
w1g1 + · · ·+wKgK and v1g1 + · · ·+vKgK as 2 component mixtures with the same emission
densities, allowing us to use (2.47). We define

t1 := max
1≤k≤K

wk − vk
1wk>vk

− vk
∈ [0,1] and t2 := max

1≤k≤K

vk − wk
1vk>wk

− wk
∈ [0,1].

Since w ̸= v, we have t1,t2 > 0. We define two probability densities f1 and f2 by

f1 :=
K∑
k=1

[
vk + wk − vk

t1

]
gk and f2 :=

K∑
k=1

[
wk + vk − wk

t2

]
gk.
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One can check that we have
K∑
k=1

wkgk = t1
t1 + t2(1 − t1)

f1 + t2(1 − t1)
t1 + t2(1 − t1)

f2,

K∑
k=1

νkgk = t1(1 − t2)
t2 + t1(1 − t2)

f1 + t2
t2 + t1(1 − t2)

f2.

We get straight from (2.47) that

||ϕ ◦ (w1g1 + · · · + wkgK) − ϕ ◦ (v1g1 + · · · + vKgK)||L2(Q)

=
∣∣∣∣∣
∣∣∣∣∣ϕ ◦

(
t1

t1 + t2(1 − t1)
f1 + t2(1 − t1)

t1 + t2(1 − t1)
f2

)

− ϕ ◦
(

t1(1 − t2)
t2 + t1(1 − t2)

f1 + t2
t2 + t1(1 − t2)

f2

)∣∣∣∣∣
∣∣∣∣∣
L2(Q)

≤ 2


∣∣∣∣( t2(1−t1)
t1+t2(1−t1)

)1/4
−
(

t2
t2+t1(1−t2)

)1/4
∣∣∣∣(

t2(1−t1)
t1+t2(1−t1)

)1/4
+
(

t2
t2+t1(1−t2)

)1/4

∨ ∣∣∣∣( t1
t1+t2(1−t1)

)1/4
−
(

t1(1−t2)
t2+t1(1−t2)

)1/4
∣∣∣∣(

t1
t1+t2(1−t1)

)1/4
+
(

t1(1−t2)
t2+t1(1−t2)

)1/4


= 2


∣∣∣(t2(1 − t1))1/4 − (t2)1/4

∣∣∣
(t2(1 − t1))1/4 + (t2)1/4

∨ ∣∣∣(t1)1/4 − (t1(1 − t2))1/4
∣∣∣

(t1)1/4 + (t1(1 − t2))1/4


= 2


∣∣∣(1 − t1)1/4 − 1

∣∣∣
(1 − t1)1/4 + 1

∨ ∣∣∣1 − (1 − t2)1/4
∣∣∣

1 + (1 − t2)1/4


= 2

(
t1

((1 − t1)1/4 + 1)2 ((1 − t1)1/2 + 1)
∨ t2

((1 − t2)1/4 + 1)2 ((1 − t2)1/2 + 1)

)
≤ 2(t1 ∨ t2).

We end the proof of (2.44) with the following upper bound on t1 ∨ t2. We have

t1 ∨ t2 = max
1≤k≤K

(
wk − vk

1wk>vk
− vk

∨ vk − wk
1vk>wk

− wk

)
= max

1≤k≤K

{
|wk − vk| × max

(
(1 − vk)−1, (1 − wk)−1, vk, wk

)}
≤ δ−1 ||w − v||∞ .

The proof of Lemma 2.6 is now complete.

2.B Theorems
In this section we provide a very general result from which we will derive Theorems 2.1, 2.2,
2.8 and 2.10.

Theorem 2.12. Any ρ-estimator P̂ on Qδ satisfies, with probability at least 1 − e−ξ,

h2
(
P∗, P̂⊗n

)
≤ inf

θ∈Θ

c0
(
h2(P∗,Q(θ)) + n(K − 1)δ(θ)

)
(2.48)

+ c1

(
116.1V (θ)

[
5.82 + log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)]
+ ∆(θ)

)
+ c1(1.49 + ξ).
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with c0 = 300 and c1 = 5014. Moreover, for K ≥ 2 and δ(θ) = V (θ)
n(K−1) ∧ 1

K
, we have

log
(

(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
≤ (2 + log2 (9)) log

(
Kn

V (θ) ∧ n

)
(2.49)

and n(K − 1)δ(θ) ≤ n ∧ V (θ).

2.B.1 Proof of Theorem 2.12
We recall that the function ψ defined by (2.6) satisfies Assumption 2 of Baraud and Birgé [11]
with a0 = 4, a1 = 3/8 and a2

2 = 3
√

2 (see Proposition 3 [11]). Using Proposition 2.3, we can
apply Theorem 2 [11] with

Dn(δ,θ) = 545.3V (θ)
[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V (θ)

)]
.

There exist constants γ and κ (given by (19) in [11]) such that, with probability ≥ 1 − e−ξ, we
have

h2
(
P∗, P̂

)
≤ inf

θ∈Θ

[
γh2(P∗,Qδ(θ)) + 4κ

a1

(
Dn(δ,θ)

4.7 + ∆(θ)
)]

+ 4κ
a1

(1.49 + ξ).

Lemma 2.7. For all K ≥ 2 and θ ∈ Θ, we have

∀P ∈ P, h (P,Qδ(θ)) ≤
√

(K − 1)δ(θ) + h (P,Q(θ)) . (2.50)

Using this inequality, we get

h2
(
P∗, P̂

)
≤ inf

θ∈Θ

[
2γ
(
h2(P∗,Q(θ)) + n(K(θ) − 1)δ(θ)

)
+ 4κ
a1

(
116.1V (θ)

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V (θ)

)]
+ ∆(θ)

)]

+ 4κ
a1

(1.49 + ξ).

From Baraud & Chen [12] (see proof of Theorem 1), we get that γ < 150 and 4κ/a1 < 5014.
Let us now prove (2.49). We consider θ such that K ≥ 2 and we take δ(θ) = V (θ)

n(K−1) ∧ 1
K

.

• If V (θ) ≤ n(K − 1)/K, then

log
(

(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
= log

(
(K2 − 1)(K + 1)n2

V (θ)2

)

= 3 log
(
Kn

V (θ)

)
+ log

(
(K2 − 1)(K + 1)V (θ)

K3n

)

≤ 3 log
(
Kn

V (θ)

)
+ log

(
(K2 − 1)2

K4

)

≤ 3 log
(

Kn

V (θ) ∧ n

)
.
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• Otherwise V (θ) > n(K − 1)/K and

log
(

(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
≤ log

(
(K + 1)2K2

K − 1

)

= 3 log(K) + log
(
K2 + 2K + 1
K(K − 1)

)
≤ 3 log(K) + log (9/2)

≤
[
3 + log(9) − log(2)

log(2)

]
log(K)

≤ (2 + log2(9)) log
(

Kn

V (θ) ∧ n

)
.

Finally, one can check that n(K − 1)δ(θ) ≤ n ∧ V (θ).

Proof of Lemma 2.7

For K ≥ 2 and δ ∈ (0,1/K], we define WK,δ by

WK,δ = WK ∩ [δ,1]K . (2.51)

We prove by induction that

∀δ ∈ (0,1/K], sup
w∈WK

h2 (w,WK,δ) ≤ 1 −
√

1 − (K − 1)δ. (2.52)

• Assume (2.52) holds true for K ≥ 2. Let δ be in (0,1/(K + 1)) and w be in WK+1. Without
loss of generality we consider w1 ≤ w2 ≤ · · · ≤ wK ≤ wK+1. We define the function r by

r :

∣∣∣∣∣∣∣∣
WK+1 → WK

w 7→


(

w2
1−w1

, w3
1−w1

, . . . , wK

1−w1

)
for w1 ̸= 0,(

1
K
, 1
K
, . . . , 1

K

)
for w1 = 1,

and informally r−1 by

r−1 :
∣∣∣∣∣ WK × [0,1) → WK+1

(w′,a) 7→ (a,(1 − a)w′
1, . . . , (1 − a)w′

K) .

• If w1 ≥ δ then w ∈ MK+1,δ and h (w,WK+1,δ) = 0.

• Otherwise w1 < δ and we build a distribution v ∈ WK+1,δ to approximate w. Take
η = δ/(1 − δ) ∈ (0,1/K]. From (2.52), there exists v′ ∈ MK,η such that h2(r(w),v′) ≤
1 −

√
1 − (K − 1)η. Now take v = r−1(δ,v′). We have v1 = δ and for j ≥ 2, vj =

(1 − δ)v′
j−1 ≥ (1 − δ)η = δ. Therefore v belongs to WK+1,δ. We also have

h2(w,v) = 1
2

[(√
w1 −

√
δ
)2

+
(√

1 − w1 −
√

1 − δ
)2
]

+
√

1 − w1
√

1 − δh2(r(w),v′)

≤
[
1 −

√
1 − δ

]
+

√
1 − δ

[
1 −

√
1 − (K − 1)η

]
= 1 −

√
1 − δ

√
1 − (K − 1)δ/(1 − δ)

= 1 −
√

1 −Kδ.
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• We now prove (2.52) for K = 2. Let w be in W2 and without loss of generality assume that
w1 ≤ 1/2 ≤ w2. Once again we only need to consider w1 < δ. Then we take v = (δ,1 − δ) and
we get

h2(w,W2,δ) ≤ h2(w,v)

= 1
2

[(√
w1 −

√
δ
)2

+
(√

1 − w1 −
√

1 − δ
)2
]

≤ 1 −
√

1 − δ.

This ends the proof of (2.52). We can now prove Lemma 2.7. Let P ∈ P and Pw,F ∈ Q(θ).
There is v ∈ WK,δ such that Pv,F ∈ Qδ(θ) and

h2 (w,v) ≤ 1 −
√

1 − (K − 1)δ ≤ (K − 1)δ.

By a density argument we can assume that v ∈ QK . Therefore,

h (P,Qδ(θ)) ≤ h (P,Pv,F )
≤ h (Pv,F ,Pw,F ) + h (P,Pw,F )

≤
√

(K − 1)δ + h (P,Pw,F )

where the last inequality comes from Lemma 2.8. Then, taking the infimum over Q(θ) ends
the proof.

2.B.2 Proof of Theorem 2.1
It is a direct application of Theorem 2.12 in the specific situation where

Θ = {θ = (K,λ1,λ2, . . . ,λK)}.

Then, taking ∆(θ) = 0, inequality (2.48) becomes

h2
(

P∗,
(
P̂δ
)⊗n

)
≤ c0

(
h2(P∗,QK) + n(K − 1)δ

)
+ c1116.1V

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ).

With (2.49), we have

h2
(
P∗, P̂⊗n

)
≤ c0

(
h2(P∗,Q) + n ∧ V

)
+ c1116.1 (2 + log2(9))V

[
5.82 + log

(
Kn

V ∧ n

)]
+ c1(1.49 + ξ),

for K ≥ 2. One can easily check that it still holds for K = 1 (see [11]). Therefore (2.11) is
proven.

2.B.3 Proof of Theorem 2.2
Let QK [ϵ] be the model defined by

QK [ϵ] =
{

K∑
k=1

wkFk;w ∈ WK , Fk ∈ Fk[ϵ],∀k ∈ [K]
}
.
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Since the class F k is totally bounded, the set Fk[ϵ] is finite for all k ∈ [K]. We satisfy
Assumptions 2.1 and 2.2 and therefore can apply Theorem 2.1 with

V =
K∑
k=1

log2(|Fk[ϵ]|) ≤
K∑
k=1

(
Ak
ϵ

)αk

.

Let P̂ = P̂δ be a ρ-estimator on QK,δ[ϵ]. For all ξ > 0, we have

h2
(

P∗,
(
P̂δ
)⊗n

)
≤ c0

[
h2 (P∗,QK [ϵ]) + n(K − 1)δ

]
+ c1116.1V

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ),

with probability at least 1 − e−ξ.

Lemma 2.8. Let w and v be in WK. Let Fk and Gk be in P for all k ∈ {1, . . . ,K}. We have

h

(
K∑
k=1

wkFk,
K∑
k=1

vkGk

)
≤ h(w, v) + max

k∈[K]
h (Fk, Gk) .

This lemma implies that QK [ϵ] is a ϵ-net of QK with respect to the Hellinger distance, and
in particular

h2 (P∗,QK [ϵ]) ≤ 2h2 (P∗,QK) + 2nϵ2.

Therefore, if we use (2.11) with V =
K∑
k=1

(
Ak

ϵ

)αk we get

Ch2
(

P∗,
(
P̂δ
)⊗n

)
≤ 2h2 (P∗,QK) + 2nϵ2 + ϵ−αmax

K∑
k=1

Aαk
k [1 + log(Kn)] + ξ.

Finally, for ϵ = n− 1
αmax+2 , there exists a positive constant C such that for all ξ > 0, we have

Ch2
(

P∗,
(
P̂δ
)⊗n

)
≤ h2 (P∗,QK) + n

αmax
αmax+2

K∑
k=1

Aαk
k [1 + log (Kn)] + ξ,

with probability at least 1 − e−ξ.

Proof of Lemma 2.8

With Young’s inequality, we can easily prove the following inequality

∀x,y,z ∈ RK
+ ,

√ ∑
k∈[K]

xkzk −
√ ∑
k∈[K]

xkyk

2

≤
∑
k∈[K]

xk(
√
zk − √

yk)2.

Therefore, we get an upper bound on the Hellinger distance between mixture distributions. For
w,v ∈ WK and Fk,Gk ∈ P for all k ∈ [K], we have

h

 ∑
k∈[K]

wkFk,
∑
k∈[K]

vkGk

 ≤ h

 ∑
k∈[K]

wkFk,
∑
k∈[K]

wkGk

+ h

 ∑
k∈[K]

wkGk,
∑
k∈[K]

vkGk


≤
√ ∑
k∈[K]

wkh2 (Fk, Gk) + h (w, v)

≤ max
k∈[K]

h(Fk,Gk) + h(w,v).



62 Chapter 2. Finite mixture models

2.B.4 Proof of Theorem 2.8
Applying Theorem 2.12 in the described setting, we get

h2
(
P ∗, P̂

)
≤ inf

λ∈L

[
c0
(
h2(P ∗,Q(λ)) + (K − 1)δ(λ)

)
+ c2

{
116.1V (λ)

n

[
5.82 + log

(
(K + 1)2

δ(λ)

)
+ log+

(
n

V (λ)

)]
+ ∆(λ)

}]

+ c2
1.49 + ξ

n
,

with probability at least 1 − e−ξ. As K ≥ 2 and δ(λ) = V (λ)
n(K−1) ∧ 1

K
we have the following with

(2.49). and finally we have

h2
(
P∗, P̂⊗n

)
≤ inf

λ∈L

{
c0
(
h2(P∗,Q(λ)) + n ∧ V (λ)

)
+ c1

(
116.1V (λ)

[
5.82 + (2 + log2(9)) log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ)

)}
+ c1(1.49 + ξ)

≤ C inf
λ∈L

{
h2 (P∗,Q(λ)) + V (λ)

[
1 + log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ)

}
+ ξ,

where C is a positive numeric constant that does not depend on L.

2.B.5 Proof of Theorem 2.10
Applying Theorem 2.12, we get

h2
(
P ∗, P̂

)
≤ inf

K∈K

[
c0
(
h2(P ∗,Q(K)) + (K − 1)δ(K)

)
+c2

{
116.1KV

n

[
5.82 + log

(
(K + 1)2

δ(K)

)
+ log+

(
n

KV

)]
+ ∆(K)

}]

+ c2
1.49 + ξ

n
,

with probability at least 1− e−ξ. For K = 1 and δ(K) = 1 we have (K−1)δ(K) = 0 ≤ KV ∧n
and

log
(

(K + 1)2

δ(K)

)
+ log+

(
n

KV

)
= 2 log(2) + log

(
n

KV ∧ n

)
.

Combining this inequality with (2.49), we have

5.82 + log
(

(K + 1)2

δ(K)

)
+ log+

(
n

KV

)
≤ (5.82 + 2 log(2)) + (2 + log2(9)) log

(
Kn

KV ∧ n

)

for all K ≥ 1. Finally, there is a numeric constant C > 0 that is universal, such that for all
ξ > 0 we have

Ch2
(
P ∗, P̂

)
≤ inf

K∈K

[
h2(P ∗,Q(K)) + 1

n

{
KV

[
1 + log

(
Kn

KV ∧ n

)]
+ ∆(K)

}]
+ ξ

n
,

with probability at least 1 − e−ξ.
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2.C Density estimation
This section gathers the proofs of density estimation results, namely Theorems 2.3 and 2.11.

2.C.1 Proof of Theorem 2.3
The Gaussian location-scale family of density functions is VC-subgraph with VC-index V (C) ≤
5 (see Lemma 2.2). Proposition 2.1 provides an approximation bound for C (A,R). The proof
can be found on page 63. We can now apply Theorem 2.1 with those two propositions. With
(2.11), there exists a universal constant C such that for P∗ = (P ∗)⊗n, ξ > 0, with probability
at least 1 − e−ξ, we have

Ch2
(
P ∗,P̂

)
≤ h2 (P ∗,C (A,R)) + exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4 +R

]

+ K log (n) + ξ

n

≤ h2 (P ∗,C (A,R)) + 1
n

[
3
√

2
(eπ)1/271/4

(
864R4 log2(n) + 1

)1/4
+R

]

+

(
864R4 log2(n) + 1

)
log (n) + ξ

n

One can check that the assumptions ensure that log(n) ≥ 1 and therefore

Ch2
(
P ∗,P̂

)
≤ h2 (P ∗,C (A,R)) + R log1/2(n)

n

[
3
√

28651/4

(eπ)1/271/4 + 1
]

+ 865R4 log3(n) + ξ

n
.

Finally, there exists a numeric constant C > 0 such that, forK =
⌈
864R4 log2(n)

⌉
≥ 2 (24A2 + 1)2,

for all ξ > 0, with probability at least 1 − e−ξ, we have

Ch2
(
P ∗, P̂

)
≤ h2(P ∗,C (A,R)) + R4 log3(n) + ξ

n
.

The different conditions are satisfied for n ≥ exp
(
A2

R2
25

12
√

3

)
.

2.C.2 Proof of Proposition 2.1
We first need the following result.

Lemma 2.9. Let k be a positive integer. For any probability distribution H on [−a,a] × [σ,σ],
there is a discrete probability distribution H ′ supported by k(2k− 1) + 1 points in [−a,a] × [σ,σ]
such that

dTV (PH , PH′) ≤ inf
m>1


√

2/π
σ

am

(
ea2(1 +m)2

2kσ2

)k
+ σ

2σ exp
(

−(m− 1)2a2

2σ2

) .
The proof is postponed at the end of this one. Let A and R be two real numbers respectively

greater than 0 and 1. As a direct consequence of this lemma, for any l ∈ R, any probability
distribution H on [l ± σA] × [σ,Rσ] and for K ≥ k(2k − 1) + 1, we have

h2(PH ,GK) ≤ inf
m>0

√2/πA(1 +m)
(
eA2(2 +m)2

2k

)k
+ R

2 exp
(

−m2A2

2R2

) .
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The goal is to have an upper bound without an infimum. For that we are going to take a value
of m given by the parameters A and R. Now

h2(PH ,GK) ≤ inf
m≥2

√2/πA3
2m

(
eA24m2

2k

)k
+ R

2 exp
(

−m2A2

2R2

)
= inf

m≥2

 3√
2π
Am

(
2eA2m2

k

)k
+ R

2 exp
(

−m2A2

2R2

) .
Let W denote the Lambert W function restricted to (0; ∞) such that W (x) is the only positive
number such that W (x)eW (x) = x. For m =

√
2W (1/4eR2)R

A
k1/2 and k ≥ 2A2

W (1/4eR2)R2 , to ensure
that m ≥ 2, we get

h2(PH ,GK) ≤ 3√
2π

√
2W (1/4eR2)Rk1/2

(
4eR2W (1/4eR2)

)k
+ R

2 exp
(
−kW (1/4eR2)

)
= R exp

(
−kW (1/4eR2)

) [
k1/23

√
W (1/4eR2)/π + 1/2

]
.

Let us simplify this bound using simple properties of the function W .

• For all x > 0, 0 < W (x) < x.

• For all x ∈ (0,1), x(1 − x) < W (x). Therefore,

W (1/4eR2) ≥ 1
4eR2

(
1 − 1

4eR2

)
≥ (1 − 1/4e)

4eR2 = 4e− 1
16e2R2 ≥ 1

12R2 .

Therefore, we have

h2(PH ,GK) ≤ R exp
(

− k

12R2

)[
k1/2 3

2R
√
eπ

+ 1/2
]
.

Since K ≥ 2 (24A2 + 1)2, one can check that the set

B =
{
k ∈ N : K ≥ k(2k − 1) + 1 and k ≥ 2A2

R2W (1/4eR2)

}

is not empty, e.g. ⌈24A2⌉ ∈ B. We set k = maxB ≥ 1, i.e. k =
⌊

1
4 +

√
(K − 7/8)/2

⌋
≤

√
K 2√

7 ,
we have

K ∈ {n(2n− 1) + 1, . . . , (2n+ 1)(n+ 1)} ⇒ k = n ≥
√
K

n√
(2n+ 1)(n+ 1)

.

Since x 7→ x√
(2x+1)(x+1)

is non-decreasing on [1, + ∞), we have k ≥
√
K/

√
6 for all K ≥ 2.

Finally, we have

h2(PH ,GK) ≤ R exp
(

− k

12R2

)[
k1/2 3

2R
√
eπ

+ 1/2
]

≤ R exp
(

− K1/2

12
√

6R2

)[
K1/4 3

√
2

2R
√
eπ71/4 + 1/2

]

= 1
2 exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4 +R

]
.

One can see that σ does not play a role here and is equivalent to s in the definition of C(A,R).
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Proof of Lemma 2.9

The bound is obtained following the proofs of lemmas in Ghosal & van der Vaart [49]

• 1st step:
For |x| > a we have,

pH(x) =
∫ 1√

2πσ2
exp

(
−(x− z)2

2σ2

)
dH(z,σ)

≤ 1√
2πσ2 exp

(
−(|x| − a)2

2σ2

)
. (2.53)

• 2nd step:
See Lemma A.1 in Ghosal & van der Vaart [49]. Take N = k(2k − 1) + 1. There is a
discrete distribution H ′ with at most K support points in [−a,a] × [σ,σ] such that∫

zlσ−(2j+1)dH(z,σ) =
∫
zlσ(2j+1)dH ′(z,σ) (2.54)

for l = 0, . . . ,2k − 2 and j = 0, . . . ,k − 1. Because of (2.54) we get∫ k−1∑
j=0

(−1)jσ−(2j+1)(x− z)2j

j! dH(z,σ) =
∫ k−1∑

j=0

(−1)jσ−(2j+1)(x− z)2j

j! dH ′(z,σ),

for x ∈ R. Taylor’s expansion of the exponential function ([49]),∣∣∣∣∣∣∣exp
(

−(x− z)2

2σ2

)
−

k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

∣∣∣∣∣∣∣ ≤
(
e(x− z)2

k2σ2

)k
.

Therefore,
√

2π sup
|x|≤M

|pH(x) − pH′(x)|

= sup
|x|≤M

∣∣∣∣∣
∫ 1
σ

exp
(

−(x− z)2

2σ2

)
dH(z,σ)

−
∫ 1
σ

exp
(

−(x− z)2

2σ2

)
dH ′(z,σ)

∣∣∣∣∣
= sup

|x|≤M

∣∣∣∣∣∣∣
∫ 1
σ

exp
(

−(x− z)2

2σ2

)
−

k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

 dH(z,σ)

−
∫ 1
σ

exp
(

−(x− z)2

2σ2

)
−

k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

 dH ′(z,σ)

∣∣∣∣∣∣∣
≤ 2 sup

|x|≤M
|z|≤a
σ≤σ≤σ

1
σ

∣∣∣∣∣∣∣exp
(

−(x− z)2

2σ2

)
−

k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

∣∣∣∣∣∣∣
≤ 2 sup

|x|≤M
|z|≤a
σ≤σ≤σ

1
σ

(
e(x− z)2

k2σ2

)k

≤ 2
σ

(
e(M + a)2

k2σ2

)k
.
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Obviously, the inequality (2.53) holds also for pH′ . We combine it with the last one we obtained
in order to bound the total variation distance. Therefore, for M = ma, m > 1, we have

dTV (PH , PH′) = 1
2

∫
|pH(x) − pH′(x)|dx

≤ M sup
|x|≤M

|pH(x) − pH′(x)| + 1
2

∫
|x|>M

pH(x) ∨ pH′(x)dx

≤

√
2/π
σ

M

(
e(M + a)2

2kσ2

)k
+ 1

2

∫
|x|>M

1√
2πσ2 exp

(
−(|x| − a)2

2σ2

)
dx

≤

√
2/π
σ

M

(
e(M + a)2

2kσ2

)k
+ σ

σ

∫
x>M

1√
2πσ2

exp
(

−(x− a)2

2σ2

)
dx

≤

√
2/π
σ

am

(
ea2(1 +m)2

2kσ2

)k
+ σ

2σ exp
(

−(m− 1)2a2

2σ2

)
.

Finally, writing A = a/σ and R = σ/σ, we have

dTV (PH , PH′) ≤ inf
m>1


√

2/π
σ

am

(
ea2(1 +m)2

2kσ2

)k
+ σ

2σ exp
(

−(m− 1)2a2

2σ2

) .
This concludes the proof of Proposition 2.1.

2.C.3 Proof of Theorem 2.11
We firs provide the proof of Lemma 2.3 which provides the necessary bound for the approxi-
mation.

Proof of Lemma 2.3

We will use notation from [68]. With Lemma 7.23 [67] and an inclusion argument, we have

h2 (P,GK) ≤ h2 (P,SK) ≤ 1
2DKL (P ||SK) .

Combined with Lemma 6.1 [68], we get

h2 (P,GK) ≤
cβ,β

2 λ(K)2β

=
cβ,β

2
(
aβK

−1 (lnK)3/2
)2β

≤ Cβ,β
(lnK)3β

K2β ,

with Cβ,β = cβ,βa
2β
β
/2.

The Gaussian location-scale family of density functions is VC-subgraph (see Lemma 2.2).
For 0 < β < β and β ∈ [β,β], let H

(
β,P(β,β)

)
be the class of density functions defined in

Maugis-Rabusseau & Michel [68]. One can check that∑
k∈K

e−∆(K) ≤ 1,
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for ∆(K) = K. Applying Theorem 2.10, for ξ > 0, with probability at least 1 − e−ξ, we have

Ch2(P ∗,P̂ ) ≤ inf
K∈K

{
h2(P ∗,GK) + K(5 log(n) + 1) + ξ

n

}

≤ 2h2(P ∗,H
(
β,P(β,β)

)
) + inf

K∈K

{
2cβ,β

(logK)3β

K2β + K(5 log(n) + 1)
n

}
+ ξ

n
.

Therefore, following the proof of Theorem 2.9 of Maugis-Rabusseau & Michel [68], we have

inf
K∈K

{
2cβ,β

(logK)3β

K2β + K(5 log(n) + 1)
n

}
≲ cβ,β inf

K∈K

{
(logK)3β

K2β + K log(n)
n

}

≲ cβ,β
(log n)

5β
2β+1

n
2β

2β+1
.

Finally, there exists Cβ,β such that for all ξ > 0, with probability at least 1 − e−ξ, we have

h2(P ∗,P̂ ) ≤ Cβ,β

(log n)
5β

2β+1

n
2β

2β+1
+ ξ

n

 .

2.D Regular parametric models

This section gathers the proof of Theorems 2.4, 2.9 and 2.5.

2.D.1 Proof of Theorem 2.4

We apply the results of Ibragimov & Has’minskĭı [54] (Chapter 1, Section 7.1 and 7.3) to
parametric mixture models. We recall the notation

p(·; θ) =
K−1∑
k=1

wkfk(·;αk) + (1 − w1 − · · · − wK−1)fK(·;αK)

and Θ =
{
w ∈ (0,1)K−1,

K−1∑
k=1

wk < 1
}

×A1 × · · · ×AK . Obviously, Θ is an open convex subset

of RK−1 ×Rd
1 ×· · ·×RdK . We first check that Assumption 2.3 implies that the model is regular.

• a) ⇒ θ 7→ p(x; θ) is continuous on Θ for µ-almost all x ∈ X .

• b) ⇒ For µ-almost all x ∈ X the function u 7→ p(x;u) is differentiable at the point u = θ.
For all k ∈ {1, . . . ,K} and j ∈ {1, . . . ,dk}, we have

∫
X

∣∣∣∣∣∂p(x; θ)
∂αk,j

∣∣∣∣∣
2
µ(dx)
p(x; θ) =

∫
X

∣∣∣∣∣∂fk(x;αk)
∂αk,j

∣∣∣∣∣
2

w2
k

p(x; θ)µ(dx)

≤
∫

X

∣∣∣∣∣∂fk(x;αk)
∂αk,j

∣∣∣∣∣
2

µ(dx)
fk(x;αk)

< ∞.
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It also works with k = K since w is fixed here. For k ∈ {1, . . . ,K − 1} we get∫
X

∣∣∣∣∣∂p(x; θ)
∂wk

∣∣∣∣∣
2
µ(dx)
p(x; θ) =

∫
X

(fk(x;αk) − fK(x,αK))2 µ(dx)
p(x; θ)

≤ 2
wk

∫
X
f 2
k (x;αk)

µ(dx)
fk(x;αk)

+ 2
1 − w1 − · · · − wk

∫
X
f 2
K(x;αk)

µ(dx)
fK(x;αK)

= 2
wk

+ 2
1 − w1 − · · · − wk

< ∞.

Therefore, we have a regular statistical experiment (see [54]). Since the Fisher’s information
matrix

I
(
θ
)

=
∫

X

∂p
(
x; θ

)
∂θ

∂p
(
x; θ

)
∂θ

T µ(dx)
p
(
x; θ

)
is definite positive. We can apply Theorem 7.6 of Ibragimov & Has’minskĭı [54] which says that
we have

lim inf
t→0

||t||−2h2(Pθ, Pθ+t) ≥ λ(θ)/4.

where λ(θ) is the smallest eigen value of the Fisher’s information matrix I(θ). Therefore there
exists a > 0 such that

inf
θ∈Θ:||θ−θ||<a

∣∣∣∣∣∣θ − θ
∣∣∣∣∣∣−2

h2 (Pθ,Pθ) ≥ λ
(
θ
)
/8.

Finally, there exists a positive constant C
(
θ
)

= λ(θ)
8 ∧ inf

||θ−θ||≥a
θ∈Θ

h2 (Pθ,Pθ) > 0 such that

∀θ ∈ Θ,
(

1 +
∣∣∣∣∣∣θ − θ

∣∣∣∣∣∣−2
)
h2 (Pθ,Pθ) ≥ C

(
θ
)
.

We apply Theorem 2.1 so that with probability at least 1 − e−ξ we have

1
n

[
h2
(
P∗,P⊗n

θ

)
+ V log(n) + ξ

]
≥ Ch2 (Pθ, Pθ̂) ≥

∣∣∣∣∣∣θ − θ̂
∣∣∣∣∣∣2

1 +
∣∣∣∣∣∣θ − θ̂

∣∣∣∣∣∣2C × C
(
θ
)

≥

∣∣∣∣∣∣θ − θ̂
∣∣∣∣∣∣2 ∧ b

1 + b
C × C(θ),

for any b ≥ 0. Since ||w − ŵ||2 ≤ K
K−1∑
k=1

(wk − ŵk)2 and

K−1∑
k=1

(wk − ŵk)2 +
K∑
k=1

[
||αk − α̂K ||2 ∧ 1

]
≤

K−1∑
k=1

(wk − ŵk)2 +
[
K∑
k=1

||αk − α̂K ||2
]

∧K

≤
[
K−1∑
k=1

(wk − ŵk)2 +
K∑
k=1

||αk − α̂K ||2
]

∧ (K + 1)

=
∣∣∣∣∣∣θ − θ̂

∣∣∣∣∣∣2 ∧ (K + 1),
we get, with b = K + 1,

1
n

[
h2
(
P∗,P⊗n

θ

)
+ V log(n) + ξ

]
≥
[

1
K

||w − ŵ||2 +
K∑
k=1

||αk − α̂k||2 ∧ 1
]
C × C(θ)
K + 2 ,

with probability at least 1 − e−ξ.
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2.D.2 Proof of Theorem 2.9
Assumption 2.2 is satisfied with Lemma 2.2. For all j in {0, . . . ,K}, we have V j = 5K. We
apply Theorem 2.8 with ∆j = log(K+1) for all j ∈ {0, . . . ,K}. This induces a constant penalty
function and one can check that this does not modify the definition of ρ-estimators compared to
a null penalty function. Therefore, the estimator can be computed with a null penalty. There
exists a positive constant that does not depend on P ∗ such that for n ≥ 5K, any ρ-estimator
P̂δ on Qδ satisfies, with probability at least 1 − e−ξ,

Ch2(P ∗,P̂ ) ≤ K log (n(K + 1)) + ξ

n
.

The following lemma allows to prove that for n large enough, the estimator P̂ belongs to the
true model Qj∗ with high probability.

Lemma 2.10. Let j ∈ {0, . . . ,K} and assume there is a sequence

(Pn)n =
 j∑
k=1

wk,nN (zk,n,σ2
k,n) +

K∑
k=j+1

wk,nCauchy(zk,n,σk,n)

n

∈ QN
j

such that lim
n→∞

h(Pn,P ∗) = 0. Then, j = j∗ and there is a subsequence
(
Pψ(n)

)
n

such that
lim
n→∞

(zk,ψ(n),σk,ψ(n))1≤k≤K = (zk,σk)1≤k≤K.

This implies that α = infj ̸=j∗ h (P ∗,Qj) > 0. For n ≥ n0 = inf{n ≥ 1 : C−1α−1K <
n/ log(n(K + 1))} and 0 < ξ < Cnα

K log(n(K+1)) , there is an event Ωξ,n of probability 1 − e−ξ such
that

Ch2(P ∗,P̂ ) ≤ K log (n(K + 1)) + ξ

n
and P̂ ∈ Qj∗ .

From now, we follow the proof of Theorem 2.3 to prove a lower bound on the Hellinger distance
h(P ∗,P ) for P ∈ Qj∗ .

Lemma 2.11. There exists a positive constant a such that for all Pθ =
j∗∑
k=1

wkN (zk,σ2
k) +

K∑
k=j∗+1

wkCauchy(zk,σk) ∈ Qj∗,

h2 (P ∗,Pθ) ≥ a

(
||w − w||2 +

j∗∑
k=1

∣∣∣∣∣∣(zk,σ2
k

)
−
(
zk,σ

2
k

)∣∣∣∣∣∣2
2

∧ 1

+
K∑

k=j∗+1
||(zk,σk) − (zk,σk)||22 ∧ 1

)
.

Finally, there is a constant C such that for ξ and n, on the event Ωξ,n, we have

C

||ŵ − w||2 +
j∗∑
k=1

∣∣∣∣∣∣(ẑk,σ̂2
k

)
−
(
zk,σ

2
k

)∣∣∣∣∣∣2
2

∧ 1 +
K∑

k=j∗+1
||(ẑk,σ̂k) − (zk,σk)||22 ∧ 1


≤ K log(n(K + 1)) + ξ

n
.

We still have to prove Lemmas 2.10 and 2.11.



70 Chapter 2. Finite mixture models

Proof of Lemma 2.10

Let j ∈ {0, . . . ,K} and assume there is a sequence

(Pn)n =
 j∑
k=1

wk,nN (zk,n,σ2
k,n) +

K∑
k=j+1

wk,nCauchy(zk,n,σk,n)
 ∈ QN

j

such that lim
n→∞

h(Pn,P ∗) = 0. The mixing weights are bounded so we can assume we are
already considering a sequence such that wk,n −−−→

n→∞
wk,∞ for all k ∈ {1, . . . ,K}. For the other

parameters, it is always possible to extract a subsequence Pψ(n) such that for all k

zk,ψ(n) −−−→
n→∞

zk,∞ ∈ R,
or ± ∞,

and σk,ψ(n) −−−→
n→∞

σk,∞ ∈ R+,

or + ∞.

We now consider the different cases possible (dropping the dependency on ψ in the notation).
• If zk,n −−−→

n→∞
±∞ (without loss of generality we consider +∞ in the proof), for b ∈ R, we

have

Pn([b,+ ∞[) ≥ wk,n
[
1k≤jN (zk,n,σ2

k,n)([b,+ ∞[)

+ 1k>jCauchy(zk,n,σk,n)([b,+ ∞[)
]

≥ wk,n
2 for n large enough.

Assume wk,∞ > 0. Since P ∗([b, + ∞[) −−−→
b→∞

0, there exists b such that P ∗([b, + ∞[) ≤
wj,∞/4. On the other hand we have P ∗([b,+∞[) = lim

n→∞
Pθn([b,+∞[) ≥ wk,∞/2. Therefore,

it means that wk,∞ = 0 and it also holds for zk,n → −∞.

• If zk,n −−−→
n→∞

zk,∞ ∈ R and σk,n −−−→
n→∞

0, for b > 0 we have

Pn([zk,∞ − b,zk,∞ + b]) ≥ wk,n
(
1k≤jN (zk,n,σ2

k,n)([b,+ ∞[)
+1k>jCauchy(zk,n,σk,n)([b,+ ∞[)) → wk,∞.

Assume wk,∞ > 0. Since P ∗([zk,∞ − b,zk,∞ + b]) −−→
b→0

0, there exists b > 0 such that
P ∗([zk,∞ − b,zk,∞ + b]) ≤ wj,∞/2. On the other hand we have P ∗([zk,∞ − b,zk,∞ + b]) =
lim
n→∞

Pn([zk,∞ − b,zk,∞ + b]) ≥ wk,∞. Therefore, it means that wk,∞ = 0.

• If zk,n → zk,∞ ∈ R and σk,n → ∞, for a > 0 we have

Pn([−a,a]) ≤ (1 − wk,n)
+ wk,n

(
1k≤jN (zk,n,σ2

k,n)([−a,a]) + 1k>jCauchy(zk,n,σk,n)([−a,a])
)

−−−→
n→∞

(1 − wk,∞).

Since P ∗([−a,+ a]) −−−−→
a→+∞

1, we get wk,∞ = 0

This proves that Pn converges to

P∞ =
∑

k≤j(λ)
wk,∞>0

wk,∞N (zk,∞,σ2
k,∞) +

∑
k>j(λ)
wk,∞>0

wk,∞Cauchy(zk,∞,σk,∞),

and necessarily P ∗ = P∞. Lemma 2.10 with the assumptions on P ∗ implies j = j∗ and
there exist two permutations τg,τc respectively on {1, . . . ,j∗} and {j∗ + 1, . . . ,K} such that
(πk,zk,σk) = (wτg(k),zτg(k),στg(k)) for k in {1, . . . ,j∗} and (πk,zk,σk) = (wτc(k),zτc(k),στc(k)) for k
in {j∗ + 1, . . . ,K}.
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Proof of Lemma 2.11

• The map (z,σ2) 7→ g(x; z,σ2) = ϕσ(x − z) is continuous and differentiable on R × R+∗

with

∂zϕσ(x− z) = ϕσ(x− z)(x− z)
σ2

∂σ2ϕσ(x− z) = ϕσ(x− z)
[

(x− z)2

2σ4 − 1
2σ2

]
.

Similarly (z,σ) 7→ f(x; z,σ) = 1
πσ

1
c(x;z,σ) is continuous and differentiable on R × R+∗ with

∂zf(x; z,σ) = 1
πσ3

x− z

c2(x; z,σ)

∂σf(x; z,σ) = 1
πσ2c(x; z,σ)

[
1 − 2

c(x; z,σ)

]
.

Moreover, on can check that we have∫
R

∣∣∣∂zg(x; z,σ2)
∣∣∣2 dx

g(x; z,σ2) =
∫
R

(x− z)2

σ4 ϕσ(x− z)dx < ∞

∫
R

∣∣∣∂σ2g(x; z,σ2)
∣∣∣2 dx

g(x; z,σ2) =
∫
R

[
(x− z)2

2σ4 − 1
2σ2

]2

ϕσ(x− z)dx < ∞
∫
R

|∂zf(x; z,σ)|2 dx

f(x; z,σ) =
∫
R

(x− z)2

πσ5c3(x; z,σ)dx < ∞

∫
R

∣∣∣∂σ2f(x; z,σ2)
∣∣∣2 dx

f(x; z,σ) =
∫
R

1
πσ3c(x; z,σ)

[
1 − 2

c(x; z,σ)

]2

dx < ∞.

• The function θ 7→ ψ(·; θ) = ∂
∂θ
p1/2(·; θ), where

p(x; θ) =
j∗∑
k=1

wkϕσk
(x− zk) +

K∑
k=j∗+1

1
πσc(x; z,σ)

and
θ = (w1, . . . ,wK−1,z1, . . . ,zK ,σ

2
1, . . . ,σ

2
j∗ ,σj∗+1, . . . ,σK),

is continuous in the space L2(µ).

• We apply Theorem 1 of Meijer & Ypma [72]. For j∗ < K,

det(I(θ)) = 0

⇒ ∃λ ̸= 0,
j∗∑
k=1

ϕσk
(x− zk)

(
wkλzk

(x− zk)
σ2
k

+ wkλσ2
k

[
(x− z)2

2σ4
k

− 1
2σ2

k

]
+ λwk

)

+
K−1∑

k=j∗+1

(
wkλzk

(x− zk)
πσ3c2(x; zk,σk)

+ wkλσk

πσ2
k

[
1

c(x; zk,σk)
− 2
c2(x; zk,σk)

]
+ λwk

πσkc(x; zk,σk)

)

+ (1 − w1 − · · · − wK−1)
(

λzK
(x− zK)

πσ3
Kc

2(x; zK ,σK) + λσK

πσ2
K

[
1

c(x; zK ,σK) − 2
c2(x; zK ,σK)

])

− 1
πσKc(x; zK ,σK)

K−1∑
k=1

λwk
= 0 for µ-almost all x.
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For j∗ = K,

det(I(θ)) = 0

⇒ ∃λ ̸= 0,
K−1∑
k=1

ϕσ2
k
(x− zk)

(
wkλzk

(x− zk)
σ2
k

+ wkλσ2
k

[
(x− z)2

2σ4
k

− 1
2σ2

k

]
+ λwk

)

+ ϕσK
(x− zK)

{
(1 − w1 − · · · − wK−1)

(
λzK

(x− zK)
σ2
K

+ λσ2
K

[
(x− z)2

2σ4
K

− 1
2σ2

K

])

−
K−1∑
k=1

λwk

}
= 0 for µ-almost all x.

Lemma 2.12. Let (z1,σ1), . . . ,(zK ,σK) be distinct elements of R × R+∗. For any integer
n, the families

A =
{
x 7→ xjϕσi

(x− zi); i ∈ {1, . . . ,K}, j ∈ {0, . . . ,n}
}

and
B =

{
x 7→ xj

cl(x; zi,σi)
; i ∈ {1, . . . ,K}, l ∈ {1,2}, j ∈ {0,1}

}

are linearly independent. Moreover, the linear spaces SpanR(A) and SpanR(B) are or-
thogonal.

This proves that I(θ) is non singular.

• We now check inf ||θ−θ||≥a
Pθ∈Qj∗

h2(Pθ,Pθ) > 0,∀a > 0. It is a direct consequence of Lemma 2.10.

• Q(λ∗) is a regular parametric model. We consider the parameter to be σ for the Cauchy
distribution and σ2 for the Gaussian distribution. Obviously, (z,σ) 7→ g(x; z,σ) =
1
πσ

1
c(x;z,σ) , with c(x; z,σ) = 1 +

(
x−z
σ

)2
is continuous and differentiable on R × R+∗ with

∂zg(x; z,σ) = 2(x− z)
πσ3c2(x; z,σ)

∂σg(x; z,σ) = 1
πσ2c(x; z,σ) − 2

πσ2c2(x; z,σ) .

Moreover, on can check that we have
∫
R

|∂zg(x; z,σ)|2 dx

g(x; z,σ) =
∫
R

4(x− z)2

πσ3c3(x; z,σ)dx < ∞

and ∫
R

|∂σg(x; z,σ)|2 dx

g(x; z,σ) =
∫
R

1
πσ3c(x; z,σ)

[
1 − 2

c(x; z,σ)

]2

dx < ∞.

• With the results of [54], we get that there is a constant a∗ > 0 such that

∀Pθ ∈ Q(λ∗), a∗ ||θ − θ||2

1 + ||θ − θ||2
≤ h2(P ∗,Pθ).
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Proof of Lemma 2.12

• Let f be any function in SpanR(A)∩SpanR(B). Therefore there are constants (λg,i,j)1≤i≤K,
0≤j≤n

and (λc,i,l,j) 1≤i≤K,
0≤j≤1≤l≤2

such that

f(x) =
K∑
i=1

n∑
j=0

λg,i,jx
jϕσi

(x− zi) =
K∑
i=1

2∑
l=1

1∑
j=0

λc,i,l,j
xj

cl(x; zi,σi)
.

Since f ∈ SpanR(A), we have f(x) = o±∞(x−k),∀k ∈ N. Therefore λc,i,l,j = 0 for all i,j,l
and f = 0. This proves SpanR(A) ∩ SpanR(B) = {0}.

• One can check that > is a strict total order such that

(z1,σ1) > (z2,σ2) ⇒ xjϕσ2(x− z2)/ϕσ1(x− z1) −−−−→
x→+∞

0,

for any j ∈ N. Let λ be such that ∑
i,j
λi,jx

jϕσi
(x − zi) = 0 for all x. Without loss of

generality, we assume (z1,σ1) > · · · > (zK ,σK). Therefore,

0 =
∑
i,j

λi,jx
jϕσi

(x− zi)

=
∑
i,j

λi,jx
jϕσi

(x− zi)/ϕσ1(x− z1) +
∑
j

λ1,jx
j

=
∑
j

λ1,jx
j + o+∞(1).

It implies that λ1,j = 0 for all j. Then, we have ∑
i≥2,j

λi,jx
jϕσi

(x− zi) = 0. By induction,
we get that λ = 0 which proves that the family is indeed linearly independent.

• The partial fraction decomposition theorem implies that B is linearly independent.

This concludes the proof of Theorem 2.9.

2.D.3 Proof of Theorem 2.5
We apply Theorem 2.1 and Lemma 2.11 (see page 69) with j∗ = K.

2.E Two-component mixture models
This section gathers the proofs of the results for the two-component mixture model with one
known component, namely Theorems 2.6 and 2.7.

2.E.1 Proof of Theorem 2.6
We take M = ||z∗||∞ + 1 to have (2.55). With Proposition 2.2, there exists a positive constant
C (depending on ϕ and M) such that for all z ∈ [−M,M ]d, and all λ ∈ [0,1], we have

C(ϕ,M)||z∗||2
(
||z||2 (λ∗ − λ)2 + (λ∗)2 ||z∗ − z||2

)
≤ ||pλ∗,z∗ − pλ,z||2.

One can prove (using Proposition 2.1 in [41] and λ∗ ̸= 0) that we have

inf
z ̸∈[−M,M ]d,
λ∈[0,1]

||pλ∗,z∗ − pλ,z||2 > 0. (2.55)
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Therefore, there is a constant C(ϕ,λ∗,z∗) such that for all z ∈ Rd and all λ ∈ [0,1],

C(ϕ,λ∗,z∗)
((

||z||2 ∧ 1
)

(λ∗ − λ)2 + (λ∗)2
(
||z∗ − z||2 ∧ 1

))
≤ ||pλ∗,z∗ − pλ,z||22.

Since ϕ is bounded, with inequality (2.24), there is another constant C(ϕ,λ∗,z∗) such that for
all z ∈ Rd and λ ∈ [0,1] we have

C(ϕ,λ∗,z∗)
((

||z||2 ∧ 1
)

(λ∗ − λ)2 + (λ∗)2
(
||z∗ − z||2 ∧ 1

))
≤ h2 (Pλ∗,z∗ ,Pλ,z) .

One can check the following

h2(Pλ∗,z∗ ,Pλ̂,ẑ) ≤ C(ϕ,λ∗,z∗) (λ∗)2
(
||z∗||2 ∧ 1

)
/2 ⇒ ||z∗ − ẑ||2 ∧ 1 ≤ (||z∗||2 ∧ 1)/4

⇒ ||ẑ|| ∧ 1 ≥ ||z∗||
2 ∧ 1.

We use Theorem 2.1 for an upper bound on h2(Pλ∗,z∗ ,Pλ̂,ẑ). For n ≥ n0(ϕ,λ∗,z∗), with

n0(ϕ,λ∗,z∗) := inf
{
n ≥ 1 + V

∣∣∣∣∣4(1 + V )[1 + log(2n/(1 + V ))]
nC(λ∗)2 (||z∗||2 ∧ 1) ≤ C(ϕ,λ∗,z∗)

}
,

for 0 < ξ ≤ ξn = (1 + V )[1 + log(2n/(1 + V ))], with probability at least 1 − e−ξ we have

Ch2
(
Pλ∗,z∗ ,Pλ̂,ẑ

)
≤ 1
n

{
(1 + V )

[
1 + log

(
2n

(V + 1)

)]
+ ξ

}
≤ C × C(ϕ,λ∗,z∗) (λ∗)2

(
||z∗||2 ∧ 1

)
/2,

where C is the constant given in Theorem 2.1. Therefore, there is a new constant C(ϕ,λ∗,z∗)
such that for n ≥ n0 and ξ ∈ (0,ξn), with probability at least 1 − e−ξ we have

C(ϕ,λ∗,z∗)
(
(λ∗ − λ)2 +

(
||z∗ − z||2 ∧ 1

))
≤ (1 + V ) [1 + log(2n/(1 + V ))] + ξ

n
.

2.E.2 Proof of Theorem 2.7
We need some preliminary results before applying Theorem 2.1.

Proposition 2.4. For λ∗ ∈ (0,1] and z∗ ̸= 0, there is a positive constant C(α,λ∗,z∗) such that
for all z ∈ R and all λ ∈ [0,1], we have

h2 (Pλ∗,z∗ , Pλ,z) ≥ C(α,z∗,λ∗)
[
(λ∗)1/α

(
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)2 (1 ∧ |z∗|)

]
.

Since sα is unimodal, the class of densities {x 7→ sα(x− z), z ∈ R} is VC-subgraph with
VC-dimension not larger than 10 (see Section 2.3.2). With Theorem 2.1 and Proposition 2.4,
there exists a positive constant C(α,λ∗,z∗) such that for all ξ > 0, we have

C(α,z∗,λ∗)
[
1 ∧ |ẑ − z∗|1−α +

(
λ∗ − λ̂

)2
]

≤ log(n) + ξ

n
,

with probability at least 1 − e−ξ.
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Proof of Proposition 2.4

We write
fz(x) = sα(x− z) = 1 − α

2|x− z|α
1|x−z|∈(0,1].

We define g by

g(x) = 2
1 − α

(√
(1 − λ∗)f0(x) + λ∗fz∗(x) −

√
(1 − λ)f0(x) + λfz(x)

)2

such that
2h2 (Pλ∗,z∗ , Pλ,z) = 1 − α

2

∫ +∞

−∞
g(x)dx.

Lemma 2.13. Assuming z · z∗ > 0 and |z∗ − z| ≤ 1
(1−α)2/α . There exists C(α,z∗,λ∗) > 0 such

that ∫
g(x)dx ≥ C(α,z∗,λ∗)

[
(λ∗)1/α

(
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)2 (1 ∧ |z∗|)

]
.

Lemma 2.14. For z · z∗ ≤ 0, we have

∫
g(x)dx ≥ λ∗α2 1∧ [(λ∗)(1−α)/α(1 − α)2(1−α)/α|z∗|1−α

]
1 − α

.

Lemma 2.15. For |z − z∗| > 1
(1−α)2/α and z∗ · z > 0, we have∫

g(x)dx = λ∗(1 ∧ |z∗|).

Combining those three lemmas, there exists a positive constant C(α,z∗,λ∗) such that

h2 (Pλ∗,z∗ , Pλ,z) ≥ C ′(α,z∗,λ∗)
[
(λ∗)1/α

(
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)2 (1 ∧ |z∗|)

]
,

for all λ in [0,1] and z in R. Without loss of generality, we assume z∗ > 0 through the proof of
the lemmas.

Proof of Lemma 2.13

Without loss of generality, we consider z∗ > 0 for now.
• For x ∈] − 1,0[, we have

g(x) = 1
|x|α


√√√√1 − λ∗ + λ∗ |x|α

|x− z∗|α
1|x−z∗|∈(0,1] −

√√√√1 − λ+ λ
|x|α

|x− z|α
1|x−z|∈(0,1]

2

.

If z∗ ∧ z ≥ 1 then,

g(x) = 1
|x|α

(√
1 − λ∗ −

√
1 − λ

)2

and ∫ 0

−1
g(x)dx ≥

(√
1 − λ∗ −

√
1 − λ

)2 1
1 − α

.

Otherwise z∗ ∧ z ∈ (0,1) then for x ∈] − 1,z∗ ∧ z − 1[,∫ z∗∧z−1

−1
g(x)dx ≥

(√
1 − λ∗ −

√
1 − λ

)2 1 − (1 − z ∧ z∗)1−α

1 − α
.
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Finally, ∫ 0

−1
g(x)dx ≥

(√
1 − λ∗ −

√
1 − λ

)2 1 − (1 − z ∧ z∗)1−α
+

1 − α
.

• For x ∈]z∗ ∨ z,z∗ ∨ z + 1[, we have

g(x) = 1
|x− z∗ ∨ z|α


√√√√(1 − λ∗) |x− z∗ ∨ z|α

|x|α
1|x|∈(0,1] + λ∗ |x− z∗ ∨ z|α

|x− z∗|α
1|x−z∗|∈(0,1]

−

√√√√(1 − λ) |x− z∗ ∨ z|α
|x|α

1|x|∈(0,1] + λ
|x− z∗ ∨ z|α

|x− z|α
1|x−z|∈(0,1]

2

.

• If z < z∗, with V < 1
|z−z∗| , for x ∈]z∗,z∗ + V |z − z∗|[, we have

•|x− z∗|
|x|

≤ V
|z∗ − z|
z∗ ≤ V,

•|x− z∗|
|x− z|

≤ V |z∗ − z|
(1 + V )|z∗ − z|

≤ V.

We get
∫ z∗+V |z−z∗|

z∗
g(x)dx ≥

(√
λ∗ −

√
V α
)2 ∫ z∗+V |z−z∗|

z∗

dx

|x− z∗ ∨ z|α

=
(√

λ∗ −
√
V α
)2 (V |z∗ − z|)1−α

1 − α
.

We take V = (λ∗)1/α(1 − α)2/α ≤ (λ∗)1/α

|z∗−z| ≤ 1
|z∗−z| , and we have

∫ z∗+V |z−z∗|

z∗
g(x)dx ≥ λ∗α2 (λ∗)(1−α)/α(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α

= (λ∗)1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
.

• If z ≥ z∗, we obtain the same way
∫ z+1

z
g(x)dx ≥ λ1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
.

Finally, for any z∗ in R, using the following inequalities

∀x,y ∈ [0,1], 1 − (1 − |x|)1−α
+ ≥ (1 − α)(1 ∧ |x|) and

(√
x− √

y
)2

≥ (x− y)2 /4, (2.56)

we get
∫
g(x)dx ≥ 1|z|≥|z∗|

[
(λ)1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
+ (λ∗ − λ)2 (1 ∧ |z∗|)

]

1|z|<|z∗|

[
(λ∗)1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
+ (λ∗ − λ)2 (1 ∧ |z|)

]
.

• If |z| ≥ |z∗|:
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– if λ > cλ∗, then

∫
g(x)dx ≥ (λ∗)1/αc1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
+ (λ∗ − λ)2 (1 ∧ |z∗|)

≥ C1(α,c)
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)2

]

with C1(α,c) = 1∧ c1/αα2(1−α)2(1−α)/α

1−α ;

– otherwise
∫
g(x)dx ≥ (λ∗)2(1 − c)2(1 ∧ |z∗|),

(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)2 ≤ (λ∗)1/α 1
(1 − α)2(1−α)/α + (1 ∧ |z∗|)

and finally

∫
g(x)dx ≥ (λ∗)2(1 − c)2(1 ∧ |z∗|)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

×
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)2

]
.

• If |z| < |z∗|:

– if |z| ≥ d|z∗|, then

∫
g(x)dx ≥ (λ∗)1/αα2(1 − α)2(1−α)/α|z∗ − z|1−α

1 − α
+ (λ∗ − λ)2 d(1 ∧ |z∗|)

≥ C2(α,d)
[
(λ∗)1/α |z − z∗|1−α + (λ∗ − λ)2 (1 ∧ |z∗|)

]
,

with C2(α,d) = d ∧ α2(1−α)2(1−α)/α

1−α ;

– otherwise
∫
g(x)dx ≥ (λ∗)1/αα2(1−α)2(1−α)/α|z∗|1−α(1−d)1−α

1−α and

(λ∗)1/α |z − z∗|1−α + (λ∗ − λ)2 (1 ∧ |z∗|) ≤ (λ∗)1/α 1
(1 − α)2(1−α)/α + (1 ∧ |z∗|)

and finally

∫
g(x)dx ≥(λ∗)1/αα2(1 − α)2(1−α)/α|z∗|1−α(1 − d)1−α/(1 − α)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

×
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)2

]
.

Finally,

∫
g(x)dx ≥ C(α,z∗,λ∗)

[
(λ∗)1/α

(
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)2 (1 ∧ |z∗|)

]
,
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with

C(α,z∗,λ∗) = min
(

1, c
1/αα2(1 − α)2(1−α)/α

1 − α

(λ∗)2(1 − c)2(1 ∧ |z∗|)
(λ∗)1/α 1

(1−α)2(1−α)/α + (1 ∧ |z∗|) ,

d,
α2(1 − α)2(1−α)/α

1 − α
,

(λ∗)1/αα2(1 − α)2(1−α)/α|z∗|1−α(1 − d)1−α/(1 − α)
(λ∗)1/α 1

(1−α)2(1−α)/α + (1 ∧ |z∗|)

)

= min
(

1, c
1/αα2(1 − α)2(1−α)/α

1 − α
, d,

(λ∗)2(1 − c)2(1 ∧ |z∗|)
(λ∗)1/α 1

(1−α)2(1−α)/α + (1 ∧ |z∗|) ,

(λ∗)1/αα2(1 − α)2(1−α)/α|z∗|1−α(1 − d)1−α/(1 − α)
(λ∗)1/α 1

(1−α)2(1−α)/α + (1 ∧ |z∗|)

)
.

Proof of Lemma 2.14

Without loss of generality, we take z∗ > 0.
• For x ∈]z∗,z∗(1 + a)[, a < (z∗)−1 we have

g(x) = 1
|x− z∗|α


√√√√(1 − λ∗) |x− z∗|α

|x|α
1|x|∈(0,1] + λ∗

−

√√√√(1 − λ) |x− z∗|α
|x|α

1|x|∈(0,1] + λ
|x− z∗|α
|x− z|α

1|x−z|∈(0,1]

2

.

and
|x− z∗|
|x− z|

≤ |x− z∗|
|x|

≤ a

1 + a
≤ a.

We get ∫ z∗+a

z∗
g(x)dx ≥

(√
λ∗ −

√
aα
)2 ∫ z∗+a

z∗

dx

|x− z∗|α

=
(√

λ∗ −
√
aα
)2 (az∗)1−α

1 − α
.

We take a = (λ∗)1/α(1 − α)2/α ≤ 1
z∗ , and we have

∫ z∗+a

z∗
g(x)dx ≥ λ∗α2 (λ∗)(1−α)/α(1 − α)2(1−α)/α(z∗)1−α

1 − α
.

Otherwise a = 1/z∗ ≤ (λ∗)1/α(1 − α)2/α and∫ z∗+a

z∗
g(x)dx ≥ λ∗α2 1

1 − α
.

Finally, ∫ z∗+1

z∗
g(x)dx ≥ λ∗α2 1∧ [(λ∗)(1−α)/α(1 − α)2(1−α)/α(z∗)1−α

]
1 − α

.
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Proof of Lemma 2.15

Without loss of generality, we take z∗ ≥ 0.

• If z ≥ z∗ + 1
(1−α)2/α . For x ∈]z∗ ∨ 1,(z∗ + 1) ∧ (z − 1)[, we have

g(x) = λ∗

|x− z∗|α
.

One can prove that
|z − z∗| − 1 ≥ 1

(1 − α)2/α − 1 ≥ 1.

– If z∗ ≥ 1, then We get∫ z∗+1

z∗
g(x)dx ≥ λ∗

1 − α

[
1
∧

|z − z∗| − 1
]1−α

≥ λ∗

1 − α
.

– If z∗ ≤ 1, then∫ (z∗+1)∧(z−1)

1
g(x)dx ≥ λ∗

1 − α

[
1
∧

(|z − z∗| − 1)1−α − (1 − z∗)1−α
]

≥ λ∗

1 − α

[
1 − (1 − z∗)1−α

]
.

• If z∗ ≥ z + 1
(1−α)2/α , we get ∫ z∗+1

z∗
g(x)dx = λ∗

1 − α
.

Finally, ∫ z∗+1

z∗
g(x)dx = λ∗

1 − α

[
1 − (1 − z∗)1−α

+

]
≥ λ∗(1 ∧ z∗).

2.F VC-subgraph classes of functions
For more detailed introductions to VC-subgraph classes we refer the reader to Van der Vaart
& Wellner [84] (Section 2.6.5) and Baraud et al.[9] (Section 8).

Definition 2.1. Definition 41 [9]
Let C be a non-empty class of subsets of a set Ξ. If A ⊂ Ξ with |A| = n, then

∆n(C , A) = |{A ∩B,B ∈ C }| and ∆n(C ) = max
A⊂Ξ,|A|=n

∆n(C , A).

If V = sup{n ∈ N |∆n(C ) = 2n} < +∞, then C is a VC-class with VC-dimension V and
VC-index V = inf{n ∈ N |∆n(C ) < 2n} = V + 1. A class F of functions from a set X with
values in (−∞,+∞] is VC-subgraph with dimension V and index V if the class of subgraphs
{(x, u) ∈ X ×R, f(x) > u} as f varies among F is a VC-class of sets in X ×R with dimension
V and index V .

It immediately follows from this definition the following:

• if F is VC-subgraph with dimension V , then any subset G ⊂ F is VC-subgraph with
dimension at most V ,
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• if F is a finite set, F is VC-subgraph and its dimension is not larger than V = log2(|F |)∨
1.

The main reason for using VC-subgraph theory is the uniform entropy property. Namely, if F
is a VC-subgraph set of measurable functions on (X ,X ) with VC-dimension V and ||f ||∞ ≤ 1
for all f ∈ F , it follows from Lemma 1 in Baraud & Chen [12] that, for any probability P on
(X ,X ) we have

N (ϵ,F ,Lr(P )) ≤ e(V + 1)(2e)V
(2
ϵ

)rV
.

2.F.1 Proof of Lemma 2.1
Let Cov+∗(d) be the set of d × d symmetric and positive-definite matrices. The normal dis-
tributions on Rd with mean µ ∈ Rd and covariance matrix Σ ∈ Cov+∗(d) admits gµ,Σ, defined
by

gµ,Σ : x 7→
exp

(
−1

2 (x− µ)T Σ−1 (x− µ)
)

√
(2π)k |Σ|

,

as a density with respect to the Lebesgue measure on Rd, where |Σ| denotes the determinant
of |Σ|. We have

log(gµ,Σ(x)) = −1
2 log

(
(2π)k |Σ|

)
− 1

2 (x− µ)T Σ−1 (x− µ)

= −1
2 log

(
(2π)k |Σ|

)
− 1

2µ
TΣ−1µ− µTΣ−1x− 1

2x
TΣx.

For the location-scale family Gd :=
{
gµ;Σ;µ ∈ Rd,Σ ∈ Cov+∗

}
, we have

Gd ⊂ exp ◦

x 7→ a+
∑
i≤j

bi,jxixj +
d∑
i=1

cixi; a ∈ R, (bij)i≤j ∈ Rd(d+1)/2, c ∈ Rd

 .
Since

{
x 7→ a+ ∑

i≤j
bi,jxixj +

d∑
i=1

cixi; a ∈ R, (bij) ∈ Rd(d+1)/2, c ∈ Rd

}
is a vector space of dimen-

sion 1 + d(d + 3)/2 and exp is monotone, we get that V (Gd) ≤ 3 + d(d+3)
2 . For Σ ∈ Cov+∗(d)

fixed, the location family Gloc(Σ) :=
{
gµ;Σ;µ ∈ Rd

}
, we have

Gloc(Σ) ⊂ exp ◦
(
x 7→ −xTΣx

2 +
{
x 7→ a+

d∑
i=1

bixi; a ∈ R, b ∈ Rd

})
.

With similar arguments and the fact that x 7→ −xT Σx
2 is a fixed function, we have V (Gloc(Σ)) ≤

3 + d.

2.F.2 Proof of Lemma 2.2
The different arguments used in this proof are from Proposition 42 of Baraud et al.[9] and
Lemmas 2.6.15 and 2.6.16 from van der Vaart & Wellner [84]. We remind the reader that the
VC-index is the VC-dimension plus 1.

• For the Cauchy location-scale family, we have

C = □−1 ◦
{
x 7→ πσ

[
1 +

(
x− z

σ

)2
]

;σ > 0, z ∈ R
}
,



2.F. VC-subgraph classes of functions 81

where □−1 is the inverse function on (0,+ ∞). Since{
x 7→ πσ

[
1 +

(
x− z

σ

)2
]

;σ > 0, z ∈ R
}

⊂ R2[x] =
{
x 7→ ax2 + bx+ c; (a,b,c) ∈ R3

}
and □−1 is monotone, we get that V (C) ≤ 3 + 2.

• For univariate normal distribution, it is a direct consequence of Lemma 2.1.

• We have

L =
{
x 7→ 1

2b exp
(

−|x− z|
b

)
; z ∈ R, b > 0

}
= exp ◦

{
x 7→ − log(2b) + b−1[(x− z) ∧ (z − x)]; z ∈ R, b > 0

}
⊂ exp ◦ ({x 7→ ax+ b; a,b ∈ R} ∧ {x 7→ ax+ b; a,b ∈ R}) .

Since exp is monotone and {x 7→ ax+ b; a,b ∈ R} is a vector space of dimension 2, we get
that L is VC-subgraph with VC-index not larger than V (L) ≤ 4.701×2(2+1)+1 = 29.206.

• Azzalini & Capitanio [8] proved that the probability density function of the skew-normal
distribution is unimodal, therefore the translation family SGα is VC-subgraph with VC-
index at most 10 (see Section 2.3.2).
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Abstract

We observe n possibly dependent random variables, the distribution of which is presumed
to be stationary even though this might not be true, and we aim at estimating the stationary
distribution. We establish a non-asymptotic deviation bound for the Hellinger distance between
the target distribution and our estimator. If the dependence within the observations is small,
the estimator performs as good as if the data were independent and identically distributed.
In addition our estimator is robust to misspecification and contamination. If the dependence
is too high but the observed process is mixing, we can select a subset of observations that is
almost independent and retrieve results similar to what we have in the i.i.d. case. We apply
our procedure to the estimation of the invariant distribution of a diffusion process and to finite
state space hidden Markov models.

3.1 Introduction
We observe n random variables X1, . . . ,Xn with common distribution P which is assumed to
belong, or at least to be close enough, to a given model M . Our aim is to estimate P with
an estimator P̂ taking values in M . These random variables are not necessarily independent
however we assume that for indices i ̸= j with |i − j| large enough, the distribution of the
couple (Xi,Xj) is close to P ⊗ P . We also want our estimator to be robust to contamination
and outliers.

When we actually dispose of an independent sample, this problem has already been inves-
tigated in Baraud et al.[9] and Baraud & Birgé [11]. They provide a non-asymptotic deviation
bound for the Hellinger distance h between P and their ρ-estimator. For two probability dis-
tributions P and Q on the same measurable space, the Hellinger distance h(P,Q) between P
and Q is given by

h2 (P,Q) = 1
2

∫ (√
dP/dµ−

√
dQ/dµ

)2
dµ,

where µ is any measure that dominates both P and Q, the result being independent of µ. It
is shown in those articles that the ρ-estimator is robust in the following sense. Even if the
variables Xi do not have a common distribution P but marginals Pi such that most of them
are relatively close to a distribution P ∈ M , then the ρ-estimator is almost as efficient as when
the data is i.i.d.with common distribution P . The obtained risk bounds are minimax, up to
a logarithmic factor, when the model is well-specified and are not significantly deteriorated as
long as the approximation term n−1

n∑
i=1

h2(Pi,P ) is relatively small in the misspecified case.
We want to obtain similar results when we do not satisfy the independence assumption but

the observations are almost independent. This can happen for processes with mixing properties.
We only focus on the theoretical aspects and performances of our estimation method. We prove
a general result, Theorem 3.1, which gives a bound in expectation for the risk of our estimator
P̂ with respect to an Hellinger-type loss. This result is free of any assumption on the data
and the risk bound is the sum of three terms: the approximation term mentioned above, a
dimension which measures the complexity of the model M , and a dependence term which
measures how far the observations are from being independent. We quantify the dependence
within the sample using Kullback-Leibler divergence of the joint distribution from the product
of the marginal distributions. Our risk bound is as good as when the data is independent
as long as the dependence term is not bigger than the other terms. We have the following
approach for when the dependence term is too big. We split our data in order to get a subset
of the original observations for which the dependence term is small enough.

We apply this method for the estimation of an invariant distribution of a discretely observed
diffusion process. Under some condition the stationary solution of a Langevin equation is mixing
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and its invariant distribution has a log-concave density with respect to the Lebesgue measure.
We can refer to the literature on the estimation of a log-concave density in the i.i.d. context
and adapt our procedure to this situation. We obtain convergence rates for our estimator in
any dimension. Those rates are similar to the minimax rates for i.i.d. estimation, with a worse
logarithmic power.

Our main application is hidden Markov models (HMMs). These models are widely applied
to model state dependent processes where the state process is Markovian but is not observed.
We refer the interested reader to Mor, Garhwal and Kumar [74] for a review of applications of
HMMs. Let Y1, . . . ,YN ,H1, . . . ,HN be random variables. We say that (Yi,Hi)1≤i≤N is a hidden
Markov model (HMM) if (Hi)i is a Markov chain and each variable Yi only depends on the
associated Hi. In particular the variables Y1, . . . ,YN are independent conditionally on (Hi)i. It
is called a hidden Markov model as the Markov chain (Hi)i is typically not observed and (Yi)i
is the only accessible data.

We focus on homogeneous finite state space HMMs. Such processes can be completely
described by the number K of hidden states h1, . . . ,hK , the initial distribution w and the
transition matrix Q of the hidden Markov chain, and the set of emission distributions F =
(F1, . . . ,FK), where Fk is the conditional distribution of Yi given Hi = hk. In that case we
say that (Yi,Hi)i is a HMM with parameters (K,w,Q,F ). Because the hidden state space does
not have a particular importance, we will always assume it is of the form {1,2, . . . ,K}. For a
particular class of distributions F there is a minimal value of K such that (Yi,Hi)i is a HMM
with parameters (K,w,Q,F ) with F1, . . . ,FK ∈ F . This value of K is called the order of the
HMM (with respect to F ). Typically one aims at estimating these parameters from stationary
observations (Yi)1≤i≤N .

Numerous estimation methods have been developed to estimate some or all of the pa-
rameters. Cappé et al.[55] provide an overall survey of the different results in the literature.
Most theoretical guarantees are either asymptotic or restricted to specific parametric models.
Lehéricy [63] provided non-parametric and non-asymptotic results for a penalized least squares
estimator with the following approach. They first estimate the distribution PL = Pπ∗,Q∗,F ∗ of
L consecutive observations Yi,Yi+1, . . . ,Yi+L−1 of a stationary ergodic HMM with parameters
(K∗,π∗,Q∗,F ∗), where Pw,Q,F is defined by

Pw,Q,F =
∑

1≤k1,...,kL≤K
wk1Qk1,k2 . . . QkL−1,kL

L⊗
l=1

Fkl
. (3.1)

They use model selection to consistently estimate the order K∗. When the estimation of the
order is correct, it is possible to deduce the different parameters from PL for L large enough.
They show that L ≥ 3 is enough for linearly independent emission densities. They lower bound
the L2-distance between densities by a distance on the parameters. Therefore a risk bound for
the estimation of PL is enough to obtain risk bounds for the parameter estimators.

However their estimator is not robust to misspecification nor to contamination and there
is no estimator that tackles this problem for general finite state space HMMs. The estimation
method we propose aims at solving this problem. For the sake of simplicity we do not aim
at estimating the order K∗. We do not look into this particular aspect in this paper however
model selection can be considered to automatically choose an order from the data. This is to
be treated in a subsequent paper.

We use the tools we develop in the first part with M containing distributions of the form
Pw,Q,F to obtain a robust estimator P̂ of PL, hence P̂ being of the form P̂ = Pŵ,Q̂,F̂ . We have
a general risk bound for P̂ which is free of any assumption on the data from which we obtain
convergence rates when we assume that the observations come from an ergodic finite state space
HMM. In particular the stationarity of the observations is not necessary. We show that the
performance of our estimator is not significantly worsened when the model is misspecified as
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long as the distance to the true distribution is small compared to the rate we have in the well-
specified case. Similarly the performance of our estimator is not deteriorated by contamination
as long as the contamination rate is not too big.

We can deduce risk bounds for the parameter estimators ŵ,Q̂,F̂ under some conditions on
the model M . We need an inequality of the form

d
(
(w,Q,F ), (w,Q,F )

)
≤ C

(
w,Q,F

)
h2
(
Pw,Q,F , Pw,Q,F

)
,∀Pw,Q,F ∈ M . (3.2)

We obtain convergence rates for the estimation of the parameters when the model is well
specified. If the model is misspecified but P = Pw,Q,F is the best approximation of PL within
our model our estimators ŵ,Q̂,F̂ should be close to w,Q,F when this approximation is relatively
good.

It is possible to use the results that already exist for the L2-norm to obtain an inequality
like (3.2) when the densities are bounded. For two probability distributions P , Q dominated
by a positive measure µ, we have

||p− q||22 ≤ 4(||p||∞ + ||q||∞)h2(P,Q), (3.3)

where p = dP/dµ and q = dQ/dµ. It is also possible to prove inequalities directly for the
Hellinger distance in some cases. We do so for models with emission densities that belong to
exponential families with some regularity. We also consider an example with classes of emission
densities that are unbounded and not even square integrable in some cases. For this example
we obtain rates that are faster than the parametric rate for one of the parameters. Classical
estimators such as the maximum likelihood or least-squares estimators do not apply as the
considered densities are unbounded.

Our estimation method requires the statistician to select themself a subset of the observa-
tions that should be almost independent. This is not possible without any knowledge on the
distribution of the data. We propose to overcome this restriction and provide a way to automat-
ically select an almost independent subset of observations when we dispose of a second set of
observations independent from the first one. We obtain a general risk bound and show that for
ergodic HMMs we retrieve the same rate of convergence as when the optimal way of selecting
observations is known. This method is still robust to misspecification and contamination.

The paper is organized as follows. In Section 3.2, we present our estimation procedure and
our main result in a general framework. We consider the application to the estimation of the
invariant distribution of a diffusion process in Section 3.3. We dedicate Section 3.4 to finite
state space hidden Markov models. Finally, we propose a complete procedure for situations in
which we do not know the mixing regime in Section 3.5. The proofs of all the different results
can be found in the appendix.

Notation. For a set A, we denote by |A| its cardinal which can be infinite. For an integer
k, we denote by [k] the set {1,2, . . . ,k}. We denote by R+ the set of non-negative real numbers.
For a real number x, we denote by ⌈x⌉ (resp. ⌊x⌋) the only integer k satisfying k − 1 < x ≤ k
(resp. k ≤ x < k+1). For a random variable X we denote by L(X) its probability distribution.
The notation C(θ,α,β) means that C(θ,α,β) is a constant that depends on the parameters θ, α
and β. It can change from one inequality to the other. On the other hand a constant written
C will be universal. For a real number x we denote by x+ its positive part given by x+ = x∨ 0.

3.2 Construction of the estimator and main result
Let X1, . . . ,Xn be n possibly dependent random variables on the measurable space (X ,X ). Our
aim is to estimate their marginal distribution P ∗ doing as if they were identically distributed,
even though this might not be exactly the case. We denote by PX the class of all probability
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distribution on (X ,X ) and for i ∈ [n] by Pi = L(Xi) ∈ PX the true marginal distribution
of Xi. We also want our estimator of P ∗ to be robust to misspecification, contamination and
outliers. The ρ-estimators developed by Baraud, Birgé and Sart in [9] and [11] are perfectly
adapted to this task when the observations are independent. We prove that their performances
remain almost as good when the observations are close to being independent.

3.2.1 Reminders of ρ-estimation

We denote by ψ the function given by

ψ :
∣∣∣∣∣ [0,+ ∞] → [−1,1]
x 7→ x−1

x+1
. (3.4)

Let M be a countable subset of PX such that there is an associated set of density functions
M with respect to a σ-finite measure µ. For n ≥ 1, we denote by Tn and Υn the functions
given by

Tn :

∣∣∣∣∣∣∣
X n × M × M → [−1,1]
(x,q,q′) 7→

n∑
k=1

ψ
(√

q′(xi)
q(xi)

) (3.5)

with the convention 0/0 = 1, a/0 = +∞ for all a > 0, and

Υn :
∣∣∣∣∣ X n × M

(x,q) 7→ supq′∈M Tn (x,q,q′) . (3.6)

For x in X n, we define the (nonvoid) set En(x) by

En(x) =
{
Q = q · µ

∣∣∣∣∣q ∈ M,Υn (x,q) < inf
q′∈M

Υn (x,q′) + 11.36
}
. (3.7)

We denote by P̂ (n,X,M ) any measurable element of the closure of En(X) with respect to the
Hellinger distance and we call it a ρ-estimator on M . The constant 11.36 is given by (7) and
(19) in [11] but can be replaced by any smaller positive number.

One of the main results of ρ-estimation is Theorem 1 in [11]. For independent random
variables X1, . . . ,Xn, any ρ-estimator P̂ = P̂ (n,X,M ) satisfies an inequality of the form

P
(
C

n

n∑
i=1

h2(Pi,P̂ ) ≤ inf
Q∈M

n−1
n∑
i=1

h2(Pi,Q) + Dn(M ) + ξ

n

)
≥ 1 − e−ξ, (3.8)

where C is a positive numeric constant and Dn(M ) ≥ 1 is a dimension term that measures the
complexity of the model M . This dimension term corresponds to a bound on the ρ-dimension.
It is an important feature of ρ-estimation as it determines the bound on the convergence rate
of the estimator. If we actually dispose of i.i.d. observations with common distribution P in
M , we get

P
(
Ch2(P ,P̂ ) ≤ Dn(M ) + ξ

n

)
≥ 1 − e−ξ,

which leads to the bound Dn(M )/n on the convergence rate, up to a multiplicative constant.
The notion of ρ-dimension is formally introduced in the appendix (Section 3.B).
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3.2.2 From independent to dependent data
To extend the previous result to non-independent samples, we use the following idea which is not
specific to our framework. We state this basic principle in a general context. Let θ̂ : X n → Θ
be an estimator of some quantity θ ∈ Θ. The next result is proven in Section 3.A.1.
Lemma 3.1. Let l : Θ × Θ → R+ be a loss function, P,Q two distributions on a measurable
space (Y ,X ) and β ∈ (0,1]. Assume that when Y has distribution P

PX∼P

(
l
(
θ̂(X),θ

)
≥ A+ B + ξβ

n

)
≤ e−ξ,∀ξ > 0, (3.9)

then, when X has distribution Q

EX∼Q
[
l
(
θ̂(X),θ

)]
≤ A+

B +
(
2 + 3

2K (Q||P)
)β

n
,

where K is the Kullback-Leibler divergence given by

K(Q||P ) =


∫

log
(
dQ
dP

)
dQ if Q ≪ P,

+∞ otherwise.

Deviation inequalities for ρ-estimators θ̂ have been established under the assumption that
one observes independent random variables X1, . . . ,Xn, hence when the distribution of X =
(X1, . . . ,XN) is P = L(X1) ⊗ · · · ⊗ L(Xn). Our idea is to apply Lemma 3.1 with a distribution
Q ≪ P, which is not a product probability, in order to establish a risk bound for the estimator
θ̂ when the observations X1, . . . ,Xn are possibly dependent. The quantity K(Q||P) measures
thus a departure from independence. We consider subsets of the original data X1, . . . ,Xn when
this quantity is too big.

Let n be larger than 2. We build subsets of observations by taking them separated by blocks
of length s ∈ N, as described in the diagram below.

unused block of length s unused block of length s

. . . . . .
X1 Xs+2 X2s+3

X2 Xs+1 Xs+3 X2s+2 X2s+4

Formally, for s ∈ {0,1, . . . ,smax},smax := ⌊(n− 2)/2⌋ and b ∈ [s+ 1], we define

n(s,b) :=
⌊
n+ s+ 1 − b

1 + s

⌋
≥ 2,

for i ∈ [n(s,b)]
X

(s,b)
i := Xb+(i−1)(s+1) ∈ X ,∀i ∈ [n(s,b)], (3.10)

and
X(s,b) :=

(
X

(s,b)
i , i ∈ [n(s,b)]

)
.

We obtain s + 1 subsets X(s,1), . . . ,X(s,s+1) with sizes n(s,1), . . . ,n(s,s + 1) respectively. For
each block b ∈ [s+ 1], we consider the probabilities P∗

s,b and Pind
s,b which are defined by

P∗
s,b := L

(
X(s,b)

)
and Pind

s,b :=
n(s,b)⊗
i=1

L
(
X

(s,b)
i

)
. (3.11)

We denote for short P∗ := P∗
0,1 the distribution of X = (X1, . . . ,Xn) and Pind := Pind

0,1 =
L(X1) ⊗ · · · ⊗ L(Xn). Our estimator is obtained with the following statistical procedure.
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1. Let s be in {0,1, . . . ,smax}. For b in [s+ 1], we denote by P̂s,b the estimators given by

P̂s,b := P̂
(
n(s,b),X(s,b),M

)
,

where the ρ-estimator P̂
(
n(s,b),X(s,b),M

)
is defined in Section 3.2.1.

2. We denote by P̂s = P̂s (X,M ) any element of M that satisfies
s+1∑
b=1

n(s,b)h2
(
P̂s,b,P̂s

)
≤ inf

Q∈M

s+1∑
b=1

n(s,b)h2
(
P̂s,b,Q

)
+ ι, (3.12)

where ι is any fixed constant in (0,1273].

3.2.3 Main result
We assume that the ρ-dimension function (see Section 3.B) is uniformly bounded by a function
m 7→ Dm(M ) ≥ 1 which is non-decreasing.
Theorem 3.1. For any random variables X1, . . . ,Xn on (X ,X ), the estimator P̂s = P̂s (X,M )
given by (3.12) satisfies

EP∗

[
n−1

n∑
i=1

h2
(
Pi, P̂s

)]
≤ c0

n
inf
Q∈M

n∑
i=1

h2 (Pi, Q) (3.13)

+c1
(s+ 1)
n

[
17 +Dn(s,1)(M )

]
+ c2

n

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
,

where c0 = 602, c1 = 20056/4.7 and c2 = 30084.
The proof of this result is postponed to Section 3.B.1. One can check that we do not need

any assumption on the data to obtain this result. We only need a condition on the model M
which is chosen by the statistician. However a posteriori assumptions are necessary to make
this bound meaningful. It follows from the triangle inequality and (a + b)2 ≤ 2a2 + 2b2 for all
non-negative numbers a and b that for any P ∈ M ,

nh2
(
P ,P̂s

)
≤ 2

n∑
i=1

h2
(
Pi,P̂s

)
+ 2

n∑
i=1

h2
(
Pi,P

)
.

We derive from (3.13) the following

CEP∗

[
h2
(
P , P̂s

)]
≤

(s+ 1)Dn(s,1)(M )
n

+ n−1
n∑
i=1

h2
(
Pi, P

)
(3.14)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
,

where C is a universal positive constant. Up to the factor (s + 1), the first term on the right-
hand side of this inequality corresponds to the bound we would get if the data were truly i.i.d.
with distribution P ∈ M . In this ideal situation, both the second and third term vanish. When
the data are not identically distributed, the second term is not zero but its size remains small
when most of the true marginal distributions P1, . . . ,Pn lie close enough to an element P ∈ M .
The third term accounts for the fact that the data are possibly dependent. For a sufficiently
large value of s, we expect the observations

X(s,b) :=
(
Xb,Xb+(s+1), . . . , Xb+n(s,b)(s+1)

)
with b ∈ [s+ 1]

to be nearly independent, and consequently the quantity n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
to be small

compared to the first term.
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3.2.4 Robust properties of our estimator
The robustness properties of ρ-estimators in the independent context are illustrated in Section
5 [11]. Let X = (X1, . . . ,Xn) be the true process of interest such that L(Xi) = P for all i in
[n]. We actually observe a contaminated version of it. Let Z1, . . . ,Zn be random variables with
any distributions. Let E1, . . . ,En be Bernoulli random variables such that

Yi = EiXi + (1 − Ei)Zi,∀i ∈ [n]. (3.15)

The next result shows that the mixing regime is not altered by independent contamination/out-
liers. It is proven in Section 3.B.2.

Lemma 3.2. If E1, . . . ,En,Z1, . . . ,Zn and X are mutually independent, we have

K (L (Y) ||L(Y1) ⊗ · · · ⊗ L(Yn)) ≤ K (L (X) ||L(X1) ⊗ · · · ⊗ L(Xn)) .

We can deduce a corollary of Theorem 3.1 from this. We define pi by P(Ei = 1) = pi for
i ∈ [n].

Corollary 3.1. Let P̂s = P̂s (Y,M ) be the estimator given by (3.12). There is a positive
universal constant C such that in the situation of Lemma 3.2, we have

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

(1 − pi)

+ (s+ 1)Dn(s,1)(M )
n

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
,

where P∗
s,b and Pind

s,b are given by (3.11).

This result is proven in Section 3.B.3. Inspired by Hüber’s contamination model, we consider
the situation P ∈ M and pi = 1 − ϵcont for all i ∈ [n]. We get

CE
[
h2
(
P ,P̂s

)]
≤ ϵcont + (s+ 1)Dn(s,1)(M )

n
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.

Our bound on the convergence rate is not deteriorated as long as the contamination rate ϵcont
is small compared to the other terms. Equally, we can consider the case where the Ei are
deterministic, i.e. there is a subset I ⊂ [n] such that P(Ei = 0) = 1i∈I . We get

CE
[
h2
(
P ,P̂s

)]
≤ |I|

n
+ (s+ 1)Dn(s,1)(M )

n
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.

As before, our bound on the convergence rate is not deteriorated as long as the proportion of
outliers |I|/n is small compared to the other terms on the right hand side.

3.2.5 The particular case of Markov chains
Under the assumption that X1, . . . ,Xn is a Markov chain, the quantity K

(
P∗
s,b||P

(s,b)
ind

)
can be

written in a form given in the lemma below.

Lemma 3.3. If X is a Markov chain,

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn)) =
n∑
i=2

I(σ(Xi),σ(Xi+1)),
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where
I(σ(Xi),σ(Xi+1)) := K (L(Xi,Xi+1)||L(Xi) ⊗ L(Xi+1)) . (3.16)

In particular for all s in {0,1, . . . ,smax} and all b in [s+ 1],

K
(
P∗
s,b||P

(s,b)
ind

)
=

n(s,b)∑
i=2

I
(
σ(X(s,b)

i ),σ(X(s,b)
i+1 )

)
,

where the X(s,b)
i are given by (3.10).

This result is proven in Section 3.B.4. It tells us that for Markov chains we only need to
consider the simpler quantities I(σ(Xi),σ(Xi+s+1)) referred to as coefficients of information by
Bradley [19]. This result also extends to hidden Markov models.
Lemma 3.4. If (Xi,Hi)1≤i≤n is a HMM, we have

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn)) ≤
n∑
i=2

I(σ(Hi−1),σ(Hi)).

In particular for all s in {0,1, . . . ,smax} and all b in [s+ 1],

K
(
P∗
s,b||P

(s,b)
ind

)
≤

n(s,b)−1∑
i=1

I
(
σ(Hb+(i−1)(s+1)),σ(Hb+i(s+1))

)
.

The proof of this result is postponed to Section 3.B.5. This means that for HMMs we only
need to consider the coefficients of information of the hidden chain. In what follows we consider
different processes for which the coefficient of information has an exponential decay. In that
case there exist positive constants C and r such that

n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
≤ Ce−rs,

for all s in {0,1, . . . ,smax}. For s ≥ r−1 log n the quantity n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
is small com-

pared to the first term on the right hand side in (3.14), as it cannot be of order smaller than 1/n.
Such a constant r is usually not known in practice but taking s of order log2 n ensures that for n
large enough the quantity we consider remains small compared to the term (s+1)Dn(s,1)(M )/n.
We pay the price of not knowing the constant r with a worse logarithmic term in the latter
quantity.

3.3 Estimation of the invariant distribution of a diffusion
process

We consider some diffusion processes that have been investigated by Royer [78] and use the
same vocabulary that they introduced.

3.3.1 Langevin equation
Let d be a positive integer and U : Rd → R be a function of class C2. The Langevin equation
is the following stochastic differential equation

dYt = dBt − ∇U(Yt)dt, (3.17)

where B = (Bt)t≥0 is a d-dimensional Brownian motion. Its solution are called Kolmogorov
processes in Royer [78]. We assume that U satisfies the following.
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Assumption 3.1. The function U is convex on Rd and there exists a positive constant λ(U)
such that the smallest eigenvalue of the Hessian matrix U ′′(x) at x ∈ Rd is not smaller than
λ(U) for all x in Rd. Besides we have

inf
x∈Rd

{
||∇U(x)||22 − Tr (U ′′(x))

}
> −∞, (3.18)

where Tr(A) is the trace of the matrix A.

Under our assumption on the eigenvalues of U ′′,
∫
Rd e−αU(x)dx is finite for all α > 0 and we

may define the probability measure P with density p with respect to the Lebesgue measure on
Rd given by

p(x) = Z−1 exp(−2U(x)) with Z =
∫
Rd
e−2U(x)dx. (3.19)

The probability P is the invariant probability distribution with respect to the semi-group
associated to the Langevin equation (see Lemma 2.2.23 [78]).

Lemma 3.5. Let (Yt)t≥0 be a stationary solution of the Langevin equation associated to a
convex function U that satisfies Assumption 3.1. For all s0 > 0, there exists a positive constant
C(U,s0) such that for all t > 0 and s ≥ s0, we have

I(σ(Yt), σ(Yt+s)) ≤ C(U,s0) exp(−2λ(U)s).

This result is proven in Section 3.C.2. We aim to estimate P from discrete observations of
a stationary Kolmogorov process.

3.3.2 The framework
We consider the following statistical model for the observations X1,X2, . . . ,Xn. For all i ∈ [n],
Xi = Yti where Y = (Yt)t≥0 is a stationary solution of the Langevin equation (3.17) for some
unknown convex function U that satisfies Assumption 3.1 and ti+1 = ti + ∆t for all i ∈ [n− 1].
As a consequence of (3.19), the Xi are distributed according to the invariant measure P which
has a log-concave density p : x 7→ Z−1 exp(−2U(x)) with respect to the Lebesgue measure. We
therefore consider the set of distributions that admit a log-concave density on Rd with respect
to the Lebesgue measure. As usual, this describes our statistical model but we do not want to
assume that it perfectly describes reality. In the following section we recall some results about
the problem of estimating a log-concave density from i.i.d. observations.

3.3.3 log-concave densities
We refer to Kim & Samworth [58] for the problem of estimating log-concave densities from i.i.d.
observations in low dimensions (d ∈ [3]). Kur et al.[60] investigated the same problem in higher
dimensions (d ≥ 4). We denote by Fd the set of upper semi-continuous, log-concave probability
densities with respect to the Lebesgue measure, equipped with the σ-algebra it inherits as a
subset of L1(Rd). We denote by Fd the associated set of probability distributions on Rd. For
f ∈ Fd, we define

xf :=
∫
Rd
xf(x)dx ∈ Rd and Σf :=

∫
Rd

(x− µf )(x− µf )Tf(x)dx ∈ Rd×d.

For a symmetric, positive-definite d × d matrix Σ, we denote by λmin(Σ) and λmax(Σ) the
smallest and largest eigenvalues respectively of Σ. For 0 < λ− < λ+ < ∞ and M > 0, we define

Fλ−,λ+,M := {f ∈ Fd; ||xf || ≤ M,Σ ∈ Sym(λ−,λ+)} ,
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where
Sym(λ−,λ+) = {Σ covariance matrix, λ− ≤ λmin(Σ) ≤ λmax(Σ) ≤ λ+} .

We denote by Fλ−,λ+,M the class of probability distributions associated to Fλ−,λ+,M .
Given a subset A of a class P of probability distributions and ϵ ≥ 0, we say that A [ϵ] is

an ϵ-net of A if A [ϵ] ⊂ P and for all Q in A there exists R in A [ϵ] such that h (Q,R) ≤ ϵ.
The case ϵ = 0 corresponds to A [ϵ] being dense in A . The following result is proven in Section
3.C.3 and based on the work of Kim & Samworth [58] for d ∈ [3] and Kur et al.[60] for d ≥ 4.

Lemma 3.6. For all positive ϵ there exists an ϵ-net Fλ−,λ+,M [ϵ] such that

|Fλ−,λ+,M [ϵ]| ≤



9
η1

M(λ+ − λ−)
λ

3/2
−

eK1ϵ−1/2 for d = 1,

38π

η3
2

M2(λ+ − λ−)2λ+

λ4
−

eK2ϵ−1 log3/2
++(1/ϵ) for d = 2,

27327/2π3

η6
3

M3(λ+ − λ−)3λ3
+

λ
15/2
−

eK3ϵ−2 for d = 3,

where ηd and Kd are constants given in Theorem 4 [58] that only depend on d, and with
log++(x) = max(1, log x). For d ≥ 4 and all positive ϵ there exists an ϵ-net Fλ−,λ+,M [ϵ] such
that

|Fλ−,λ+,M [ϵ]| ≤ Cd
λ
d(d−1)/2
+ Md(λ+ − λ−)d

λ
d(d+1)/2
−

exp
(
Kdϵ

−(d−1) log(d+1)(d+2)/2(ϵ−1)
)
,

where ηd and Kd are constants that only depend on d.

The case d ∈ {1,2,3}

Let Fλ−,λ+,M [ϵ] be a ϵ-net of Fλ−,λ+,M that satisfies the bound given in Lemma 3.6 for

λ+ = λ−1
− = M :=


exp

(
K1 (n/ log n)1/5

)
for d = 1,

exp
(
K2n

1/3 log2/3 n
)

for d = 2,
exp

(
K3 (n/ log n)1/2

)
for d = 3,

(3.20)

and

ϵ :=


n−2/5 log2/5 n for d = 1,
n−1/3 log5/6 n for d = 2,
n−1/4 log1/4 n for d = 3.

(3.21)

The following result holds and its proof can be found in Section 3.C.1.

Theorem 3.2. Let n ≥ 3 and X1,X2, . . . ,Xn be arbitrary random variables with marginal
distributions P1, . . . ,Pn. The ρ-estimator P̂s given by (3.12) with M = Fλ−,λ+,M [ϵ] satisfies for
all P ∈ PX

CdE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,Fλ−,λ+,M

)
+ n−1

n∑
i=1

h2
(
Pi,P

)
(3.22)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+


n−4/5

(
log4/5 n+ s log−1/5 n

)
for d = 1,

n−2/3
(
log5/3 n+ s log2/3 n

)
for d = 2,

n−1/2
(
log1/2 n+ s log−1/2 n

)
for d = 3,
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for positive constants C1,C2,C3. In particular if the model described in Section 3.3.2 is exact
and s ≥ (2λ(U))−1 log n, there exists a positive constant C(U,d,∆t) such that for n large enough

C(U,d,∆t)E
[
h2
(
P , P̂s

)]
≤


n−4/5

(
log4/5 n+ s log−1/5 n

)
for d = 1,

n−2/3
(
log5/3 n+ s log2/3 n

)
for d = 2,

n−1/2
(
log1/2 n+ s log−1/2 n

)
for d = 3,

where P is the invariant distribution given by (3.19).

Inequality (3.22) is a consequence of Theorem 3.1 and does not require any assumption on
the data. The last term comes from the control of the dimension of the net Fλ−,λ+,M [ϵ] and the
choice of ϵ given by (3.21). Ideally, most of the distributions Pi lie in a small neighborhood of
a distribution P in Fλ−,λ+,M so that the first two terms in the bound remain small compared
to the last term. Those two terms vanish when the model is exact and a good choice of s
guarantees the term n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
is negligible with respect to the last one.

We can derive convergence rates for the optimal choice of s given λ(U). One can check
that up to a logarithmic factor, we obtain the same rates as Theorem 5 [58] in the i.i.d. case.
Our power of log n is even better for d = 3. As mentioned in Section 3.2.5, the knowledge of
λ(U) is not necessary to obtain convergence rates. We obtain slightly worse powers of log n in
the convergence rates for s of order log2 n. We can also derive results for i.i.d. observations
from (3.22) by taking the term n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
down to 0 which provides a result for the

robust estimation of a log-concave density from i.i.d. observations.
In order to illustrate the robustness of our estimators we consider the situation of Section

3.2.4. Let Z1, . . . ,Zn be random variables with any distributions and E1, . . . ,En be Bernoulli
random variables such that for all i ∈ [n],

Xi = EiYt1+(i−1)∆t + (1 − Ei)Zi,

where (Yt)t is a stationary solution of the Langevin equation (3.17) for some unknown convex
function U that satisfies Assumption 3.1.

Corollary 3.2. Let P̂s be the estimator given by (3.12) with M = Fλ−,λ+,M [ϵ]. If E1, . . . ,En,Z1, . . . ,Zn
and X are mutually independent, there exists a positive constant C(U,d,∆t) such that for
s ≥ (2λ(U))−1 log n we have

C(U,d,∆t)E
[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

(1 − pi) (3.23)

+


n−4/5

(
log4/5 n+ s log−1/5 n

)
for d = 1,

n−2/3
(
log5/3 n+ s log2/3 n

)
for d = 2,

n−1/2
(
log1/2 n+ s log−1/2 n

)
for d = 3,

,

where pi = P(Ei = 1) for all i ∈ [n].

One can see that our deviation bound is not significantly worse as long as the average
proportion of contamination n−1

n∑
i=1

(1 − pi) remains small compared to the last term on the
right hand side of (3.23).
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The case d ≥ 4

Let Fλ−,λ+,M [ϵ] be an ϵ-net of Fλ−,λ+,M that satisfies the bound given in Lemma 3.5 with

λ+ = λ−1
− = exp

(
ϵ−(d−1) log(d+1)(d+2)/2(ϵ−1)

d2

)
(3.24)

M = exp
(
ϵ−(d−1) log(d+1)(d+2)/2(ϵ−1)

d

)
, (3.25)

with
ϵ = n− 1

d+1 log
1

d+1 + d+2
2 n. (3.26)

The following result holds and its proof can be found in Section 3.C.1.

Theorem 3.3. Let n ≥ 3 and X1,X2, . . . ,Xn be arbitrary random variables with marginal
distributions P1, . . . ,Pn. The ρ-estimator P̂s given by (3.12) with M = Fλ−,λ+,M [ϵ] satisfies for
all P ∈ PX

CdEP∗

[
h2
(
P , P̂s

)]
≤ h2

(
P ,Fλ−,λ+,M

)
+ n−1

n∑
i=1

h2
(
Pi,P

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ n− 2

d+1
(
logd+2+ 2

d+1 n+ s logd+1+ 2
d+1 n

)
.

In particular if the model described in Section 3.3.2 is exact and s ≥ (2λ(U))−1 log n, there
exists a positive constant C(U,d,∆t) such that for n large enough

C(U,d,∆t)E
[
h2
(
P , P̂s

)]
≤ n− 2

d+1
(
logd+2+ 1

d+1 n+ s logd+1+ 2
d+1 n

)
,

where P is the invariant distribution given by (3.19).

This result is equivalent to Theorem 3.2 and the comments that applied to it also apply
now. Our estimator is also robust and tolerates a higher contamination rate as the convergence
rate is slower. One can check that up to a logarithmic factor, we have the same rate that Kur
et al.[60] obtain for the estimation of log-concave estimation from i.i.d. observations. We can
derive a result equivalent to Corollary 3.2 for d ≥ 4. Our estimator can tolerate an average
proportion of contamination of order not larger than n− 2

d+1 logd+2+ 2
d+1 n without its performance

being significantly deteriorated.

3.4 Hidden Markov models

3.4.1 Stationary hidden Markov models
Let (Yi,Hi)i be a finite state space HMM with parameters (K∗,w∗,Q∗,F ∗). If w∗ is invariant
with respect to Q∗, then the process (Yi,Hi)i is stationary. As explained in the introduction,
we aim at estimating the different parameters through the distribution of consecutive obser-
vations. For L ≥ 2 we define PL = Pw∗,Q∗,F ∗ with PW ∗,Q∗,F ∗ defined by (3.1), and we have
L(Yi,Yi+1, . . . ,Yi+L−1) = PL for all i. We have identically distributed but dependent random
variables from which we can estimate PL. It is possible to relax the stationary assumption.

Assumption 3.2. Let (Yi,Hi)i be a finite state space HMM with parameters (K∗,w∗,Q∗,F ∗)
such that Q∗ is irreducible and aperiodic.
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In this case we do not have identically distributed observations anymore. However the
distribution L (Yi, . . . ,Yi+L−1) converges exponentially fast to the distribution

P ∗ = Pπ∗,Q∗,F ∗ , (3.27)

where π∗ is the only invariant distribution with respect to Q∗.

3.4.2 The framework
Let Y1,Y2, . . . ,YN be random variables taking values in a measurable space (Y ,Y). Let L be
in {2,3, . . . ,⌊N/2⌋} and n be the integer given by n = N + 1 − L. We define the new random
variables

Xi = (Yi,Yi+1, . . . ,Yi+L−1) ,i = 1, . . . ,n, (3.28)

taking values in the measurable space (X ,X ) =
(
Y L,Y⊗L

)
. We follow the notation established

in Section 3.2.
We denote PY the class of all probability distributions on (Y ,Y). For K ≥ 2 and subsets

F 1, . . . ,FK of PY , we denote by H
(
K,F 1, . . . ,FK

)
the set of distributions defined by

H
(
K,F 1, . . . ,FK

)
:=
{
Pw,Q,F ; ∀k ∈ [K], w ∈ WK ,

Q ∈ TK , Fk ∈ F k

}
⊂ PX , (3.29)

where Pw,Q,F is given by (3.1),

TK =

Q ∈ [0,1]K×K ;
K∑
j=1

Qij = 1, ∀i ∈ {1, . . . ,K}

 , (3.30)

and WK =
{
w ∈ [0,1]K ;w1 + · · · + wK = 1

}
. (3.31)

We call emission models the sets F 1, . . . ,FK . Let M be a non-empty subset of H
(
K,F 1, . . . ,FK

)
.

3.4.3 Estimation
Let ν be a σ-finite measure on (Y ,Y) and we denote by µ the associated σ-finite measure on
(X ,X ) given by µ := ν⊗L. We consider emission models that satisfy the following.

Assumption 3.3. We dispose of countable sets Fi,i = 1, . . . ,K of probability density functions
(with respect to ν) such that

1. for all k in [K], the set of distributions Fi := {f · ν; f ∈ Fi} is an ϵ-net of F i with respect
to the Hellinger distance;

2. for any k1, . . . ,kL ∈ [K], the class of functions

Fk1,...,kL
=
{
x ∈ Y L 7→ f1(x1) . . . fL(xL); fl ∈ Fkl

,∀l ∈ [L]
}

is VC-subgraph with VC-index not larger than Vk1,...,kL
. Then we write

V :=
∑

1≤k1,...,kL≤K
Vk1,...,kL

. (3.32)



3.4. Hidden Markov models 97

We refer to van der Vaart & Wellner [84] (Section 2.6.5) and Baraud et al.[9] (Section 8) as
an introduction to VC-subgraph classes of functions. We just mention the following example.
Any finite set F of real-valued functions is VC-subgraph with VC-index V (F) that satisfies

V (F) ≤ 1 + log2(|F|). (3.33)

Therefore we can consider finite ϵ-nets as we did in Section 3.3. We also show in Section 3.4.3
that exponential families satisfy our assumption.

We consider countable approximations of WK and TK given by

Wδ,K := WK ∩ ([δ,1] ∩ Q)K and Tδ,K := TK ∩ ([δ,1] ∩ Q)K×K , (3.34)

for 0 < δ ≤ 1/K. We define Hδ by

Hδ := {Pw,Q,f ;w ∈ Wδ,K , Q ∈ Tδ,K , fk ∈ Fk,∀i ∈ [K]} , (3.35)

where the sets (Fk)1≤k≤K are given in Assumption 3.3. This lower bound δ is a technicality
for bounding the dimension of our model. We define the countable set of distributions

Mδ :=

Pw,Q,F ∈ Hδ; ∃Pw′,Q′,F ′ ∈ M ,
h2 (Qk·,Q

′
k·) ≤ (K − 1)δ

h (Fk,F ′
k) ≤ ϵ,∀k ∈ [K],

h2 (w,w′) ≤ (K − 1)δ,

 , (3.36)

which is a good approximation of M for small values of δ and ϵ. We denote by P̂s,δ the estimator

P̂s,δ := P̂s (Mδ,X) , (3.37)

as defined by (3.12). The following theorem is proven in Section 3.D.1.

Theorem 3.4. Let N ≥ K+L and Y1, . . . ,YN be arbitrary random variables. Under Assumption
3.3, let P̂s = P̂s,δ be the estimator given by (3.37) with

δ = V

n(s,1)(K − 1) ∧ 1
K
. (3.38)

There exists a positive constant C such that for all P ∈ PX ,

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
P , Pi

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ Lϵ2 + (s+ 1)LV log n

n
. (3.39)

In particular under Assumption 3.2, there exist positive constants C(Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n ∨ (L− 1) we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ Lϵ2 + LV

s log n
n

, (3.40)

where P ∗ is given by (3.27).

Inequality (3.39) is a consequence of Theorem 3.1 and does not require any assumption
on the data. The last two terms come respectively from the approximation of M by M
and the control of the dimension of M . Ideally, we can take P in M such that most of the
distributions Pi lie in a small neighborhood of P so that the first two terms in the bound
remain small compared to the last term. Under Assumption 3.2 the quantity ∑n

i=1 h
2(P ∗,Pi)
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is bounded and a good choice of s guarantees the term n−1∑s+1
b=1 K(P∗

s,b||Pind
s,b ) to be negligible

with respect to the last one. The optimal choice of s depends on a constant c(Q∗) which relates
to the spectral gap of Q∗. We distinguish two cases in order to obtain convergence rates over
the class

H ∗
(
K,F 1, . . . ,FK

)
(3.41)

:=

Pw,Q,F ∈ H
(
K,F 1, . . . ,FK

)
;
Q irreducible ,
Q aperiodic,
and w = Qw

 .
The first case is when we satisfy Assumption 3.3 with ϵ = 0. In that situation and for P ∗ in
M = H

(
K,F 1, . . . ,FK

)
the first two terms in (3.40) vanish. For the optimal choice of s

our estimator achieves the convergence rate n−1 log2 n with respect to the squared Hellinger
distance over H ∗

(
K,F 1, . . . ,FK

)
. This means that up to a logarithmic term we achieve the

optimal rate 1/n in the independent context (see Birgé [15]). As mentioned in Section 3.2.5,
the knowledge of c(Q∗) is not necessary to obtain convergence rates. We only obtain slightly
worse powers of log n in the convergence rates for s = log2 n.
The second case is when we cannot take ϵ = 0. In that situation the term V depends on ϵ and
we proceed as in Section 3.3. We obtain a convergence rate taking ϵ that goes to 0 with n at a
rate that balances the last two terms in (3.40). This happens when ϵ2/V is of order n−1 up to
a logarithmic term. We put it in application in Section 3.4.3.

In order to illustrate the robustness of our estimators we consider the situation of Section
3.2.4. Let Z1, . . . ,ZN be random variables with any distributions and E1, . . . ,EN be Bernoulli
random variables such that for all i ∈ [N ],

Yi = EiY
′
i + (1 − Ei)Zi,

where Y′ satisfies Assumption 3.2. The following result is proven in Section 3.D.2.
Corollary 3.3. Let N ≥ K +L and P̂s = P̂s,δ be the estimator given by (3.37) with δ given by
(3.38). If E1, . . . ,EN ,Z1, . . . ,ZN and Y′ are mutually independent, there exist positive constants
C(Q∗) and c(Q∗) such that for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ L

N

N∑
i=1

(1 − pi) (3.42)

+ Lϵ2 + LV
s log n
n

,

where pi = P(Ei = 1) for all i ∈ [N ] and δ is given by (3.38).
One can see that our deviation bound is not significantly worse as long as the average

proportion of contamination L
N

N∑
i=1

(1 − pi) remains small compared to the last two terms. One
would typically look at the following situation. We assume that the model is well specified, i.e.
P ∗ ∈ M . For Hüber’s contamination model, i.e. pi = 1 − αcont for all i ∈ [N ], we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L

[
αcont + ϵ2 + V

s log n
n

]
, (3.43)

for s ≥ c(Q∗) log n. The bound on the convergence rate is not deteriorated as long as the
contamination rate αcont is small compared to ϵ2 + V s logn

n
. We can also consider the situation

where P (Ei = 0) = 1i∈I for some subset I ⊂ [N ]. We get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L

[
|I|
N

+ ϵ2 + V
s log n
n

]
, (3.44)

for s ≥ c(Q∗) log n. As before, our bound on the convergence rate is not deteriorated as long
as the proportion of outliers |I|/N is small compared to ϵ2 + V s logn

n
.
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log-concave emission densities

We use results and notation given in Section 3.3. Let d be a positive integer and ϵ ∈ (0,1).
Let Fλ−,λ+,M [ϵ] be an ϵ-net of Fλ−,λ+,M that satisfies the bound given in Lemma 3.5. We take
F k = Fλ−,λ+,M for all k ∈ [K] and satisfy Assumption 3.3 with

V = KL
(
1 + L log2

(
|Fλ−,λ+,M [ϵ]|

))
. (3.45)

We take M = H
(
K,Fλ−,λ+,M , . . . ,Fλ−,λ+,M

)
. We distinguish the two cases d ∈ {1,2,3} and

d ≥ 4.
For d ∈ {1,2,3} we take λ+,λ−,M as in (3.20) and ϵ as in (3.21). The following result holds

and its proof can be found in Section 3.D.3.

Theorem 3.5. Let N ≥ K + L and P̂s = P̂s,δ be the estimator given by (3.37) with δ given by
(3.38). There exist positive constants C1,C2,C3 such that for all P ∈ PX ,

CdE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
Pi,P

)
(3.46)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ (s+ 1)L2KL ×


n−4/5 log4/5 n for d = 1,
n−2/3 log5/3 n for d = 2,
n−1/2 log1/2 n for d = 3.

In particular under Assumption 3.2, there exist positive constants C(Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ sL2KL ×


n−4/5 log4/5 n for d = 1,
n−2/3 log5/3 n for d = 2,
n−1/2 log1/2 n for d = 3,

where P ∗ is given by (3.27).

Inequality (3.46) is a consequence of Theorem 3.4 and does not require any assumption on
the data. We can deduce convergence rates over the class H ∗ (K,Fd, . . . ,Fd), where Fd is the
set of distributions with log-concave densities defined in Section 3.3. For the optimal choice of
s, we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L2KL ×


n−4/5 log9/5 n for d = 1,
n−2/3 log8/3 n for d = 2,
n−1/2 log3/2 n for d = 3,

(3.47)

for all P ∗ in H ∗ (K,Fd, . . . ,Fd). We see that we have a worse power of log n compared to
Theorem 3.2. It comes from an additional logarithmic factor in the dimension term for HMMs.
Corollary 3.3 tells us our estimator is also robust to contamination and outliers. Let us illustrate
it for d = 1. We can see from (3.43) that our bound is not significantly worse as long as the
contamination rate αcont is of order not larger than n−4/5 log9/5 n. Similarly (3.44) tells us that
a number |I| of outliers of order not larger than n1/5 log9/5 n does not significantly deteriorate
our bound on the convergence rate of our estimator. We can follow the same train of thought
for d = 2 and d = 3 and deduce the level of contamination or outliers our estimator can tolerate
before its performance significantly worsens.

For d ≥ 4 we take λ+,λ
−1
− as in (3.24), M as in (3.25) and ϵ as in (3.26). The following

result holds and its proof can be found in Section 3.D.3.
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Theorem 3.6. Let N ≥ K + L and P̂s = P̂s,δ be the estimator given by (3.37) with δ given by
(3.38). There exist a positive constant Cd such that for all P ∈ PX ,

CdE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
Pi,P

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)L2KLn− 2

d+1 logd+2+ 2
d+1 n.

In particular under Assumption 3.2, there exist positive constants C(Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ sL2KLn− 2

d+1 logd+2+ 2
d+1 n, (3.48)

where P ∗ is given by (3.27).

Inequality (3.46) does not require any assumption on the data. We can deduce convergence
rates over the class H ∗ (K,Fd, . . . ,Fd). For the optimal choice of s, we have

C(Q∗)E
[
h2
(
P ∗,P̂s

)]
≤ L2KLn− 2

d+1 logd+3+ 2
d+1 n

for all P ∗ ∈ H ∗ (K,Fd, . . . ,Fd). As for d ≤ 3, we have the same rate as in Section 3.3 with a
worse power of log n due to the higher complexity of HMMs. Our estimator is also robust to
contamination and outliers. We can see from (3.43) that our bound is not significantly worse
as long as the contamination rate αcont is of order not larger than n− 2

d+1 logd+3+ 2
d+1 n. Similarly

(3.44) tells us that a number of outliers of order not larger than n
d−1
d+1 logd+3+ 2

d+1 n does not
significantly deteriorate our bound on the convergence rate of our estimator.

Exponential families as emission models

We introduce exponential families as follow. Let d be a positive integer and η : Θ → Rd be a
function over a non-empty set Θ. Let T : Y → Rd and B : Y → R be measurable functions
such that ∫

Y
e⟨η(θ),T (x)⟩+B(x)ν(dx) < ∞,∀θ ∈ Θ,

we denote by E
(
Θ,η,T,d,B

)
the exponential family defined by

E
(
Θ,η,T,d,B

)
:=
{
fθ : x 7→ e⟨η(θ),T (x)⟩+A(θ)+B(x); θ ∈ Θ

}
, (3.49)

where
A(θ) := − log

(∫
Y
e⟨η(θ),T (x)⟩+B(x)ν(dx)

)
.

It is a set of probability density functions with respect to ν.

Assumption 3.4. For all k ∈ {1, . . . ,K},

1. F k is of the form
F k =

{
q · ν; q ∈ E

(
Θk,ηk,Tk,dk,Bk

)}
, (3.50)

2. Θk is a countable subset of Θk such that

Fk =
{
q · ν; q ∈ E

(
Θk,ηk|Θk

,Tk,dk,Bk

)}
is a dense subset of F k.
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The next result is proven in Section 3.D.4 and shows that the last assumption is sufficient
to satisfy our main assumption.

Proposition 3.1. Under Assumption 3.4, we satisfy Assumption 3.3 with ϵ = 0 and Vk1,...,kL
=

3 +
L∑

kl=1
dkl

. Therefore we have

V = 3KL + LKL−1 (d1 + · · · + dK) . (3.51)

We can see that the constant V does not depend on X but on the dimensions d1, . . . ,dK
which is the actual measure of the complexity of the exponential families. To our knowledge,
the existence of a countable dense subset is satisfied for all the common exponential families.
We obtain the following result for M ⊂ H

(
K,F 1, . . . ,FK

)
.

Corollary 3.4. Let N ≥ K +L and P̂s = P̂s,δ be the estimator given by (3.37) with δ given by
(3.38). There exists a positive constant C such that for all P ∈ PX , we have

CE
[
h2
(
P , P̂s,δ

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
P ,Pi

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)LKL−1 (K + L(d1 + · · · + dK)) log n.

In particular under Assumption 3.2, there exist positive constants C(Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗,P̂s

)]
≤ h2

(
P ∗,M

)
(3.52)

+ LKL−1 (K + L(d1 + · · · + dK)) s log n
n

,

where P ∗ is given by (3.27).

This result is a direct consequence of Theorem 3.4 and Proposition 3.1. We can deduce a
bound on the convergence rate over H ∗

(
K,F 1, . . . ,FK

)
. For the optimal choice of s, we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ LKL−1 (K + L(d1 + · · · + dK)) log2 n

n
,

for all P ∗ in H ∗
(
K,F 1, . . . ,FK

)
. We obtain the optimal 1/n rate with respect to the squared

Hellinger distance, up to a logarithmic factor. Corollary 3.3 shows that our estimator is also
robust to contamination and outliers. From (3.43) we see that our bound is not significantly
worse as long as the contamination rate αcont is of order not larger than n−1 log2 n. Similarly,
we get from (3.44) that the performance of our estimator is not altered as long as the number
of outliers |I| is of order not larger than log2 n.

Let us illustrate how Corollary 3.4 applies with the following example. Let d be a positive
integer and Cov+∗(d) be the set of d× d symmetric and positive-definite matrices. For z ∈ Rd

and Σ ∈ Cov+∗(d), we denote by gz,Σ the density function of the normal distribution N (z,Σ)
with respect to the Lebesgue measure given by

gz,Σ(x) := 1√
(2π)d|Σ|

exp
(

−(z −m)TΣ−1(z −m)
2

)
, (3.53)
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where |Σ| denotes the determinant of Σ. Let Gd be the location-scale family of densities given
by Gd := {gz,Σ; z ∈ Rd,Σ ∈ Cov+∗(d)}. One can check it is an exponential family with
Gd = E

(
Rd × Cov+∗(d), η, T, d(d+3)

2 , 0
)

where

T (x) =
(
x,
(
x2
i

)
1≤i≤d

, (xixj)1≤i<j≤d

)
and

η(z,Σ) =
(

Σ−1z,−1
2
(
Σ−1
ii

)
1≤i≤d

,−
(
Σ−1
ij

)
1≤i<j≤d

)
.

For a fixed Σ we denote by Gloc(Σ) the associated location family given by Gloc(Σ) := {gz,Σ; z ∈
Rd}. It is also an exponential family with Gloc(Σ) = E

(
Rd × Cov+∗(d), η, T, d, B

)
, where

η(z) = Σ−1z, T (x) = x and B(x) = −xTΣ−1x

2 .

We denote by Gd and Gloc(Σ) respectively, the sets of probability distributions associated to Gd
and Gloc(Σ). The next result is a consequence of Corollary 3.4.

Theorem 3.7. Let N ≥ K + L and Y1, . . . ,YN be arbitrary random variables.

• Let P̂s = P̂s,δ be the estimator given by (3.37) with M = H (K,Gd, . . . ,Gd) and δ given
by (3.38). There exists a positive constant C such that for all P ∈ PX

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
P ,Pi

)

n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)L2KLd(d+ 3)log n

n
. (3.54)

In particular under Assumption 3.2 there exist positive constants C(Q∗) and c(Q∗) such
that for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ (s+ 1)L2KLd(d+ 3)log n

n
,

where P ∗ is given by (3.27).

• Let P̂s = P̂s,δ be the estimator given by (3.37) with M = H (K,Gloc(Σ), . . . ,Gloc(Σ)) and
δ given by (3.38). There exists a positive constant C such that for all P ∈ PX

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
P ,Pi

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)L2KLd

log n
n

, (3.55)

for any Σ in Cov+∗(d). In particular under Assumption 3.2 there exist positive constants
C(Q∗) and c(Q∗) such that for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2

(
P ∗,M

)
+ (s+ 1)L2KLd

log n
n

,

where P ∗ is given by (3.27).
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Inequalities (3.54) and (3.55) are consequences of Corollary 3.4 and do not require any
assumption on the data. We deduce bounds on the convergence rate of our estimator over
H ∗ (K,Gd, . . . ,Gd) and H ∗ (K,Gloc(Σ), . . . ,Gloc(Σ)). For the optimal choice of s we obtain the
rate n−1 log2 n with respect to the squared Hellinger distance both for P ∗ ∈ H ∗ (K,Gd, . . . ,Gd)
and P ∗ ∈ H ∗ (K,Gloc(Σ), . . . ,Gloc(Σ)). This rate is optimal up to a logarithmic factor. We can
see that the dependence on the dimension d is linear for the model H (K,Gloc(Σ), . . . ,Gloc(Σ))
while its quadratic for H ∗ (K,Gd, . . . ,Gd).

We can obtain similar results for any exponential family. It is also possible to consider
hidden Markov models with different exponential families as emission models. The next section
investigates the estimation of the parameters.

Estimation of the parameters with emission exponential families

We say that π̂, Q̂ and F̂ are ρ-estimators of π∗, Q∗ and F ∗ if Pŵ,Q̂,F̂ = P̂s,δ is an estimator
of P ∗ given by (3.37). If we consider models of densities that are uniformly bounded, we can
use (3.3) and Theorem 9 of Lehéricy [63] to deduce risk bounds for the parameter estimators.
It is also possible to use the results of Ibragimov and Has’minskĭı [54] for regular parametric
models.

We consider that Assumption 3.4 is satisfied with Θk ⊂ Rek for all k ∈ [K]. For k ∈ [K] we
denote by Fθk

the probability distribution given by the parameter θk ∈ Θk, i.e. Fθk
= fθk

· ν
with fθ given by (3.49). Let Φ be an open convex subset of OK+1

K × Θ1 × · · · × ΘK , where

OK =
{
a ∈ (0,1)K−1, a1 + · · · + aK−1 < 1

}
.

For ϕ in Φ, we can define w ∈ WK , Q ∈ TK and θ ∈ Θ1 ×· · ·×ΘK by ϕ = (ϕw,ϕQ,1, . . . ,ϕQ,K ,ϕθ)
with

(w1, . . . ,wK−1) = ϕw ∈ OK ,

(Qk,1, . . . ,QK−1,1) = ϕQ,k ∈ OK ,

(θ1, . . . ,θK) = ϕθ ∈ Θ1 × · · · × ΘK .

We denote by M the model given by

M :=
{
Pϕ = p(·;ϕ) · µ;ϕ ∈ Φ

}
(3.56)

and
p(x;ϕ) =

∑
1≤k1,...,kL≤K

wk1Q(k2|k1) . . . Q(kL|kL−1)
L∏
l=1

fθkl
(xl).

We need the following assumption to make sure we can deduce ϕ from Pϕ.

Assumption 3.5. For all k in [K],

• the map θk 7→ Fθk
is continuous on Θk with respect to the Hellinger distance;

• the functions ηk and Ak are of class C1 on Θk;

• for all θk in Θk, we have
∫

||Tk(x)||2fθk
(x)ν(dx) < ∞ and∫

||Tk(x)||2
∣∣∣fθk

(x) − fθ′
k
(x)
∣∣∣ ν(dx) −−−−−−−→

||θk−θ′
k

||→0
0.

The next result is proven in Section 3.D.5 and shows that under some conditions we can
deduce the parameters from the distribution Pϕ.
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Proposition 3.2. Under Assumption 3.5 the information matrix I function given by

Iij : ϕ 7→ I (ϕ)ij =
∫

X L
∂ϕi
p(x;ϕ)∂ϕj

p(x;ϕ) µ(dx)
p(x;ϕ)

is well-defined and continuous on Φ. We define the subset Φ∗ ⊂ Φ by

Φ∗ :=

ϕ ∈ Φ;
I
(
ϕ
)

is definite positive and
inf

||ϕ−ϕ||≥a
ϕ∈Φ

h2
(
Pϕ,Pϕ

)
> 0, ∀a > 0,

 (3.57)

For all ϕ∗ ∈ Φ∗, there exists a positive constant C(ϕ∗) such that

C(ϕ∗)
[
||w∗ − w||22 + ||Q∗ −Q||22 +

K∑
k=1

||θ∗
k − θk||22 ∧ 1

]
≤ h2 (Pϕ∗ , Pϕ) , (3.58)

for all ϕ in Φ.

The constant C(ϕ∗) depends on the inverse of the smallest eigenvalue of I(ϕ∗) and the
geometry of Φ around ϕ∗ induced by the Hellinger distance on M . The next result is a
consequence of Proposition 3.2 and Corollary 3.4.

Theorem 3.8. Let N ≥ K + L and Y1, . . . ,YN be arbitrary random variables. Let Pϕ̂ = P̂s,δ
be the estimator given by (3.37) with δ given by (3.38). Under Assumption 3.5, for all ϕ ∈ Φ∗

there exists a positive constant C(ϕ) such that

C
(
ϕ
)
E
[
||w − ŵ||22 +

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2

2
+

K∑
k=1

∣∣∣∣∣∣θk − θ̂k
∣∣∣∣∣∣2

2
∧ 1

]

≤ n−1
n∑
i=1

h2
(
Pϕ, Pi

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)LKL−1 (K + L(d1 + · · · + dK)) log n

n
. (3.59)

In particular under Assumption 3.2, there exist positive constants C(ϕ,Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C
(
ϕ,Q∗

)
E
[
||w − ŵ||22 +

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2

2
+

K∑
k=1

∣∣∣∣∣∣θk − θ̂k
∣∣∣∣∣∣2

2
∧ 1

]
(3.60)

≤ h2
(
P ∗, Pϕ

)
+ LKL−1 (K + L(d1 + · · · + dK)) s log n

n
,

where P ∗ is given by (3.27).

Inequality (3.59) is a consequence of Proposition 3.2 and Corollary 3.4. It does not require
any assumption on the data and shows that the estimators of the parameters can be meaningful
even if the model is misspecified. Ideally there exists ϕ in Φ∗ such that most of the distributions
Pi lie in a small neighborhood of Pϕ so that the first term of our bound is small compared to the
last term. In that case the estimators ŵ, Q̂, θ̂1, . . . ,θ̂K converge to a small neighborhood around
w,Q,θ1, . . . ,θK , where Pϕ should be seen as the best approximation of the true distribution in
the model. We can deduce bounds on the convergence rate of our parameter estimators in the
well-specified case from (3.60). For P ∗ = Pϕ∗ ∈ H ∗

(
K,F 1, . . . ,FK

)
with ϕ∗ ∈ Φ∗ and for the
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optimal choice of s, we retrieve the usual parametric rate for each parameter estimator, up to
a logarithmic factor. Let us illustrate this with the following example.

We consider exponential distributions for the emission models, i.e. we have F i = E for all
i in [K] with

E :=
{
fθ · ν; fθ ∈ E

(
Θ,idΘ,−idX ,1,0

)}
(3.61)

where Θ = (0,∞), X = [0,∞), ν is the Lebesgue measure on X , and we can deduce A :
θ 7→ log θ. This means we have fθ : x 7→ θe−θx

1x≥0 for any θ > 0. One can easily check
that we satisfy Assumption 3.5, the last condition being a direct consequence of the dominated
convergence theorem. We define Φ by

Φ = OK+1
K ×

{
θ ∈ ΘK ; θ1 > θ2 > · · · > θK

}
, (3.62)

and M as in (3.56). The condition on the parameters θ ensures identifiability over Φ and
Φ∗ = Φ. The choice L = 3 is enough to obtain the result of Proposition 3.2. The next theorem
is proven in Section 3.D.6.

Theorem 3.9. Let N ≥ K + 3 and Y1, . . . ,YN be arbitrary random variables. Let Pϕ̂ = P̂s,δ
be the estimator given by (3.37) with δ given by (3.38). For any ϕ in Φ there exists a positive
constant C(ϕ) such that we have

C
(
ϕ
)
E
[
||w − ŵ||22 +

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2

2
+

K∑
k=1

(
θk − θ̂k

)2
∧ 1

]

≤ n−1
n∑
i=1

h2
(
Pϕ, Pi

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)K3 log n

n
.

In particular under Assumption 3.2, there exist positive constants C(ϕ,Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C
(
ϕ,Q∗

)
E
[
||w − ŵ||2 +

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2 +

K∑
k=1

(
θk − θ̂k

)2
∧ 1

]
(3.63)

≤ h2
(
P ∗,Pϕ

)
+ sK3 log n

n
,

where P ∗ is given by (3.27).

Our different parameter estimators all reach the usual parametric rate up to a logarithmic
factor. One can notice that the ordering of the θk in (3.62) can be replaced by considering only
distinct values and taking the infimum over permutation of the hidden states.

It is possible to follow the same scheme to obtain similar results for other exponential
families, including HMMs with different exponential families as emission models. The difficulty
relies in determining the set Φ∗ given by (3.57).

Another example

In this section we consider a relatively simple example that does not fit any framework already
investigated but for which we can obtain risk bounds for the estimation of the parameters. Let
ν be the Lebesgue measure on R and α be in (0,1). We denote by fα the probability density
function with respect to ν defined by

fα : x ∈ R 7→ 1 − α

2
1|x|∈[0,1]

|x|α
,
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with the convention 1/0 = +∞. For z in R, we denote by Fα,z the probability distribution
associated to the density x 7→ fα(x− z). We fix L = 2 and consider the model M defined by

M = {Pw,q,z;w,q12,q21 ∈ [0,1], z ∈ R} ,

where

Pw,q,z = wFα,0 ⊗ [(1 − q12)Fα,0 + q12Fα,z]
+ (1 − w)Fα,z ⊗ [q21Fα,0 + (1 − q21)Fα,z] .

The distributions Pw,q,z correspond to translation hidden Markov models with one known loca-
tion parameter. The following result is proven in Section 3.D.8 and shows that we can deduce
the parameters from the distribution Pw,q,z.

Proposition 3.3. For z∗ ̸= 0, w∗ < 1 and q∗
21 < 1, there is a constant C(α,z∗,w∗,q∗) such that

we have

C(α,z∗,w∗,q∗)h2 (Pw,q,z, Pw∗,q∗,z∗) ≥ (|z − z∗| ∧ 1)1−α + (w∗)2 (q12 − q∗
12)

2

+ (1 − w∗)2 (q12 − q∗
12)

2 + (w − w∗)2 ,

for all w,q12,q21 ∈ [0,1] and all z ∈ R.

We can deduce a deviation bound for the parameter estimators. The model M is a subset
of H (2,Fα,Fα), with Fα = {Fα,z; z ∈ R}. We satisfy Assumption 3.3 with ϵ = 0, Fα =
{fα(· − z); z ∈ Q} and V = 784. The next result is proven in Section 3.D.7.

Theorem 3.10. Let N ≥ K + 2 and Pŵ,q̂,ẑ = P̂s,δ be the estimator given by (3.37) with δ
given by (3.38). For all z ̸= 0, w < 1, q12 ∈ [0,1] and q21 < 1, there exists a positive constant
C(α,z,w,q) such that we have

C (α,z,w,q)E
[
(w − ŵ)2 + (q12 − q̂12)2 + (q12 − q̂12)2 + (|z − ẑ| ∧ 1)2

]
≤ 1
n

n∑
i=1

h2 (Pw,q,z, Pi) + 1
n

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)log n

n
. (3.64)

In particular under Assumption 3.2, there exist positive constants C(ϕ,Q∗) and c(Q∗) such that
for s ≥ c(Q∗) log n we have

C
(
ϕ,Q∗

)
E
[
(w − ŵ)2 + (q12 − q̂12)2 + (q21 − q̂21)2 + (|z − ẑ| ∧ 1)1−α

]
≤ h2 (P ∗, Pw,q,z) + s log n

n
, (3.65)

where P ∗ is given by (3.27).

Inequality (3.64) does not require any assumption on the data. It is a consequence of Propo-
sition 3.3 and Theorem 3.4. We can deduce convergence rates for our parameter estimators
from (3.65) for P ∗ = Pπ∗,q∗,z∗ with z∗ ̸= 0, w∗ < 1 and q∗

21 < 1. The estimators ŵ and q̂
achieve the usual parametric rate up to a logarithmic factor. However the location estimator ẑ
reaches the faster rate (n−1 log2 n)1/(1−α). This rate is optimal up the logarithmic factor. It is
a consequence of Theorem 1.1 in [54] (Chapter VI), noticing that fα has a singularity of order
−α in 0, and with the fact that we cannot do better than 1/n for the Hellinger distance. One
should notice that fα is unbounded for all α ∈ (0,1). Therefore the maximum likelihood and
the least squares estimators are undefined and those methods do not apply on M . In addition,
we can see that fα is not square integrable for α ∈ [1/2,1).
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3.5 Selection of the spacing parameter
Until now we gave results that required a good choice of the spacing parameter s, given some
bound on the dependence term K

(
P∗
s,b||Pind

s,b

)
. This section propose a way to automatically

select a value of s from the data, assuming that we dispose of two independent sets of obser-
vations. We use the first set to produce an estimator P̂s for different values of s. We then use
the second set to produce an estimator ŝ of the optimal value of s.

3.5.1 Framework and result
Let X(1)

1 , . . . ,X(1)
n1 ,X

(2)
1 , . . . ,X(2)

n2 be n1 + n2 random variables on the measurable space (X ,X ).
We define P (j)

i by P (j)
i := L(X(j)

i ) for all j in [2] and all i in [nj]. We also write

P∗
s,b = L

(
X

(1)
b , . . . ,Xb+n1(s,b)(s+1)

)
and Pind

s,b =
n1(s,b)⊗
i=1

L
(
X

(1)
b+(i−1)(s+1)

)
,

with
n1(s,b) =

⌊
n1 + s+ 1 − b

1 + s

⌋
. (3.66)

Let S be a subset of {0,1, . . . ,smax}, smax = ⌊(n1 − 2)/2⌋. Let (Ms)s∈S be countable subsets of
PX such that the ρ-dimension function (see Section 3.B) is uniformly bounded over Ms by a
non-decreasing function m 7→ Dm(Ms) ≥ 1 for all s ∈ S. We follow the procedure below.

1. For s in S, let P̂s = P̂s
(
Ms,X(1)

)
be the estimator given by (3.12). Conditionally on

X(1), we define the finite model

M̂S = M̂S

(
X(1)

)
:=
{
P̂s : s ∈ S

}
.

2. Let P̂ be the ρ-estimator P̂ = P̂
(
n2,X(2),M̂S

)
given by (3.7). We denote by ŝ the value

of s such that P̂ = P̂ŝ and we write

P̂ = P̂ŝ
(
X(1),X(2)

)
. (3.67)

We make the following assumption.

Assumption 3.6. The random variables

X(1) :=
(
X

(1)
1 , . . . ,X(1)

n1

)
and X(2) :=

(
X

(2)
1 , . . . ,X(2)

n2

)
are independent.

The following result is proven in Section 3.E.1.

Theorem 3.11. Let n1,n2 ≥ 3 and P̂ = P̂ŝ
(
X(1),X(2)

)
be the estimator given by (3.67). Under

Assumption 3.6, there exists a positive constant C > 0 such that for all P ∈ PX

CE
[
h2
(
P , P̂ŝ

)]
≤ n−1

1

n1∑
i=1

h2
(
P

(1)
i ,P

)
+ n−1

2

n2∑
i=1

h2
(
P

(2)
i ,P

)
(3.68)

+ inf
t∈[n2]

{
t

n2
(1 + log(|S|)) + ⌈n2/t⌉βt

(
X(2)

)}

+ inf
s∈S

{
h2
(
P ,Ms

)
+ (s+ 1)Dn1(s,1)(Ms)

n1
+ n−1

1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)}
,

where the mixing coefficient βt
(
X(2)

)
is given by (1.2.5) in Dedecker et al.[27].
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One can check that we do not need any assumption other than Assumption 3.6 to obtain this
result. We need to make additional assumptions a posteriori to make this bound meaningful.
Let us interpret this inequality in simpler cases. We consider there is M such that Ms = M
for all s ∈ S. If the data were truly i.i.d. with distribution P ∈ M , we would get

CE
[
h2
(
P , P̂

)]
≤

(s+ 1)Dn1(s,1)(M )
n1

+ (1 + log(|S|))
n2

.

The second term is the bound we get for i.i.d. estimation from a n2-sample over a finite model
of cardinal |S|. When the data are not identically distributed, the quantity

n−1
2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ n−1

1

n1∑
i=1

h2
(
P

(1)
i ,P

)

is not zero but it remains small when most of the true marginal distributions P (j)
i lie close

enough to some distribution P in M . The terms n−1
1
∑s+1
b=1 K

(
P∗
s,b||Pind

s,b

)
and ⌈n2/t⌉βt(X(2))

account for the possible dependence within X(1) and X(2) respectively. They vanish if the
observations X(1)

1 , . . . ,X(1)
n1 ,X

(2)
1 , . . . ,X(2)

n2 are all independent. Contrary to Theorem 3.4 we do
not have to choose a good value of s as the method automatically select a reasonable s in S as
long as the P (j)

i can be well approximated by a distribution P ∈ M .

3.5.2 Robustness

Let X(1) =
(
X

(1)
1 , . . . ,X

(1)
n1

)
and X(2) =

(
X

(2)
1 , . . . ,X

(2)
n2

)
be the true processes of interest

such that P (j)
i = P for all j ∈ [2] and i ∈ [Nj]. We actually observe a contaminated ver-

sion of it. Let Z
(1)
1 , . . . ,Z

(1)
N1 ,Z

(2)
1 , . . . ,Z

(2)
N2 be random variables with any distributions and

E
(1)
1 , . . . ,E

(1)
N1 ,E

(2)
1 , . . . ,E

(2)
N2 be Bernoulli random variables such that for all j ∈ [2] and all

i ∈ [Nj],
X

(j)
i = EiX

(j)
i + (1 − E

(j)
i )Z(j)

i . (3.69)

For s ∈ {0,1, . . . ,smax} and b ∈ [s+ 1], we define the distributions

P∗
s,b = L

(
X

(1)
b , . . . ,X

(1)
b+n1(s,b)(s+1)

)
and Pind

s,b =
n1(s,b)⊗
i=1

L
(
X

(1)
b+(i−1)(s+1)

)
.

The next result is a complement of Lemma 3.2 and is proven in Section 3.E.2.

Lemma 3.7. If E(1)
1 ,Z

(1)
1 , . . . ,E(1)

n1 ,Z
(1)
n1 ,E

(2)
1 ,Z

(2)
1 , . . . ,E(2)

n2 ,Z
(2)
n2 ,X

(1) and X(2) are mutually inde-
pendent, we have

K
(
P∗
s,b||Pind

s,b

)
≤ K

(
P∗
s,b||P

ind
s,b

)
,∀s ∈ {0,1, . . . ,smax},∀b ∈ [s+ 1], (3.70)

and
βt
(
X(2)

)
≤ βt

(
X(2))

,∀t ≥ 1.

We define p(j)
i by P

(
E

(j)
i = 1

)
= p

(j)
i for j ∈ [2] and i ∈ [Nj].
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Corollary 3.5. Let n1,n2 ≥ 3 and P̂ = P̂ŝ
(
X(1),X(2)

)
be the estimator given by (3.67). There

exists a positive constant C such that in the situation of Lemma 3.7 and for all P ∈ PX ,

CE
[
h2
(
P , P̂ŝ

)]
≤ n−1

1

n1∑
i=1

(1 − p
(1)
i ) + n−1

2

n2∑
i=1

(1 − p
(2)
i )

+ inf
t∈[n2]

{
t

n2
(1 + log(|S|)) + ⌈n2/t⌉βt

(
X(2))}

+ inf
s∈S

{
h2
(
P ,Ms

)
+ (s+ 1)Dn1(s,1)(Ms)

n1
+ n−1

1

s+1∑
b=1

K
(
P∗
s,b||P

ind
s,b

)}
.

This result is a direct consequence of Theorem 3.11 and Lemma 3.7. We illustrate the
performance of our estimator with hidden Markov models.

3.5.3 Application to hidden Markov models
Let Y

(1)
1 , . . . ,Y

(1)
N1 ,Y

(2)
1 , . . . ,Y

(2)
N2 be random variables taking values in the measurable space

(Y ,Y). Let L be in {2,3, . . . ,⌊(N1 ∧ N2)/2⌋} and nj = Nj + 1 − L for j ∈ [2]. We define
the new random variables

X
(j)
i =

(
Y

(j)
i ,Y

(j)
i+1, . . . ,Y

(j)
i+L−1

)
,i ∈ [nj],j ∈ [2],

taking values in the measurable space (X ,X ) =
(
Y L,Y⊗L

)
. We adapt Assumption 3.2 to this

context.

Assumption 3.7. Let
(
Y

(1)
i ,H

(1)
i

)
i

and
(
Y

(2)
i ,H

(2)
i

)
i

be finite state space HMM with parameters
(K∗,w∗

1,Q
∗,F ∗) and (K∗,w∗

2,Q
∗,F ∗) such that Q∗ is irreducible and aperiodic.

Under this assumption Q∗ has only one invariant distribution π∗ and we define the dis-
tribution P ∗ by (3.27). Let τ ≥ e and J = ⌊logτ (⌊(n1 − 2)/2⌋)⌋. Let S be the set given
by

S = {0} ∪
{⌈
τ j
⌉

; j ∈ {0,1, . . . ,J}
}
. (3.71)

Let F 1, . . . ,FK be subsets of PY such that Assumption 3.3 is satisfied. Let M be a non-empty
subset of the model H

(
K,F 1, . . . ,FK

)
defined by (3.29). For s in S, we take Ms = Mδ(s)

with
δ(s) = V

n1(s,1)(K − 1)
∧ 1
K
,

where Mδ is given by (3.36) and n1(s,1) given by (3.66). The following result is proven in
Section 3.E.3.

Theorem 3.12. Let N1,N2 ≥ K +L and P̂ = P̂ŝ
(
X(1),X(2)

)
be the estimator given by (3.67).

Under Assumption 3.6, there is a numeric constant C > 0 such that for all P ∈ PX

CE
[
h2
(
P , P̂ŝ

)]
≤ h2

(
P ,M

)
+ n−1

1

n1∑
i=1

h2
(
P

(1)
i ,P

)
+ n−1

2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ Lϵ2 + inf

t∈[n2]

{
t log log n1

n2
+ ⌈n2/t⌉βt

(
X(2)

)}
(3.72)

+ inf
s∈S

{
(s+ 1)LV log n1

n1
+ n−1

1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)}
.
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In particular under Assumption 3.7, there exists a positive constant C(Q∗) such that

C(Q∗)E
[
h2
(
P ∗, P̂ŝ

)]
≤ h2

(
P ∗,M

)
+ Lϵ2 + τLV

log2 n1

n1
+ log n2 log log n1

n2
, (3.73)

where P ∗ is given by (3.27).

Inequality (3.72) is a consequence of Theorem 3.11 and only requires Assumption 3.6. Under
Assumption 3.7 we can control the different terms and obtain (3.73). If ϵ = 0, the ideal situation
is to have the same number of observations in each set, i.e. n1 = n2 = n. In this case we have

C (Q∗)E
[
h2
(
P ∗, P̂

)]
≤ h2

(
P ∗,M

)
+ LτV

log2 n

n
,

and the first vanishes when the model is well specified which gives the rate n−1 log2 n with
respect to the squared Hellinger distance over H ∗

(
K,F 1, . . . ,FK

)
. When ϵ > 0 the quantity

V depends on ϵ and we need to balance the second and third term in (3.73), i.e. ϵ2/V is of
order n−1

1 up to a logarithmic term. Then the ideal situation only requires n2 to be of order
ϵ−2 up to logarithmic term and the bound on the convergence rate is of order ϵ2. For example,
we would have ϵ−2 = n

2
d+1
1 log− 2

d+1 −(d+2) n1 in the situation of Theorem 3.6. In both cases, it
shows that we recover a value of s that allows us to obtain the same rate as when the optimal
value is known. This is especially interesting for the robustness aspect of our estimator.

Let us consider a situation similar to Section 3.5.2. Let Z(1)
1 , . . . ,Z

(1)
N1 ,Z

(2)
1 , . . . ,Z

(2)
N2 be random

variables with any distributions and E
(1)
1 , . . . ,E

(1)
N1 ,E

(2)
1 , . . . ,E

(2)
N2 be Bernoulli random variables

such that for all j ∈ [2] and all i ∈ [Nj],

Y
(j)
i = EiY

(j)
i + (1 − E

(j)
i )Z(j)

i .

The following result is proven in Section 3.E.4.

Corollary 3.6. Let P̂ŝ = P̂ŝ
(
X(1),X(2)

)
be the estimator given by (3.67). If E(1)

1 ,Z
(1)
1 , . . . ,E(1)

n1 ,Z
(1)
n1 ,

E
(2)
1 ,Z

(2)
1 , . . . ,E(2)

n2 ,Z
(2)
n2 ,X

(1) and X(2) are mutually independent, and if Y(1) and Y(2) satisfy As-
sumption 3.7, there exists a positive constant C(Q∗) such that

C(Q∗)E
[
h2
(
P ∗, P̂ŝ

)]
≤ h2

(
P ∗,M

)
+ L

N1

N1∑
i=1

(
1 − p

(1)
i

)
+ L

N2

N2∑
i=1

(
1 − p

(2)
i

)

+ Lϵ2 + τLV
log2 n1

n1
+ log n2 log log n1

n2
,

where P ∗ is given by (3.27) and p(j)
i = P

(
E

(j)
i = 1

)
for all j ∈ [2] and i ∈ [Nj].

One can see that our deviation bound is not significantly worse as long as the average
proportions of contamination N−1

1
∑N1
i=1(1 − p

(1)
i ) and N−1

2
∑N2
i=1(1 − p

(2)
i ) are small compared to

ϵ2 + τV log2 n1
n1

and logn2 log logn1
n1

respectively. We interpret this result further for P ∗ ∈ M , ϵ = 0
and n1 = n2 = n. Let us consider Hüber’s contamination model with p

(j)
i = 1 − αcont for all

j ∈ [2] and i ∈ [N ]. In this situation we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L

[
αcont + τV log2 n

n

]
.
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Our bound on the convergence rate is not deteriorated as long as the contamination rate αcont
is small compared to τV log2 n

n
. We can also consider the situation P(E(j)

i = 0) = 1i∈Ij
for some

subsets I1 ⊂ [N ] and I2 ⊂ [N ]. We get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L

[
|I1| + |I2|

N
+ τV log2 n

n

]
.

Our bound on the convergence rate is not deteriorated as long as the proportions of outliers
|I1|/N,|I2|/N are small compared to the other term τV log2 n

n
.
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Appendix

3.A Auxiliary results
We denote by C(X ) the set given by

C(X ) =
⋃
n≥1

{n} × X n.

Let d : A × A → R be a loss function where A ⊂ PX denotes a set of admissible probability
distributions. Let M be a subset of A . Let P̂ : C (X ) → M be an estimation method.

Assumption 3.8. There exist constants C0 > 0,β ∈ (0,1] and non decreasing functions f,g
such that for all independent random variables X1, . . . ,Xn with distributions P1, . . . ,Pn ∈ A
and for all ξ > 0

P
(

n∑
i=1

d
(
Pi,P̂ (n,X)

)
≤ C0 inf

Q∈M

n∑
i=1

d (Pi,Q) + f(n) + g(n)ξβ
)

≥ 1 − e−ξ.

Many estimators satisfy such an assumption, see for instance mean discrepancy estimators
[5], T -estimators [16] or l-estimators [10]. We can get rid of the independence assumption with
the following result.

Proposition 3.4. Under Assumption 3.8, for all random variables X1, . . . ,Xn with distribu-
tions P1, . . . ,Pn ∈ A we have

E
[
n∑
i=1

d
(
Pi,P̂ (n,X)

)]
≤ C0 inf

Q∈Q

n∑
i=1

d(Pi,Q) + f(n)

+ g(n)
[
2 + 3

2K
(
P∗||Pind

)]β
,

where
P∗ = L (X1, . . . ,Xn) and Pind = L (X1) ⊗ . . .⊗ L (Xn) .

This result is obtained by applying Lemma 3.1 that we prove hereafter, with P = Pind and
Q = P∗.

3.A.1 Proof of Lemma 3.1
We use Lemma 48 in [9]. For λ ∈ (0,a−1/β), we have

EQ

[
λ
(
nl
(
θ̂(X),θ

)
− nA−B

)1/β

+

]
≤ log

(
1 +

∫ +∞

0
eξP

(
l
(
θ̂(X),θ

)
> A+ B + (ξ/λ)β

n

)
dξ

)
+ K (Q||P)

≤ log
(

1 +
∫ +∞

0
eξe−ξ/λdξ

)
+ K (Q||P) = log

( 1
1 − λ

)
+ K (Q||P) .

We have

EQ

[(
nl
(
θ̂(X),θ

)
− nA−B

)1/β

+

]
≤ λ−1

[
log

( 1
1 − λ

)
+ K (Q||P)

]
.
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Assuming K(Q||P) < ∞, minimization over λ demands

log (1 − λ) − K (Q||P) + λ

1 − λ
= 0.

Let λ∗ be such a number. In that case

(λ∗)−1
[
log

( 1
1 − λ∗

)
+ K (Q||P)

]
= 1

1 − λ∗ .

We set a(x) = x − log(1 + x) for x in (0, + ∞). Following the proof of Proposition 5 [9], a is
increasing and

∀x > 0, a−1(x) ≤ x+
√

2x.
Since λ∗

1−λ∗ = a−1 (K (Q||P)), we get

1
1 − λ∗ = 1 + λ∗

1 − λ∗ ≤ 1 + K (Q||P) +
√

2K (Q||P)

≤ 2 + 3
2K (Q||P) .

Finally, with Jensen’s inequality we get

EQ
[
l
(
θ̂(X),θ

)]
≤ A+

B +
(
2 + 3

2K (P ||Q)
)β

n
.

3.B Main results
This section gathers the proofs of Theorem 3.1, Corollary 3.1 and Lemmas 3.2, 3.3, 3.4. We
first give a formal definition of the ρ-dimension function that is originally introduced in Baraud
& Birgé [11]. We slightly modify some notation to adapt it to our context. The function
ψ defined by (3.4) satisfies Assumption 2 [11] with a0 = 4, a1 = 3/8 and a2

2 = 3
√

2 (see
Proposition 3 [11]). Let n be a positive integer and M be a countable subset of PX . For
y > 0, Pind = ⊗n

i=1 P
ind
1 ∈ P⊗n

X and P ∈ M we write

BM
(
Pind,P ,y

)
:=
{
Q ∈ M ;

n∑
i=1

h2
(
P ind
i ,P

)
+ h2

(
P ind
i ,Q

)
< y2

}
.

If M is a countable set of probability density functions with respect to a σ-finite measure ν
such that M = {Q = q · ν; q ∈ M}, we write

w
(
ν,M,M ,Pind,P,y

)
= EX∼Pind

[
sup

Q∈BM (Pind,P,y)
|Zn (X,p,q)|

]
,

where
Zn(X,q,q′) := Tn(X,q,q′) − EPindTn(X,q,q′),

and Tn is given by (3.5). We define wM
(
Pind,P,y

)
= inf(ν,M) w

(
ν,M,M ,Pind,P,y

)
, where the

infimum is taken over all couples (ν,M) such that M is the class of density functions associated
to M with respect to a σ-finite measure ν. We define the ρ-dimension function by

DM
(
Pind,P⊗n

)
=
[

3
221/2 sup

{
y2; wM

(
Pind,P,y

)
>

3y2

64

}]∨
1.

As mentioned at the beginning of Section 3.2 we consider cases for which we have a uniform
bound over the ρ-dimension function. More precisely we assume there is a non-increasing
function m 7→ Dm(M ) such that

DM
(
Pind,P⊗m

)
≤ Dm(M ),∀Pind ∈ P⊗m

X ,∀P ∈ M .
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3.B.1 Proof of Theorem 3.1
From Theorem 1 of Baraud & Birgé [11], we have that for all independent random variables
X1, . . . ,Xn with respective distributions P1, . . . ,Pn, for all Q ∈ M and for all ξ > 0, we have

n∑
i=1

h2
(
Pi, P̂ (n,X,M )

)
≤ γ

n∑
i=1

h2 (Pi, Q) + 4κ
a1

(
Dn(M )

4.7 + 1.49 + ξ

)
,

with probability at least 1 − e−ξ, where γ and κ are given in [11] and satisfy γ ≤ 150 and
4κ
a1

≤ 5014 (see proof of Theorem 1 [13], page 32). We can take the infimum for Q over M and
it shows we satisfy Assumption 3.8 with C0 = 150, f(n) = 5014

(
Dn(M ))

4.7 + 1.49
)
, g(n) = 5014

and β = 1. From Proposition 3.4, we have

E

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s

) ≤ 150 inf
Q∈Q

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1),Q

)

+ 5014
(
Dn(s,b)(M )

4.7 + 3.49 + 3
2K

(
P∗
s,b||Pind

s,b

))
,

for all b ∈ [s+ 1]. From (3.12), we have

n∑
i=1

h2
(
Pi, P̂s

)
=

s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s

)

≤ 2
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 2

s+1∑
b=1

n(s,b)h2
(
P̂s,b, P̂s

)

≤ 2
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 2 inf

Q∈M

s+1∑
b=1

n(s,b)h2
(
P̂s,b, Q

)
+ 2ι

≤ 4
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 2 inf

Q∈M

N∑
i=1

h2 (Pi, Q) + 2ι.

Combining the inequalities above, we obtain

E
[
n∑
i=1

h2
(
Pi, P̂s

)]
≤ 600

s+1∑
b=1

inf
Q∈M

n(s,b)∑
i=1

h2(Pb+(i−1)(s+1),Q) + 2 inf
Q∈M

n∑
i=1

l (Pi, Q)

+ 20056
s+1∑
b=1

(
Dn(s,b)(M )

4.7 + 3.49 + 3
2K

(
P∗
s,b||Pind

s,b

))
+ 2ι

≤ 602 inf
Q∈M

n∑
i=1

h2(Pi,Q) + 20056(s+ 1)
(
Dn(s,1)(M )

4.7 + 3.49
)

+ 30084
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ 2ι.

Since ι ≤ 2546 < 20056 × 0.597
4.7 , we get

EP∗

[
n∑
i=1

h2
(
Pi, P̂s

)]
≤ 602 inf

Q∈M

n∑
i=1

h2 (Pi, Q) + 20056
4.7 (s+ 1)

[
Dn(s,1)(M ) + 17

]

+ 30084
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.
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3.B.2 Proof of Lemma 3.2
For e ∈ {0,1}n, we denote by I(e) the set given by I(e) = {i ∈ [n]; ei = 1}. From the convexity
property of the Kullback-Leibler divergence, we have

K (L (Y) ||L(Y1) ⊗ · · · ⊗ L(Yn))
≤

∑
e∈{0,1}n

P(E = e)K (L (Y|E = e) ||L(Y1|E1 = e1) ⊗ · · · ⊗ L(Yn|En = eN))

=
∑

e∈{0,1}n

P(E = e)K
L

(
(Xi)i∈I(e)

)
⊗

⊗
i/∈I(e)

L (Zi) ||
⊗
i∈I(e)

L(Xi) ⊗
⊗
i/∈I(e)

L(Zi)


=
∑

e∈{0,1}n

P(E = e)K
L

(
(Xi)i∈I(e)

)
||
⊗
i∈I(e)

L(Xi)
 .

We need an auxiliary result before ending the proof.

Lemma 3.8. For random variables A,B,C such that L(A) ≪ L(B), we have

K (L(A)||L(B)) ≤ K (L (A,C) ||L(B) ⊗ L(C)) . (3.74)

With this result we have

K

L
(
(Xi)i∈I(e)

)
||
⊗
i∈I(e)

L(Xi)
 ≤ K (L (X) ||L(X1) ⊗ · · · ⊗ L(Xn)) ,

which allows us to conclude.

Proof of Lemma 3.8

Let µ1 and µ2 be measures dominating L(B) and L(C) respectively. We write

pB,C = dL(B,C)
dµ1 ⊗ µ2

, pA,C = dL(A,C)
dµ1 ⊗ µ2

, pA = dL(A)
dµ1

,pB = dL(B)
dµ1

, pC = dL(C)
dµ2

.

We have

K (L(A,C)||L(B) ⊗ L(C)) =
∫
pA,C(x,z) log

(
pA,C(x,z)
pB(x)pC(z)

)
µ1(dx)µ2(dz)

=
∫
pA,C(x,z) log

(
pA,C(x,z)
pA(x)pC(z)

)
µ1(dx)µ2(dz)

+
∫
pA,C(x,z) log

(
pA(x)
pB(x)

)
µ1(dx)µ2(dz)

= K (L(A,C)||L(A) ⊗ L(C)) + K (L(A)||L(B)) .

The non-negativity of the Kullback-Leibler divergence concludes the proof.

3.B.3 Proof of Corollary 3.1
One can check that we have

h2
(
P ,P̂s

)
≤ 2n−1

n∑
i=1

h2
(
L(Yi),P

)
+ 2n−1

n∑
i=1

h2
(
L(Yi),P̂s

)
≤ 2n−1

n∑
i=1

(1 − pi) + 2n−1
n∑
i=1

h2
(
L(Yi),P̂s

)
,
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and for Q in M

n∑
i=1

h2 (L(Yi),Q) ≤ 2
n∑
i=1

h2
(
L(Yi),P

)
+ 2

n∑
i=1

h2
(
P ,Q

)
≤ 2

n∑
i=1

(1 − pi) + 2nh2
(
P ,Q

)
.

We can conclude with Theorem 3.1 and Lemma 3.2.

3.B.4 Proof of Lemma 3.3
We have

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn)) = E [K (L (Xn|X1, . . . ,Xn−1) ||L (Xn))]
+ K (L (X1, . . . ,Xn−1) ||L (X1) ⊗ · · · ⊗ L (Xn−1)) ,

and with the Markov property

E [K (L (Xn|X1, . . . ,Xn−1) ||L (Xn))] = E [K (L (Xn|Xn−1) ||L (Xn))]
= K (L (Xn−1,Xn) ||L (Xn−1) ⊗ L (Xn)) .

Therefore

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn)) = K (L (X1, . . . ,Xn−1) ||L (X1) ⊗ · · · ⊗ L (Xn−1))
+ K (L (Xn−1,Xn) ||L (Xn−1) ⊗ L (Xn)) ,

and we can conclude by induction.

3.B.5 Proof of Lemma 3.4
If (X,H) a hidden Markov chain, with Lemma 3.3 we have

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn))

≤
n∑
i=2

K (L (Xi−1,Hi−1,Xi,Hi) ||L (Xi−1,Hi−1) ⊗ L (Xi,Hi)) .

We need the following result. For random variables A1,A2,B1,B2, we have

K (L (A1,B1,A2,B2) ||L (A1,B1) ⊗ L (A2,B2))
= K (L (A1,A2) ||L (A1) ⊗ L (A2))
+ E [K (L (B1,B2|A1,A2) ||L (B1|A1) ⊗ L (B2|A2))] .

With the non-negativity of the Kullback-Leibler divergence we get

K (L (X) ||L (X1) ⊗ · · · ⊗ L (Xn)) ≤
n∑
i=2

K (L (Hi−1,Hi) ||L (Hi−1) ⊗ L (Hi)) .

3.C Kolmogorov processes
This section gathers the proofs of Theorems 3.2, 3.3 and Lemmas 3.5, 3.6.
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3.C.1 Proof of Theorems 3.2 and 3.3
From Proposition 6 [11], we can take Dn(Fλ−,λ+,M [ϵ]) = 9 log(2|Fλ−,λ+,M [ϵ]|). From Theorem
3.1 there exists a positive constant C such that

CEP∗

[
h2
(
P , P̂s

)]
≤ h2

(
P ,Fλ−,λ+,M

)
+ ϵ2 + n−1∑

i=1
h2
(
Pi,P

)
+ n−1K

(
P∗
s,b||Pind

s,b

)
+ s+ 1

n

[
1 + log(2|Fλ−,λ+,M [ϵ]|)

]
.

Given the bounds on log(2|Fλ−,λ+,M [ϵ]|) given by Lemma 3.6, we obtain the following inequal-
ities.

• For d = 1 we have ϵ2 = n−4/5 log4/5 n and

log(2|Fλ−,λ+,M [ϵ]|) ≤ log(9/η1) + 7
2 logM +K1ϵ

−1/2

= log(9/η1) + 9
2K1n

1/5 log−1/5 n.

• For d = 2 we have ϵ2 = n−2/3 log5/3 n and

log(2|Fλ−,λ+,M [ϵ]|) ≤ log
(

38π

η3
2

)
+ 9 logM +K2ϵ

−1 log3/2
++(1/ϵ)

≤ log
(

38π

η3
2

)
+ 28

3 K2n
1/3 log2/3 n.

• For d = 3 we have ϵ2 = n−1/4 log1/4 n and

log(2|Fλ−,λ+,M [δ]|) ≤ log
(

27327/2π3

η6
3

)
+ 33

2 logM +K3ϵ
−2

= log
(

27327/2π3

η6
3

)
+ 33

2 K3n
1/2 log−1/2 n.

This proves the bound (3.22). Lemma 3.5 allows us to conclude the proof of Theorem 3.2.
For d ≥ 4 we have ϵ2 = n− 2

d+1 logd+2+ 2
d+1 n and

log(|Fλ−,λ+,M [ϵ]|) ≤ logCd +
(
Kd + 2 + 1

d
+ 1
d2

)
ϵ−(d−1) log(d+1)(d+2)/2(ϵ−1)

≤ logCd + 1
d+ 1

(
Kd + 2 + 1

d
+ 1
d2

)
n

d−1
d+1 log

2
d+1 +d+1 n.

Lemma 3.5 allows us to conclude the proof of Theorem 3.3.

3.C.2 Proof of Lemma 3.5
We have

I (σ(Yt),σ(Yt+s)) = K (L (Yt,Yt+s) ||L (Yt) ⊗ L (Yt+s)) = E [K (L (Yt+s|Yt) ||L (Yt+s))] .

Since (Yt)t≥0 is stationary we have L(Yt+s) = P . For x ∈ Rd fixed, we write

Ax(s) = K
(
L(Y x

s )||P
)
,
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where Y x
t is the solution of (3.17) satisfying Y x

0 = x. We follow the proof of Theorem 3.2.7 [78]
with their notation. From (44) therein we have

Ax(s) ≤ E
[(

log(Z) + U(x) + U(Ws) − 2v(Ws) − 1
2

∫ s

0
[|∇U |2 − ∆U ](Wt)dt

)
F
]
, (3.75)

where

• W is the Brownian motion starting from x,

• F is the density of the distribution of Xx over C([0, s]) with respect to the distribution P
of W given by

F = exp
(
U(x) − U(Ws) − 1

2

∫ s

0
[|∇U |2 − ∆U ](Wt)dt

)
,

• v is such that exp(−2v) is the Gaussian density of L(Ws) with respect to the Lebesgue
measure, i.e.

exp(−2v(y)) = (2πt)−d/2 exp
(

−(x− y)2

2s

)
,∀y ∈ Rd. (3.76)

Let us check that the right-hand side of (3.75) is finite. From (3.76), we have −2v(y) ≤
−d

2 log(2πs). Also

−1
2

∫ s

0

[
|∇U |2 − ∆U

]
(Wt)dt ≤ −Cs

2 ,

where C is given by (3.18). Since EF = 1, we get

Ax(s) ≤ log(Z) + U(x) − d

2 log(2πs) − Cs

2 + E [U(Ws)F ] .

We only need to consider the last term E [U(Ws)F ]. We have

E [U(Ws)F ] = E
[
U(Ws) exp

(
U(x) − U(Ws) − 1

2

∫ s

0
[|∇U |2 − ∆U ](Wt)dt

)]
= eU(x)E

[
U(Ws) exp

(
−U(Ws) − 1

2

∫ s

0
[|∇U |2 − ∆U ](Wt)dt

)]
≤ eU(x)− Cs

2 E [U(Ws) exp (−U(Ws))]
≤ eU(x)− Cs

2 E
[
U+(Ws) exp (−U(Ws))

]
≤ eU(x)− Cs

2 ||g||∞,

where g is defined on R+ by g(x) = x exp(−x). We end up with

Ax(s) ≤ log(Z) + U(x) − d

2 log(2πs) − Cs

2 + eU(x)− Cs
2 ||g||∞

≤ log(Z) − d

2 log(2πs) − Cs

2 + eU(x)||g||∞
(
1 + e− Cs

2
)
. (3.77)

Therefore, Ax(s) is finite for all s > 0 and all x ∈ Rd. From Theorem 3.1.29 and Theorem 3.2.5
of Royer [78], for all s0 > 0, we have

Ax(s) ≤ Ax(s0) exp (−2m(s− s0)) ,∀s > s0. (3.78)
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Therefore with (3.77) and (3.78), we have

I (σ(Yt), σ(Yt+s)) = E [AYt(s)]
≤ exp (−2m(s− s0))E [AYt(s0)]

≤ e−2m(s−s0)
[
log(Z) − d

2 log(2πs0) − Cs0

2 + E
[
eU(Yt)

]
||g||∞(1 + e− Cs0

2 )
]

= e−2m(s−s0)
[
log(Z) − d

2 log(2πs0) − Cs0

2 + ||g||∞(1 + e− Cs0
2 )Z−1

∫
Rd
e−U(x)dx

]
=: C(s0)e−2ms,

for s ≥ s0 > 0 with C(s0) < ∞ since
∫
Rd e−αU(x)dx < ∞ for all α.

3.C.3 Proof of Lemma 3.6
We divide the proof in two parts, first the case d ≤ 3 and the case d ≥ 4 in a second time.

Case d ∈ {1,2,3}. For ξ > 0 and ν ∈ (0,1), let

F̃ ξ,ν
d =

{
f̃ ∈ Fd : ||xf̃ ||2 ≤ ξ and 1 − ν < λmin(Σf̃ ) ≤ λmax(Σf̃ ) ≤ 1 + ν

}
.

We first state the classic bound

N(B2(M), || · ||2, ϵ) ≤
(3M

ϵ

)d
, (3.79)

where B2(M) is the ball of radius M in Rd with respect to the Euclidean distance || · ||2.
Let B2(M)

[√
λ−
]

be a
√
λ−-net of B2(M) with respect to the Euclidean distance || · ||2, with∣∣∣B2(M)

[√
λ−
]∣∣∣ ≤ (3M/λ−)d. Let Sym(λ−,λ+)[ηdλ−] be a ηdλ−-net of Sym(λ−,λ+) with respect

to the operator norm || · ||op, with |Sym(λ−,λ+)[ηdλ−]| ≤ NΣ(λ+,λ−,d,ηdλ−). Let F̃ 1,ηd
d [ϵ] be an

ϵ-net of F̃ 1,ηd
d with respect to the Hellinger distance. We define

Fλ−,λ+,M [ϵ] :=

(det Σ)−1/2g
(
Σ−1/2 (· − x)

)
;
x ∈ B2(M)

[√
λ−
]
,

Σ ∈ Sym(λ−,λ+)[ηdλ−],
g ∈ F̃ 1,ηd

d [ϵ]


and we show it is an ϵ-net of Fλ−,λ+,M with respect to the Hellinger distance. For f ∈ Fλ−,λ+,M ,
there is Σ in Sym(λ−,λ+)[ηdλ−] and x in B2(M)[

√
λ−] such that

||xf − x||2 ≤
√
λ− and ||Σf − Σ||op ≤ λ−ηd.

We write f̃ = (det Σ)1/2f
(
Σ1/2 · +x

)
. Let us check that f̃ belongs to F̃ 1,ηd

d . We have

||xf̃ ||2 = ||Σ−1/2(xf − x)||2 ≤ ||xf − x||2√
λ−

≤ 1,

and

||Σf̃ − I||op = ||Σ−1/2ΣfΣ−1/2 − I||op = ||Σ−1/2(Σf − Σ)Σ−1/2||op ≤ ||Σf − Σ||op
λ−

≤ ηd.

Therefore f̃ ∈ F̃ 1,ηd
d and there is g ∈ F̃ 1,ηd

d [ϵ] such that h
(
f̃ ,g

)
≤ ϵ. Since the Hellinger distance

is invariant by translation and scaling, we have

h
(
f, (det Σ)−1/2g

(
Σ−1/2(· − µ)

))
= h

(
f̃ , g

)
≤ ϵ,
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which proves that Fλ−,λ+,M [ϵ] is an ϵ-net of Fλ−,λ+,M . Therefore

|Fλ−,λ+,M [ϵ]| ≤
(

3M√
λ−

)d
×NΣ(λ+,λ−,d,ηdλ−) × |F̃ 1,ηd

d [ϵ]|.

We need to bound the different entropy numbers now. For a metric space (A ,d) and ϵ > 0, we
denote by N(ϵ,A ,d) the minimal number of balls of radius ϵ, with respect to d, to cover A .

The next result provides a bound on the entropy for the class of covariance matrices we are
considering. Let || · ||op denote the operator norm on square matrices induced by the Euclidean
distance. For matrices with real-valued eigenvalues, it is equivalent to the largest absolute value
of its eigenvalues.

Lemma 3.9. We have

N (ϵ, Sym(λ−,λ+), || · ||op) ≤


3(λ+−λ−)

ϵ
for d = 1,(

9
ϵ

)3
(λ+ − λ−)2λ+π for d = 2,

2
(

2·35/4
√
λ+(λ+−λ−)π
ϵ

)6
for d = 3.

(3.80)

In higher dimensions, we have

N (ϵ, Sym(λ−,λ+), || · ||op) ≤ C
(3

4

)d πd(d−1)/2

e(d−1)(d−2)/4 (2λ+)d(d−1)/2(λ+ − λ−)d

× (d+ 1)d(d+1)/2d(d−1)(d+2)/2(d− 1)(d−1)/2ϵ−d(d+1)/2,

with C = e1/2

31/223 .

Theorem 4 [58] gives a bound on |F̃ 1,ηd
d [ϵ]| which allows us to conclude the proof of Theorem

3.2.
Case d ≥ 4. We use Theorem 3 of Kur et al.[60]. We follow some of their notation. Let

d ≥ 4. There exist positive constants ξd and Kd such that

logN(ϵ,Fd,Ĩ ,h) ≤ Kdϵ
−(d−1) log++(ϵ−1)(d+1)(d+2)/2,

where Fd,Ĩ is the set of distributions associated to

Fd,Ĩ =
{
f̃ ∈ Fd : ||xf̃ ||2 ≤ ξd and 1/2 < λmin(Σf̃ ) ≤ λmax(Σf̃ ) ≤ 2

}
.

Let Fd,Ĩ [ϵ] be a set of probability densities with respect to the Lebesgue measure such that
Fd,Ĩ [ϵ] = {f(x)dx; f ∈ Fd,Ĩ} is an ϵ-net of Fd,Ĩ with respect to the Hellinger distance and

log |Fd,Ĩ [ϵ]| ≤ Kdϵ
−(d−1) log++(ϵ−1)(d+1)(d+2)/2.

Let B2(M)
[
ξd

√
λ−
]

be a ξd
√
λ−-net of B2(M) with respect to the Euclidean distance || · ||2,

with
∣∣∣B2(M)

[
ξd

√
λ−
]∣∣∣ ≤ (3M/ξd

√
λ−)d. Let Sym(λ−,λ+)[λ−/3] be a λ−/3-net of Sym(λ−,λ+)

with respect to the operator norm || · ||op, with |Sym(λ−,λ+)[λ−/3]| ≤ NΣ(λ+,λ−). We define

Fλ−,λ+,M [ϵ] :=

(det Σ)−1/2g
(
Σ−1/2 (· − x)

)
;
x ∈ B2(M)

[
ξd

√
λ−
]
,

Σ ∈ Sym(λ−,λ+)[λ−/3],
g ∈ Fd,Ĩ [ϵ]
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and we show that Fλ−,λ+,M [ϵ] = {f(x)dx; f ∈ Fλ−,λ+,M [ϵ]} is an ϵ-net of Fλ−,λ+,M with re-
spect to the Hellinger distance. For f ∈ Fλ−,λ+,M , there is Σ in Sym(λ−,λ+)[λ−/3] and x in
B2(M)[ξd

√
λ−] such that

||xf − x||2 ≤ ξd
√
λ− and ||Σf − Σ||op ≤ λ−/3.

We write f̃ = (det Σ)1/2f
(
Σ1/2 · +x

)
. Let us check that f̃ belongs to Fd,Ĩ . We have

||xf̃ ||2 = ||Σ−1/2(xf − x)||2 ≤ ||xf − x||2√
λ−

≤ ξd,

and

||Σf̃ − I|| = ||Σ−1/2ΣfΣ−1/2 − I|| = ||Σ−1/2(Σf − Σ)Σ−1/2|| ≤ ||Σf − Σ||
λ−

≤ 1/3.

Hence
λmin(Σf̃ ) ≥ 2/3 > 1/2 and λmax(Σf̃ ) ≤ 4/3 < 2.

Therefore we have f̃ ∈ Fd,Ĩ and there is g ∈ Fd,Ĩ [ϵ] such that h
(
f̃(x)dx, gx)dx

)
≤ ϵ. Since the

Hellinger distance is invariant by translation and scaling, we have

h
(
f(x)dx, (det Σ)−1/2g

(
Σ−1/2(x− x)

)
dx
)

= h
(
f̃(x)dx, g(x)dx

)
≤ ϵ,

which proves that Fλ−,λ+,M [ϵ] is an ϵ-net of Fλ−,λ+,M . Therefore

|Fλ−,λ+,M [ϵ]| ≤
(

3M
ξd

√
λ−

)d
×NΣ(λ+,λ−,d) × |Fd,Ĩ [ϵ]|.

With Lemma 3.9 we get

|Fλ−,λ+,M [ϵ]| ≤ C

(
3M

ξd
√
λ−

)d (3
4

)d πd(d−1)/2

e(d−1)(d−2)/4 (2λ+)d(d−1)/2 (λ+ − λ−)d

× (d+ 1)d(d+1)/2d(d−1)(d+2)/2(d− 1)(d−1)/2
(
λ−

3

)−d(d+1)/2

× exp
(
Kdϵ

−(d−1) log(ϵ−1)(d+1)(d+2)/2
)

≤ Cd
λ
d(d−1)/2
+ Md(λ+ − λ−)d

λ
d(d+1)/2
−

exp
(
Kdϵ

−(d−1) log(ϵ−1)(d+1)(d+2)/2
)
.

Proof of Lemma 3.9

For d = 1, we have Sym(λ−,λ+) = [λ−,λ+]. The result follows from classical entropy bounds.
Otherwise, every real valued symmetric matrix Σ can be written as Σ = UDUT where D is
the diagonal matrix containing the real eigenvalues of Σ and U is an orthonormal matrix. For
Σ1 = U1diag(λ1,1, . . . ,λd,1)UT

1 and Σ2 = U2diag(λ1,2, . . . ,λd,2)UT
2 we have

||Σ1 − Σ2|| ≤ ||U1(D1 −D2)UT
1 || + ||(U1 − U2)D2U

T
1 || + ||U2D2(U1 − U2)T ||

≤ ||D1 −D2|| + 2λ+||U1 − U2||
= max

1≤i≤d
|λi,1 − λi,2| + 2λ+||U1 − U2||.

Therefore

N (Sym(λ−,λ+),|| · ||,ϵ) ≤ N (B((λ+ − λ−)/2),|| · ||∞,ϵ1) ×N (ON(d), || · ||,ϵ2)
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with ϵ = ϵ1 + 2λ+ϵ2. We have the classic bound

N (B((λ+ − λ−)/2),|| · ||∞,ϵ1) ≤
(

3λ+ − λ−

2ϵ1

)d
.

• For d = 2, the orthonormal matrices are of the form

Uα,θ =
(

cos(θ) −α sin(θ)
sin(θ) α cos(θ)

)
,θ ∈ [0,2π],α ∈ {−1,1}.

We have
||Uα,θ − Uα,θ′ ||2 = 2[1 − cos(θ − θ′)] ≤ (θ − θ′)2,

and therefore
N (ON(2), || · ||,ϵ) ≤ 23π

ϵ
= 6π/ϵ,

where the factor 2 comes from the presence of ϵ for positively and negatively oriented
basis. We obtain the final result for ϵ1 = 2ϵ/3 and ϵ2 = ϵ/6λ+.

• We proceed similarly for d = 3. Every orthonormal basis in dimension 3 can be written
in the form

Uϵ,θ,β,γ :=

 cos θ cos γ sin θ −ϵ sin γ sin θ
sin θ cos β − cos γ cos θ cos β + sin γ sin β ϵ(sin γ cos θ cos β + cos γ sin β)
sin θ sin β − cos γ cos θ sin β − sin γ cos β ϵ(sin γ cos θ sin β − cos γ cos β)

 ,
θ ∈ [0,2π],β ∈ [0,2π],γ ∈ [0,2π],ϵ ∈ {−1,1}. As before, one can check that we have

||Uϵ,θ,β,γ − Uϵ,θ′,β,γ|| ≤ |θ − θ′|2

||Uϵ,θ,β,γ − Uϵ,θ,β′,γ|| ≤ |β − β′|2

||Uϵ,θ,β,γ − Uϵ,θ,β,γ′ || ≤ |θ − θ′|2.

Therefore we have

N (ON(3), || · ||,ϵ) ≤
(
N
(
[0,2π],| · |,ϵ/

√
3
))3

≤ 2
(

3
√

3π
ϵ

)3

, (3.81)

where the factor 2 comes from the presence of ϵ for positively and negatively oriented
basis. We obtain the final result for ϵ1 = ϵ/2 and ϵ2 = ϵ/4λ+.

• For higher dimensions, we have the following lemma.

Lemma 3.10. For d ≥ 3, we can build an ϵ-net ON(d)[ϵ] of ON(d) with respect to the
operator norm such that

|ON(d)[ϵ]| ≤ C
πd(d−1)/2

e(d−1)(d−2)/4d
(d−1)(d+2)/2(d− 1)(d−1)(d+1)/2ϵ−d(d−1)/2,∀d ≥ 1,

with C = e1/2

31/223 .

We obtain the final bound with ϵ1 = 2ϵ
d+1 and ϵ2 = ϵ

2λ+
d−1
d+1 .
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Proof of Lemma 3.10

We prove this by induction. From (3.81) we have the desired inequality for d = 3 with C3 =
e1/2

31/223 . Let ϵ be in (0,1] and d ≥ 3. Let us now assume that for λ1 > 0 we have a λ1-net
ON(d)[λ1] with

|ON(d)[λ1]| ≤ C
πd(d−1)/2

e(d−1)(d−2)/4d
(d−1)(d+2)/2(d− 1)(d−1)(d+1)/2λ

−d(d−1)/2
1 .

Let U ∈ Rd+1 be a unitary vector, i.e. U2
1 + · · · + U2

d+1 = 1. There is θ ∈ [0,2π]d such that
U = f(θ) with

Ui = fi(θ) := cos θi
∏
j≤i

sin θj,

with the convention θd+1 = 0 and that a product over an empty set of indices is equal to 1. We
define applications a1, . . . ,ad,ad+1 by a1 = id and

ai(θ) =
(
θ1 + π

2 , . . . ,θi−1 + π

2 ,θi, . . . ,θd
)
,∀i ∈ {2, . . . ,d+ 1}.

One can check that the set of vectors A1(θ), . . . ,Ad+1(θ) ∈ Rd+1, given by Ai(θ) = f(ai(θ)) for
i in {1,2, . . . ,d + 1}, is an orthonormal basis of Rd. We take nj =

⌈√
d+1−j
λ2

⌉
,∀j ∈ {1,2, . . . ,d}

and we take

Ad+1[λ2] := {A(ψi1,...,id); ij ∈ {1,2, . . . ,nj}, j ∈ {1,2, . . . ,d}} ⊂ ON(d+ 1),

with
ψi1,...,id =

(
π(2ij − 1)

nj

)
1≤j≤d

.

Lemma 3.11. The set

O[λ1,λ2] :=
{
A

(
1 0
0 B

)
;A ∈ Ad+1[λ2], B ∈ ON(d)[λ1]

}
,

is a λ1 +
√
dπλ2-net of ON(d+ 1) with respect to the operator norm.

One can easily check that we have the following bound

|Ad+1[λ2]| ≤
( 2
λ2

)d √
d!.

Therefore, we have

|O[λ1,λ2]| = |ON(d)[λ1]| × |Ad+1[λ2]|

≤ C
πd(d−1)/2

e(d−1)(d−2)/4d
(d−1)(d+2)/2(d− 1)(d−1)(d+1)/2λ

−d(d−1)/2
1 ×

( 2
λ2

)d √
d!.

For λ1 = ϵd−1
d+1 and λ2 = ϵ 2√

dπ(d+1) , we get

|O[λ1,λ2]|

≤ C
πd(d−1)/2

e(d−1)(d−2)/4d
(d−1)(d+2)/2(d− 1)(d−1)(d+1)/2

(
d+ 1
d− 1

)d(d+1)/2

ϵ−d(d−1)/2

×
√
d!
(√

dπ(d+ 1)
)d
ϵ−d

= C(d− 1)−(d+1)/2d−1
√
d!e(d−1)/2 πd(d+1)/2

e(d−1)(d−2)/2 (d+ 1)d(d+3)/2dd(d+2)/2ϵ−d(d+1)/2.
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We use the bound n! ≤
√

2πnn+ 1
2 e−ne

1
12n and we get

|O[λ1,λ2]|

≤ C(d− 1)−(d+1)/2d−1/2
√

(d− 1)!e(d−1)/2 πd(d+1)/2

e(d−1)(d−2)/2 (d+ 1)d(d+3)/2dd(d+2)/2ϵ−d(d+1)/2

≤ C(d− 1)−3/4d−1/2(2π)1/4e
1

24(d−1)
πd(d+1)/2

e(d−1)(d−2)/2 (d+ 1)d(d+3)/2dd(d+2)/2ϵ−d(d+1)/2.

We have
(d− 1)−3/4d−1/2(2π)1/4e

1
24(d−1) ≤ 1

for all d ≥ 3. Therefore, we satisfy the desired property for d+ 1 with ON [ϵ] = O[λ1,λ2].

Proof of Lemma 3.11

Let C = (C1 . . . Cd+1) be in ON(d + 1). There is θ in [0,2π]d such that C1 = A1(θ). Let B be
the matrix in ON(d) given by

A(θ)TC =
(

1 0
0 B

)
.

There exists ψi1,...,id such that∣∣∣∣∣θi − π(2ij − 1)
nj

∣∣∣∣∣ ≤ π

nj
≤ πλ2√

d+ 1 − j
,∀j ∈ {1, . . . ,d}.

Lemma 3.12. We have

||A(θ) − A(θ + h)||op ≤

√√√√d−1∑
k=0

(d− k)h2
k+1.

Therefore we have
||A(θ) − A(ψi1,...,id)||op ≤ d1/2πλ2.

There exists B′ in ON(d)[λ1] such that ||B −B′||op ≤ λ1. We define C ′ ∈ ON(d+ 1) by

C ′ = A(ψi1,...,id)
(

1 0
0 B′

)
∈ ON [λ1,λ2].

Then we have

||C − C ′||op ≤
∣∣∣∣∣
∣∣∣∣∣A(θ)

(
0 0
0 B −B′

)∣∣∣∣∣
∣∣∣∣∣
op

+
∣∣∣∣∣
∣∣∣∣∣(A(θ) − A(ψi1,...,id))

(
1 0
0 B′

)∣∣∣∣∣
∣∣∣∣∣
op

≤ ||B −B′||op + ||A(θ) − A(ψi1,...,id)||op
≤ λ1 + d1/2πλ2.

Proof of Lemma 3.12

For θ ∈ Rd and h ∈ Rd, we define U0 = f(θ) and

Ui = f(θ1 + h1, . . . ,θi + hi,θi+1, . . . ,θd),i ∈ {1, . . . ,d}.

Similarly, we write A(i) = A(θ(h,i)) with

θ(h,i) = (θ1 + h1, . . . ,θi + hi,θi+1, . . . ,θd),
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for i ∈ {0,1, . . . ,d} and j ∈ {1, . . . ,d+ 1}. It implies A(0)
1 = U0 and A

(d)
1 = Ud. We have

A
(k)
ij = fi(aj(θ(h,k))) = cos

(
aj(θ(h,k))

)∏
l≤i

sin
(
aj(θ(h,k))

)
= cos

(
θi + 1i<j

π

2 + 1l≤ihi

)∏
l≤i

sin
(
θl + 1l<j

π

2 + 1l≤khl

)
,

and therefore

A
(k+1)
ij − A

(k)
ij =



0 if i ≤ k∏
l≤k

sin
(
θl + 1l<j

π
2 + hl

)
×
[
cos

(
θk+1 + 1k+1<j

π
2 + hk+1

)
− cos

(
θk+1 + 1k+1<j

π
2

)]
if i = k + 1∏

l<i
l ̸=k+1

sin
(
θl + 1l<j

π
2 + 1l≤k

)
× cos

(
θi + 1i<j

π
2

)
×
[
sin

(
θk+1 + 1k+1<j

π
2 + hk+1

)
− sin

(
θk+1 + 1k+1<j

π
2

)]
if i > k + 1,

= 2 sin
(
hk+1

2

)∏
l≤k

sin
(
θl + 1l<j

π

2 + hl

)

×



0 if i ≤ k

− sin
(
θk+1 + 1k+1<j

π
2 + hk+1

2

)
if i = k + 1

cos
(
θk+1 + 1k+1<j

π
2 + hk+1

2

) ∏
k+1<l<i

sin
(
θl + 1l<j

π
2

)
× cos

(
θi + 1i<j

π
2

)
if i > k + 1.

We have (k + 1 ≤ d, k ≥ 0)

||A(k+1) − A(k)||2F =
∑
i,j

(
A

(k+1)
ij − A

(k)
ij

)2

= 4 sin2
(
hk+1

2

) ∑
1≤j≤d+1

∏
l≤k

sin2
(
θl + 1l<j

π

2 + hl

) [
sin2

(
θk+1 + 1k+1<j

π

2 + hk+1

2

)

+ cos2
(
θk+1 + 1k+1<j

π

2 + hk+1

2

)
d+1∑
i=k+2

∏
k+1<l<i

sin2
(
θl + 1l<j

π

2

)
cos2

(
θi + 1i<j

π

2

) ]

= 4 sin2
(
hk+1

2

) ∑
1≤j≤d+1

∏
l≤k

sin2
(
θl + 1l<j

π

2 + hl

)

= 4 sin2
(
hk+1

2

)[
(d+ 1 − k)

∏
l≤k

sin2
(
θl + 1l<j

π

2 + hl

)

+
∑

1≤j≤k

∏
l≤k

sin2
(
θl + 1l<j

π

2 + hl

) ]

≤ 4 sin2
(
hk+1

2

)[
(d+ 1 − k)

∏
l≤k

cos2 (θl + hl) + 1 −
∏
l≤k

cos2 (θl + hl)
]

≤ 4 sin2
(
hk+1

2

)
(d− k)

∏
l≤k

cos2 (θl + hl)

≤ (d− k)h2
k+1.
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Finally, with || · ||op ≤ || · ||F we get

||A(d) − A(0)||op ≤
d−1∑
k=0

||(A(k+1) − A(k))T ||op

≤
d−1∑
k=0

(d− k)h2
k+1.

3.D Hidden Markov models
This section gathers the proof of Theorems 3.4, 3.5, 3.6, 3.9, 3.10, Corollary 3.3 and Proposition
3.1, 3.2, 3.3.

3.D.1 Proof of Theorem 3.4
The next result is proven in Section 3.D.1 and gives a bound on the ρ-dimension function.

Proposition 3.5. Under Assumption 3.3 and with δ(s) given by (3.38, we can take

Dn(s,1)
(
Mδ(s)

)
= CLV

[
1 + log

(
Kn(s,1)
V ∧ n(s,1)

)]
,

with C = 3930.

With Theorem 3.1 we have

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,Mδ

)
+ n−1

n∑
i=1

h2
(
Pi, P

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ (s+ 1)LV log n

n
,

for some positive constant C. The following result is proven in Proposition 3.D.1 and tells us
how well Mδ approximates M .

Proposition 3.6. For K ≥ 2, w,v in WK, Q,R in TK and probability distributions F1, . . . ,FK ,G1, . . . ,GK

on (Y ,Y), we have

h2 (Pw,Q,F ,Pv,R,G) ≤ h2(w,v) + (L− 1) max
k∈[K]

h2 (Qk·, Rk·)

+ Lmax
k∈[K]

h2 (Fk,Gk) .

With Proposition 3.6 and inequality (B.5) in Lecestre [62] we have

h2 (P,Mδ) ≤ (K − 1)Lδ + Lϵ2, ∀P ∈ M . (3.82)

With the choice of δ given in (3.38) we get

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
Pi, P

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ Lϵ2 + (s+ 1)LV log n

n
,

for some positive constant C. We now turn to the second bound in Theorem 3.4. The next
result is proven later in Section 3.D.1.
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Lemma 3.13. Under Assumption 3.2, there are positive constants C(Q∗) and r(Q∗) that only
depend on Q∗ such that

n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
≤ C(Q∗)e−r(Q∗)s,∀s ≥ L− 1,∀b ∈ [s+ 1],

and h2 (P ∗,Pi) ≤ C(Q∗)e−r(Q∗)i for all i ∈ [n].

In this situation, for P = P ∗ and s ≥ L− 1 we have

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ C(Q∗)
n(er(Q∗) − 1) + C(Q∗)e−r(Q∗)s

+ Lϵ2 + (s+ 1)LV log n
n

,

for some positive constant. The condition on s leads to the desired inequality.

Proof of Proposition 3.5

From Proposition A.1. [62], we have

DHδ(s)

n(s,b)⊗
i=1

Pi, Q
⊗n(s,b)

 ≤ 545.3V
[
5.82 + log

(
(KL + 1)2

δ(s)L

)
+ log+

(
n(s,b)
V

)]
.

• If V ≤ n(s,1)(K − 1)/K, we have

log
(

(KL + 1)2

δ(s,b)L

)
+ log+

(
n(s,b)
V

)
≤ log

(
(KL + 1)2n(s,1)L(K − 1)L

V
L

n(s,1)
V

)

= log
(

(KL + 1)2(K − 1)L
KL+1

)
+ log

(
KL+1n(s,1)L+1

V
L+1

)

= log
(

(KL + 1)2(K2 − 1)L
KL+1(K + 1)L

)
+ (L+ 1) log

(
Kn(s,1)

V

)
.

One can check that for L ≥ 2, we have (KL+1)2(K2−1)L

KL+1(K+1)L ≤ K2L−1 for all K ≥ 1. Therefore,

log
(

(KL + 1)2

δ(s)L

)
+ log+

(
n(s,b)
V

)
≤ (2L− 1) logK + (L+ 1) log

(
Kn(s,1)

V

)

≤ 3L log
(
KN

V

)
= 3L log

(
KN

V ∧N

)
.

• Otherwise V > n(s,1)(K − 1)/K and log
(
Kn(s,1)
V ∧n(s,1)

)
= logK. We have

log
(

(KL + 1)2

δ(s)L

)
+ log+

(
n(s,b)
V

)
≤ log

(
(KL + 1)2KLn(s,1)

V

)

= log
(
Kn(s,1)

V

)
+ (L− 1) logK + 2 log

(
1 +KL

)
≤ 3L log

(
Kn(s,1)
V ∧ n(s,1)

)
+ 2 log(1 +K−L)

≤ 2 log 2 + 3L log
(
Kn(s,1)
V ∧ n(s,1)

)
.
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Proof of Proposition 3.6

With Lemma B.3 [62], we have

h (Pw,Q,F , Pv,R,G) ≤ h
(
wQ⃝L, vR⃝L

)
+ max

k1,...,kL∈[K]L
h

(
L⊗
l=1

Fkl
,
L⊗
l=1

Gkl

)
,

with
wQ⃝L(k1, . . . ,kL) = wk1Qk1,k2 . . . QkL−1,kL

,∀k1, . . . ,kL ∈ [K]. (3.83)

Let ρ denote the Hellinger affinity defined by ρ = 1 − h2 For ρ− = mink∈[K] ρ (Qk,·,Rk,·), we
have

h2
(
wQ⃝L, vR⃝L

)
= 1 − ρ

(
wQ⃝L, vR⃝L

)
= 1 −

∑
k1,...,kL

√
wk1vk1Qk1,k2Rk1,k2 . . . QkL−1,kL

RkL−1,kL

= 1 −
∑

k1,...,kL−1

√
wk1vk1Qk1,k2Rk1,k2 . . . QkL−2,kL−1RkL−2,kL−1ρ

(
QkL−1,·,RkL−1,·

)
≤ 1 − ρ−

∑
k1,...,kL−1

√
wk1vk1Qk1,k2Rk1,k2 . . . QkL−2,kL−1RkL−2,kL−1 .

By induction we get

h2
(
wQ⃝L, vR⃝L

)
≤ 1 − ρL−1

− ρ (w,v) ≤ h2(w,v) + (L− 1) max
k∈[K]

h2 (Qk,·,Rk,·) .

We also have

h2
(

L⊗
l=1

Fkl
,
L⊗
l=1

Gkl

)
= 1 − ρ

(
L⊗
l=1

Fkl
,
L⊗
l=1

Gkl

)

= 1 −
L∏
l=1

ρ (Fkl
, Gkl

) ≤
L∑
l=1

h2 (Fkl
, Gkl

) ,

which allows us to conclude the proof.

Proof of Lemma 3.13

Let s be not smaller than L − 1 and b be in [s + 1]. Since (Yi,Hi)1≤i≤N is a hidden Markov
model, we have that (

X
(s,b)
i ,H

(L,s,b)
i

)
1≤i≤n

is also a hidden Markov model, with

X
(s,b)
i = Xb+(i−1)(s+1) and H

(L,s,b)
i =

(
Hb+(i−1)(s+1), . . . ,Hb+(i−1)(s+1)+L−1

)
.

From Lemma 3.4, we have

K
(
P∗
s,b||Pind

s,b

)
≤

n(s,b)−1∑
i=1

K
(
L
(
H

(L,s,b)
i ,H

(L,s,b)
i+1

)
||L

(
H

(L,s,b)
i

)
⊗ L

(
H

(L,s,b)
i+1

))
.

We can use the following result to bound the terms in the sum on the right-hand side of the
inequality.
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Lemma 3.14. Let A and B be random variables taking values in the finite sets A and B
respectively. We have

K (L(A,B)||L(A) ⊗ L(B)) ≤ 2
∑
a∈A

dTV (L(B|A = a),L(B)) .

For k1, . . . ,k2L ∈ [K∗], we have

P
(
H

(L,s,b)
i+1 = (kL+1, . . . ,k2L)|H(L,s,b)

i = (k1, . . . ,kL)
)

= Q∗
k2L−1,k2L

. . . Q∗
kL+1,kL+2

(Q∗)s+2−L
kL,kL+1

Therefore, we have

K
(
P∗
s,b||Pind

s,b

)
≤ 2

n(s,b)−1∑
i=1

∑
k∈[K∗]

dTV
(
(Q∗)s+2−L

k,· , νiQ
s+2−L

)
,

where νi = w∗(Q∗)b+(i−1)(s+1)+L−2 is the distribution of Hb+(i−1)(s+1)+L−1. Since Q∗ is irreducible
and aperiodic, there exists a unique invariant probability π∗ and there are positive constants
C(Q∗) and r(Q∗) such that

dTV
(
(Q∗)tk,·, π∗

)
≤ C(Q∗)e−r(Q∗)t,∀k ∈ [K∗],∀t ≥ 1.

Combining the different inequalities we get

K
(
P∗
s,b||Pind

s,b

)
≤ 4K∗(n(s,b) − 1)C(Q∗)e−r(Q∗)(s+1).

We have
h2 (P ∗,Pi) ≤ dTV (P ∗,Pi) = dTV

(
π∗, w∗(Q∗)i−1

)
≤ C(Q∗)e−r(Q∗)(i−1).

Proof of Lemma 3.14

We denote by (A × B)+ the set {(a,b) ∈ A × B;P(A = a,B = b) > 0}. We have

K (L(A,B)||L(A) ⊗ L(B)) =
∑

(a,b)∈(A ×B)+

P (A = a,B = b) log
(

P (A = a,B = b)
P (A = a)P (B = b)

)

≤
∑

(a,b)∈(A ×B)+

P (A = a,B = b)
(

P (A = a,B = b)
P (A = a)P (B = b) − 1

)

=
∑

(a,b)∈(A ×B)+

(P (A = a,B = b) − P (A = a)P (B = b))2

P (A = a)P (B = b) .

For (a,b) ∈ (A × B)+,

(P (A = a,B = b) − P (A = a)P (B = b))2

P (A = a)P (B = b)
= |P (A = a|B = b) − P (A = a)| × |P (B = b|A = a) − P (B = b)|
≤ |P (B = b|A = a) − P (B = b)| .

Finally, we get

K (L(A,B)||L(A) ⊗ L(B)) ≤
∑
a∈A

2dTV (L (B|A = a) ,L (B)) .
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3.D.2 Proof of Corollary 3.3

We have

P
(
Xi = (Y ′

i , . . . ,Y
′
i+L−1)

)
≥ P (Ei = · · · = Ei+L−1 = 1) = pipi+1 . . . pi+L−1,

and with the convexity of the squared Hellinger distance

h2 (Pi, P ∗) ≤ pipi+1 . . . pi+L−1h
2 (P ′

i ,P
∗) + (1 − pipi+1 . . . pi+L−1)

≤ h2 (P ′
i ,P

∗) + (1 − pi) + · · · + (1 − pi+L−1),

where P ′
i = L(Y ′

i , . . . ,Y
′
i+L−1). One can check that n ≥ 1+N/2 with our conditions on L. With

Theorem 3.4, Lemma 3.2 and Lemma 3.13 we have

CE
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,M ) + C(Q∗)

n(er(Q∗) − 1) + L

N

N∑
i=1

(1 − pi)

+ e−r(Q∗)s + Lϵ2 + (s+ 1)LV log n
n

,

for some positive constant C and s ≥ L− 1.

3.D.3 Proof of Theorems 3.5 and 3.6

With (3.45) and Theorem 3.4, we have

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,M

)
+ n−1

n∑
i=1

h2
(
Pi,P

)

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ Lϵ2 + (s+ 1)L2KL log(2|Fλ−,λ+,M |[ϵ]) log n

n
.

We can simply follow the proof of Theorems 3.2 and 3.3 to conclude.

3.D.4 Proof of Proposition 3.1

The proof relies on the following lemma.

Lemma 3.15. The set A of probability density functions, defined by

A =
{
(x1, . . . ,xL) 7→ q1(x1) . . . qL(xL); qi ∈ E

(
Θi,ηi,Ti,di,Bi

)
,∀i ∈ {1, . . . ,L}

}
,

is VC-subgraph with VC-index 3 + d1 + · · · + dL.

As L ≥ 2 and max
1≤k≤K

dk ≥ 2, Assumption 3.3 is met with

V = 3KL +KL−1L
K∑
k=1

dk ≤ KL
(

3 + L max
1≤k≤K

dk

)
.
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Proof of Lemma 3.15

We have

A =
{
(x1, . . . ,xL) 7→ fθ1(x1) . . . fθL

(xL); θi ∈ Θi,∀i ∈ {1, . . . ,L}
}

= exp ◦
{

(x1, . . . ,xL) 7→
L∑
i=1

⟨ηi(θi), Ti(xi)⟩ + Ai(θi) +Bi(xi),∀i ∈ {1, . . . ,L}
}

⊂ exp ◦ (V +B)

with B : (x1, . . . ,xL) 7→ Bi(x1) + · · · +Bi(xL) and

V =
{

(x1, . . . ,xL) 7→ A+
K∑
i=1

⟨ηi, Ti(xi)⟩; ηi ∈ Rd,∀i ∈ {1, . . . ,L}, A ∈ R
}
.

The set V is a vector space of dimension 1 + d1 + · · · + dL and exp is monotone, therefore, from
Proposition 42-(i,ii) [9] and Lemma 2.6.15 [84] and Lemma 2.6.18-(v) [84], the class of functions
A is VC-subgraph with V C-index V (A) ≤ 3 + d1 + · · · + dL.

3.D.5 Proof of Proposition 3.2
We first need the following lemma to apply results of regular parametric models.

Lemma 3.16. Under Assumption 3.5, our model is regular, i.e.

• ϕ 7→ p(x;ϕ) is continuous for all x,

• it is differentiable for all x,

• and the information matrix function

I : ϕ 7→ I(ϕ) =
∫

X L
∂ϕp(x;ϕ) (∂ϕp(x;ϕ))T µ(x)

p(x;ϕ)

is well-defined and continuous.

We can now apply results of Ibragimov and Has’minskĭı [54], in particular (7.20) which is
a consequence of Theorem 7.6. Let κ be a compact subset of Φ such that Φ belongs to the
interior of κ. There is a positive constants a(κ) such that

∀ϕ ∈ κ, h2
(
Pϕ,Pϕ

)
≥ a(κ) ||ϕ− ϕ||2

1 + ||ϕ− ϕ||2
≥ a(κ)

1 + b(κ) ||ϕ− ϕ||2,

with b(κ) = max
ϕ∈κ

||ϕ−ϕ||2. We know that c(κ) := inf
ϕ∈Φ\κ

h2
(
Pϕ,Pϕ

)
is positive. Therefore, there

exist a positive constant C(ϕ) such that

∀ϕ ∈ Φ, h2
(
Pϕ, Pϕ

)
≥ 1ϕ∈κ

a(κ)
1 + b(κ) ||ϕ− ϕ||2 + 1ϕ∈Φ\κc(κ)

≥ C(ϕ)
[
||w − w||2 +

∣∣∣∣∣∣Q−Q
∣∣∣∣∣∣2 +

K∑
k=1

∣∣∣∣∣∣θ − θ
∣∣∣∣∣∣2 ∧ 1

]
.
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Proof of Lemma 3.16

For k1, . . . ,kL ∈ [K] we have

p(x;ϕ) ≥ wk1Qk1,k2 . . . QkL−1,kL

L∏
l=1

fθkl
(xl). (3.84)

• Since ηk and Ak are continuous for all k in [K], then the applications θk 7→ fθk
(x) are

continuous for all x ∈ X and so is ϕ 7→ p(x;ϕ) for all x ∈ Y L.

• The function u 7→ p(x;u) is differentiable at the point u = ϕ for all x ∈ Y L since Ak and
ηk are differentiable for all k ∈ [K]. For all k ∈ [K] and j ∈ [ek],

∂θ
k,j
p(x;ϕ) =

∑
k1,...,kL

wk1Qk1,k2 . . . QkL−1,kL

L∑
l=1

1kl=k

∏
i ̸=l
fθkj

(xj)
 ∂θ

k,j
fθ

k
(xl)

=
∑

k1,...,kL

wk1Qk1,k2 . . . QkL−1,kL

L∏
i=1

fθki
(xi)

×
L∑
l=1

1kl=k

[
⟨∂θ

k,j
ηk(θk), Tk(xl)⟩ + ∂θ

k,j
Ak(θk)

]
. (3.85)

For k ∈ [K − 1] and k′ ∈ [K] we have

∂w
k
p(x;ϕ) =

∑
k2,...,kL

Qk,k2
. . . QkL−1,kL

fθ
k
(x1)

L∏
l=2

fθkl
(xl)

−
∑

k2,...,kL

QK,k2 . . . QkL−1,kL
fθK

(x1)
L∏
l=2

fθkl
(xl) (3.86)

and

∂Q
k′,k
p(x;ϕ) =

∑
k1,k2,...,kL

wk1∂Qk′,k

[
Qk1,k2 . . . QkL−1,kL

] L∏
l=1

fθkl
(xl)

=
∑

k1,k2,...,kL

wk1

L∏
i=1

fki,θki
(xi)

L∑
l=2

[
1(k′,k)=(kl−1,kl) − 1(k′,K)=(kl−1,kl)

] ∏
2≤j≤L,
j ̸=l

Qkj−1,kj
.

(3.87)

Since Ak and ηk are C1, we just need to check that the functions

ϕ 7→
∫

Y L
Tk,j(xi)Tk′

,j′(xi′)
L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ) , (3.88)

ϕ 7→
∫

Y L
Tk,j(xi)

L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ) , (3.89)

ϕ 7→
∫

Y L

L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ) , (3.90)

are well-defined and continuous for all k1,k
′
1, . . . ,kL,k

′
L,k,k ∈ [K],j ∈ [dk],j′ ∈ [d

k
′ ],i,i′ ∈ [L],

where
Tk(x) = (Tk,1(x), . . . ,Tk,dk

(x)) ∈ Rdk ,∀x ∈ Y .

We deal with integrability in the first time and then look at continuity, using (3.84) repeatedly.
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• We have

0 ≤
∫

Y L

L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ)

≤
(
wk1Qk1,k2 . . . QkL−1,kL

)−1 ∫
Y L

L∏
l=1

fθk′
j

(xj)µ(dx)

=
(
wk1Qk1,k2 . . . QkL−1,kL

)−1
< ∞,

and (3.90) is well defined. Similarly

0 ≤
∫

Y L

∣∣∣Tk,j(xi)∣∣∣ L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ)

≤
(
wk′

1
Qk′

1,k
′
2
. . . Qk′

L−1,k
′
L

)−1 ∫
Y

∣∣∣Tk,j(xi)∣∣∣ fθki
(xi)ν(dxi)

≤
(
wk′

1
Qk′

1,k
′
2
. . . Qk′

L−1,k
′
L

)−1
√∫

Y

∣∣∣Tk,j(xi)∣∣∣2 fθki
(xi)ν(dxi) < ∞,

and (3.89) is well defined. Finally

0 ≤
∫

Y L

∣∣∣Tk,j(xi)Tk′
,j′(xi′)

∣∣∣ L∏
l=1

fθkl
(xl)fθk′

l

(xl)
µ(dx)
p(x;ϕ)

≤
(
wk1wk′

1
Qk1,k2Qk′

1,k
′
2
. . . QkL−1,kL

Qk′
L−1,k

′
L

)−1/2

×
∫

Y L

∣∣∣Tk,j(xi)Tk′
,j′(xi′)

∣∣∣
√√√√ L∏
l=1

fθkl
(xl)fθk′

l

(xl)µ(dx)

≤
(
wk1wk′

1
Qk1,k2Qk′

1,k
′
2
. . . QkL−1,kL

Qk′
L−1,k

′
L

)−1/2

×
√∫

Y

∣∣∣Tk,j(xi)∣∣∣2 fθki
(xi)ν(dxi)

√∫
Y

∣∣∣T
k

′
,j′(xi′)

∣∣∣2 fθk′
i′

(xi′)ν(dxi′) < ∞,

and (3.88) is well defined. The Fisher information matrix I(ϕ) is well-defined for all ϕ.
We now turn to continuity.
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• We have ∣∣∣∣∣∣∣
∏L
l=1 fθkl

(xl)fθk′
l

(xl)
p(x;ϕ) −

∏L
l=1 fkl,θ

′
kl

(xl)fk′
l
,θ′

k′
l

(xl)

p(x;ϕ′)

∣∣∣∣∣∣∣
≤

∏L
l=1 fθk′

l

(xl)
p(x;ϕ)

∣∣∣∣∣
L∏
l=1

fθkl
(xl) −

L∏
l=1

fθ′
kl

(xl)
∣∣∣∣∣

+
L∏
l=1

fθ′
kl

(xl)
L∏
l=1

fθk′
l

(xl)
∣∣∣∣∣ 1
p(x;ϕ) − 1

p(x;ϕ′)

∣∣∣∣∣
+
∏L
l=1 fθ′

kl
(xl)

p(x;ϕ′)

∣∣∣∣∣
L∏
l=1

fθk′
l

(xl) −
L∏
l=1

fθ′
k′

l

(xl)
∣∣∣∣∣

≤

∣∣∣∣∏L
l=1 fθkl

(xl) −∏L
l=1 fθ′

kl
(xl)

∣∣∣∣
wk′

1
Qk′

1,k
′
2
. . . Qk′

L−1,k
′
L

+ |p(x;ϕ) − p(x;ϕ′)|
w′
k1wk′

1
Q′
k1,k2Qk′

1,k
′
2
. . . Q′

kL−1,kL
Qk′

L−1,k
′
L

+

∣∣∣∣∏L
l=1 fθk′

l

(xl) −∏L
l=1 fθ′

k′
l

(xl)
∣∣∣∣

w′
k1Q

′
k1,k2 . . . Q

′
kL−1,kL

.

Therefore, ∣∣∣∣∣∣∣
∫

Y L

∏L
l=1 fθkl

(xl)fθk′
l

(xl)
p(x;ϕ) µ(dx) −

∫
Y L

∏L
l=1 fθ′

kl
(xl)fθ′

k′
l

(xl)

p(x;ϕ′) µ(dx)

∣∣∣∣∣∣∣
≤

2dTV
(⊗L

l=1 Fθkl
,
⊗L

l=1 Fθ′
kl

)
wk′

1
Qk′

1,k
′
2
. . . Qk′

L−1,k
′
L

+ 2dTV (Pϕ, Pϕ′)
w′
k1wk′

1
Q′
k1,k2Qk′

1,k
′
2
. . . Q′

kL−1,kL
Qk′

L−1,k
′
L

+
2dTV

(⊗L
l=1 Fθk′

l

,
⊗L

l=1 Fθ′
k′

l

)
w′
k1Q

′
k1,k2 . . . Q

′
kL−1,kL

.

Since convergence with respect to the total variation distance and to the Hellinger distance
are equivalent, we get continuity of (3.90) with Proposition 3.6. Similarly, we have∣∣∣∣∣∣∣

∫
Y L

Tk,j(xi)
∏L
l=1 fθkl

(xl)fθk′
l

(xl)
p(x;ϕ) µ(dx) −

∫
Y L

Tk,j(xi)
∏L
l=1 fθ′

kl
(xl)fθ′

k′
l

(xl)

p(x;ϕ′) µ(dx)

∣∣∣∣∣∣∣
≤

∫
Y L |Tk,j(xi)|

∣∣∣∣∏L
l=1 fθkl

(xl) −∏L
l=1 fθ′

kl
(xl)

∣∣∣∣µ(dx)

wk′
1
Qk′

1,k
′
2
. . . Qk′

L−1,k
′
L

+
∫
Y L |Tk,j(xi)| |p(x;ϕ) − p(x;ϕ′)|µ(dx)
w′
k1wk′

1
Q′
k1,k2Qk′

1,k
′
2
. . . Q′

kL−1;kL
Qk′

L−1,k
′
L

+

∫
|Tkl

(xl)|
∣∣∣∣∏L

i=l fθk′
l

(xl) −∏L
i=1 fk′

l
,θ′

k′
l

(xl)
∣∣∣∣µ(dx)

w′
k1Q

′
k1,k2 . . . Q

′
kL−1,kL

.
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We have ∫
Y L

|Tk,j(xi)| |p(x;ϕ) − p(x;ϕ′)|µ(dx)

≤
∑

1≤k1,...,kL≤K

∫
Y L

|Tk,j(xi)|
∣∣∣∣∣
L∏
l=1

fθkl
(xl) −

L∏
l=1

fθ′
kl

(xl)
∣∣∣∣∣µ(dx)

and
∫

Y L
|Tk,j(xi)|

∣∣∣∣∣
L∏
l=1

fθkl
(xl) −

L∏
l=1

fθ′
kl

(xl)
∣∣∣∣∣µ(dx)

≤
∫

Y L
|Tk,j(xi)|

∣∣∣fθki
(xi) − fθ′

ki
(xi)

∣∣∣ ν(dxi)

+ 2
∫

Y
|Tk,j(xi)|fθki

(xi)ν(dxi) ×
∑
l<i

dTV

(
Fθkl

, Fθ′
kl

)

+ 2
∫

Y
|Tk,j(xi)|fθ′

ki
(xi)ν(dxi) ×

∑
l>i

dTV

(
Fθkl

, Fθ′
kl

)
.

As ∫
Y

|Tk,j(x)|
∣∣∣fθk

(x) − fθ′
k
(x)
∣∣∣ ν(dx)

≤
√∫

Y
|Tk,j(x)|2

∣∣∣fθk
(x) − fθ′

k
(x)
∣∣∣ ν(dx) ×

√
2dTV

(
Fθk

, Fθ′
k

)
−−−−→
θ′

k
→θk

0.

for all k ∈ [K] and θk ∈ Θk, we get continuity of (3.89). Similarly, we only need∫
Y

|Tk,j(x)|2
∣∣∣fθk

(x) − fθ′
k
(x)
∣∣∣ ν(dx) −−−−→

θ′
k

→θk

0

to obtain the continuity of (3.88).

3.D.6 Proof of Theorem 3.9
We start the proof with two lemmas that ensure we fit into the framework of Proposition 3.2.

Lemma 3.17. The information matrix I(ϕ) is definite positive for all ϕ in Φ.

Lemma 3.18. Let (ϕn)n∈N be a sequence in Φ. If lim
n→∞

h
(
Pϕn ,Pϕ

)
= 0, then we have lim

n→∞
ϕn =

ϕ.

One can see that Lemma 3.18 implies that inf
||ϕ−ϕ||≥a
ϕ∈Φ

h2
(
Pϕ,Pϕ

)
> 0 for all a > 0. Therefore

we can apply Proposition 3.2. From Proposition 3.1, we get V ≤ (3 + L)KL = 5K3.

Proof of Lemma 3.17

For k = (k1, . . . ,kL) ∈ [K]L, the notation wQ⃝L(k) is defined by (3.83). Following Theorem 1
of Meijer & Ypma [72], we have

det(I(ϕ)) = 0 ⇔ ∃λ ̸= 0,
∑
i

λi∂ϕi
p(x;ϕ) = 0 for µ-almost all x.
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We can use (3.85), (3.86) and (3.87) to get

0 =
∑

k∈[K]L
wQ⃝L(k)

L∏
l=1

fθkl
(xl)

L∑
l=1

ekl∑
j=1

λθkl,j

[
⟨∂θkl,j

ηkl
(θkl

), Tkl
(xl)⟩ + ∂θkl,j

Akl
(θkl

)
]

+
K−1∑
k1=1

λwk1

[
fθk1

(x1) − fθK
(x1)

] ∑
k2,...,kL

wQ⃝L(k)
wk1

L∏
i=2

fθki
(xi)

+
L∑
l=2

K−1∑
kl=1

∑
k1,...,kl−1,kl+1,...,kL

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

[
fθkl

(xl) − fθK
(xl)

]∏
i ̸=l
fθk

(xi),

for almost all x. If we apply it to exponential distributions, we get

0 = −
∑

k∈[K]L
wQ⃝L(k)θk1 . . . θkL

e−θk1x1−···−θkL
xL

(
L∑
l=1

λθkl
xl

)
(3.91)

+
K−1∑
k1=1

λwk1

∑
k2,...,kL

wQ⃝L(k)
wk1

θk1 . . . θkL
e−θk1x1−···−θkL

xL

−
K−1∑
k1=1

λwk1

∑
k2,...,kL

wQ⃝L(k)
wk1

θKθk2 . . . θkL
e−θKx1−···−θkL

xL

+
L∑
l=2

K−1∑
kl=1

∑
ki;i ̸=l

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

θk1 . . . θkL
e−θk1x1−···−θkl

xl

−
L∑
l=2

K−1∑
kl=1

∑
ki;i ̸=l

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

θk1 . . . θkl−1θKθkl+1 . . . θkL
e−θk1x1−···−θKxl−···−θkl

xl .

As θ1 > · · · > θK , we can identify the coefficients for each x 7→ e−θk1x1−···−θkL
xL . For k ∈

[K − 1]L, we get

0 = −wQ⃝L(k)θk1 . . . θkL

(
L∑
l=1

λθkl
xl

)
+ λwk1

wQ⃝L(k)
wk1

θk1 . . . θkL

+
L∑
l=2

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

θk1 . . . θkL
for almost all x

⇒ 0 = λθk1
= · · · = λθkL

=
λwk1

wk1

+
L∑
l=2

λQkl−1,kl

Qkl−1,kl

.

This implies λθk
= 0 for all k ∈ [K − 1] and there are quantities λ∗

w and λ∗
Q such that λwk

wk
= λ∗

k

for all k ∈ [K − 1] and
λQk1,k2
Qk1,k2

= λ∗
Q for k1,k2 ∈ [K − 1] and λ∗

w + (L − 1)λ∗
Q = 0. Therefore,

(3.91) becomes

0 = λ∗
w

K−1∑
k1=1

∑
k2,...,kL

wQ⃝L(k)θk1 . . . θkL
e−θk1x1−···−θkL

xL (3.92)

− λ∗
w

∑
k2,...,kL

K−1∑
k1=1

wQ⃝L(k)
 θKθk2 . . . θkL

e−θKx1−···−θkL
xL

+
L∑
l=2

K−1∑
kl=1

∑
ki:i ̸=l

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

θk1 . . . θkL
e−θk1x1−···−θkl

xl

−
L∑
l=2

K−1∑
kl=1

∑
ki:i ̸=l

λQkl−1,kl

wQ⃝L(k)
Qkl−1,kl

θk1 . . . θK . . . θkL
e−θk1x1−···−θKxl−···−θkl

xl .
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For k2, . . . ,kL ∈ [K − 1]L−1, we write k′ = (K,k2, . . . ,kL) and with identification with respect
to x 7→ e−θKx1−θk2x2−···−θkL

xL we have

0 = −λ∗
w

K−1∑
k1=1

wQ⃝L(k)
 θKθk2 . . . θkL

+ λQK,k2

wQ⃝L(k′)
QK,k2

θKθk2 . . . θkL

⇒λ∗
w

K−1∑
k1=1

wk1Qk1,k2

 =
λQK,k2

QK,k2

wKQK,k2 .

For k ∈ [K − 1],

λQK,k

QK,k

= λ∗
wβk with βk =

K−1∑
k′=1

wk′Qk′,k

wKQK,k

. (3.93)

Finally (3.92) becomes

0 = λ∗
w

K−1∑
k1=1

∑
k2,...,kL

wQ⃝L(k)θk1 . . . θkL
e−θk1x1−···−θkL

xL

− λ∗
w

∑
k2,...,kL

K−1∑
k1=1

wQ⃝L(k)
 θKθk2 . . . θkL

e−θKx1−···−θkL
xL

+ λ∗
Q

L∑
l=2

∑
kl−1,kl∈[K−1]

∑
ki∈[K];
i/∈{l−1,l}

wQ⃝L(k)θk1 . . . θkL
e−θk1x1−···−θkL

xL

+ λ∗
w

L∑
l=2

∑
kl∈[K−1]

∑
ki∈[K];
i ̸=l

βkl
wQ⃝L(k)θk1 . . . θkl−2θKθkl

. . . θkL
e−θk1x1−···−θKxl−1−θkl

xl−···−θkL
xL

− λ∗
Q

L∑
l=2

∑
kl−1,kl∈[K−1]

∑
ki∈[K];
i/∈{l−1,l}

wQ⃝L(k)θk1 . . . θkl−1θKθkl+1 . . . θkL
e−θk1x1−···−θkl−1xl−1−θKxl−···−θkL

xL

− λ∗
w

L∑
l=2

K−1∑
kl=1

∑
ki∈[K];
i ̸=l

βkl
wQ⃝L(k)θk1 . . . θkl−2θKθKθkl+1 . . . θkL

e−θk1x1−···−θKxl−1−θKxl−···−θkL
xL .

Identification with respect to x 7→ e−θKx1···−θKxK gives

0 = −λ∗
w

(
K−1∑
k=1

wk1

)
QL−1
K,K − λ∗

w

L−1∑
l=2

K−1∑
kl=1

βkl
wKQ

L−3
K,KQkl,KQK,kl

) − λ∗
w

K−1∑
kL=1

βkL
wKQ

L−2
K,KQK,kL

⇒0 = λ∗
w

(1 − wK)Q2
K,K + (L− 2)

K−1∑
k2=1

wKβk2Qk2,KQK,k2 +QK,K

K−1∑
k2=1

wKβk2QK,k2


⇒0 = λ∗

w

(1 − wK)Q2
K,K + (L− 2)

K−1∑
k2=1

K−1∑
k1

wk1Qk1,k2

Qk2,K +QK,K

K−1∑
k2=1

K−1∑
k1=1

wk1Qk1,k2

 ,
where the last inequality comes from the definition of βk. One can notice the quantity between
the brackets is positive as a consequence of the definition of OK . Therefore, we necessarily have
λ∗
w = 0 and consequently λ∗

Q = λK,1 = · · · = λK,K−1 = 0 which means λ = 0 and therefore the
information matrix is definite positive.



138 Chapter 3. Dependent observations

Proof of Lemma 3.18

The parameters wk and Qk,k′ are bounded so we can assume the sequences wk,n and Qk,k′
n

are converging, with respective limits w∗
k and Q∗

k,k′ , even if it means extracting a subsequence.
For other parameters, it is always possible to extract a subsequence ϕψ(n) such that for all
k in [K], we have θk,ψ(n) −−−→

n→∞
θ∗
k ∈ [0,∞]. We can deduce from the definition of Φ that

θ∗
1 ≥ θ∗

2 ≥ · · · ≥ θ∗
K . Let us consider the following cases, dropping the dependency on ψ in the

notation.
• If θ∗

k = +∞, we have θk,ne−θk,nx · dx P−−−→
n→∞

Dirac(0). Since limn→∞ h
(
Pϕ,n,Pϕ

)
, we get

that w∗
k1Q

∗
k1,k2 . . . QkL−1,L = 0 if k appears in k1,k2, . . . ,kL.

• If θ∗
k = 0. We have

Pϕ

(
[θ−1
k,n,+ ∞)L

)
≤ (e−θK/θk,n)L −−−→

n→∞
0,

and
Pϕn

(
[θk,n,+ ∞)L

)
≥ wknQ

L−1
kn,kn

e−L.

Since lim
n→∞

h
(
Pϕn ,Pϕ

)
= 0, we must have w∗

k(Q∗
k,k)L−1 = 0.

This proves that Pϕn converges to

P∞(dx) =
∑

k1,...,kL∈[K]+
w∗
k1Q

∗
k1,k2 . . . Q

∗
kL−1,kL

θ∗
kl

L∏
l=1
e

−θ∗
kl
xldx1 . . . dxL,

with [K]+ = {k ∈ [K]; θ∗
k ∈ (0,∞)}, and necessarily P∞ = Pϕ. We can easily identify the

different parameters which implies that (w∗,Q∗,θ∗) and (w,Q,θ) are equal up to a permutation
σ on [K]. The ordering of the θk and the θ∗

k ensures that this equality is true, not even up to
a permutation.

3.D.7 Proof of Theorem 3.10
We just need to check that we satisfy Assumption 3.3. Then we can combine Proposition 3.3
and Theorem 3.4. We use Definition 41 [9] that allows us to consider functions taking values
in (−∞,+ ∞]. From Lemma 2.6.15 [84], we have that

{x 7→ (x1 − z1)(x2 − z2); z1,z2 ∈ R} ⊂ {x 7→ ax1 + bx2 + x1x2 + c; a,b,c ∈ R}

is VC-subgraph with VC-dimension smaller than or equal to 4. With Proposition 42-(v) [9],
we get that {x 7→ |x1 − z1| · |x2 − z2|; z1,z2 ∈ R} is VC-subgraph with VC-dimension not larger
than 37.608. We now need the following result.
Lemma 3.19. If A ⊂ P (X ) is a VC-class with dimension V , then FA ,a := {pA,a;A ∈ A }
is VC-subgraph with dimension V for any a in R where

pA,a(x) :=
{
a if x ∈ A,
+∞ otherwise.

Since C := {Cz1,z2 := [z1 ± 1] × [z2 ± 1]; z1,z2 ∈ R} is VC with VC-dimension 4, we get that
FC ,0 is VC-subgraph with VC-dimension 4. We can apply Proposition 42-(v) [9] one more time
which implies that G = {x 7→ gz1,z2(x); z1,z2 ∈ R} is VC-subgraph with dimension at most
4.701(37.608 + 4) ≤ 196, with

gz1,z2(x) := pCz1,z2 ,0 ∨ |x1 − z1| · |x2 − z2|

=
{

|x1 − z1| · |x2 − z2| if x ∈ [z1 ± 1] × [z2 ± 1],
+∞ otherwise.
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We need another lemma before we have a bound on the VC-dimension of

Sα,2 :=
{

x 7→ fα(x1 − z1)fα(x2 − z2) = (1 − α)2

4
1

gαz1,z2(x) ; z1,z2 ∈ R
}
.

Lemma 3.20. Let G be a set of functions X → [0,∞]. If G is VC-subgraph with VC-dimension
at most V , then G −1 :=

{
1
g
; g ∈ G

}
is VC-subgraph with VC-dimension at most V , with the

convention 1/0 = +∞ and 1/+ ∞ = 0.

Combining this lemma with Proposition 42-(ii) [9], we get that Sα,2 is VC-subgraph with
VC-dimension at most 196. This proves that we satisfy Assumption 3.3 with

V = 4 × 196 = 784.

Proof of Lemma 3.19

Assume that FA has VC-dimension larger than V . Therefore, there is (xi,ui)i∈[V+1] ∈ (X × R)[V+1]

such that for each I ⊂ [V +1] we can find AI in A such that i ∈ I ⇔ fAI
(xi) > ui. Necessarily,

we have ui ≥ a for all i ∈ [V + 1] and therefore i ∈ I ⇔ xi /∈ AI . Therefore, A can shatter
(ui)iin[V+1] which contradicts the fact that its VC-dimension is at most V .

Proof of Lemma 3.20

We adapt the proof of Lemma 2.6.18 [84]. Let (xi,ui)i∈[n] ∈ (X × R)n be such that for each
I ⊂ [n], we have gI ∈ G such that

i ∈ I ⇔ 1
gI(xi)

> ui.

For all i ∈ [n], we necessarily have ui ≥ 0 and we define ai := max{gJ(xi); 1
gJ (xi) > ui}. One

can check that we have

gI(xi) > ai ⇔ 1
gI(xi)

≤ ui.

Therefore G shatters (xi,ai)i∈[n] ∈ (X × R)n which implies n ≤ V .

3.D.8 Proof of Proposition 3.3
For π = (π11,π12,π21,π22) ∈ W4 and z ∈ R we write

pπ,z := π11fα ⊗ fα + π12fα ⊗ fα(· − z) + π21fα(· − z) ⊗ fα + π22fα(· − z) ⊗ fα(· − z).

We define π∗ ∈ W4 by π∗
11 = w∗(1 − q∗

12), π∗
12 = w∗q∗

12 and π∗
21 = (1 − w∗)q∗

21. We also define
g : W4 × R → R by

g(π,z) = 2h2 (Pπ∗,z∗ ,Pπ,z) =
∫
R2
a2
π,z(x1,x2)dx,

with aπ,z : R2 → R defined by aπ,z(x1,x2) = |√pπ,z − √
pπ∗,z∗ |. We will drop the dependence on

π and z, and just write a = aπ,z. Without loss of generality we can assume z∗ > 0 as we have
h2(Pπ,−z,Pπ∗,−z∗) = h2(Pπ,z,Pπ∗,z∗). We define the set of parameters

Y =
{

(π,z) ∈ W4 × R; z ∈
(
z∗

2 ∨ z∗ − β∗, z∗ + β∗
)}

,

where β∗ ∈ (0,1] is set in the proof of Lemma 3.21 which proves the desired inequality on Y .
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Lemma 3.21. There is a positive constant C(α,z∗,π∗) such that

g(π,z) ≥ C(α,z∗,π∗)
[
(π∗

11 − π11)2 + (π∗
12 − π12)2 + (π∗

21 − π21)2 + |z − z∗|1−α
]
,

for all (π,z) in Y .

We also get that g is lower bounded out of Y with the following lemma.

Lemma 3.22. There is a positive constant C(α,z∗,π∗
22) such that

g(π,z) ≥ C(α,z∗,π∗
22),∀(π,z) /∈ Y .

One can check that we have |z − z∗|1−α = (|z − z∗| ∧ 1)1−α for (π,z) ∈ Y . And since
(π∗

11 − π11)2 + (π∗
12 − π12)2 + (π∗

21 − π21)2 + (|z − z∗| ∧ 1)1−α ≤ 3 for all π and all z, there is a
positive constant C(α,z∗,π∗) such that

g(π,z) ≥ C(α,z∗,π∗)
[
(π∗

11 − π11)2 + (π∗
12 − π12)2 + (π∗

21 − π21)2 + (|z − z∗| ∧ 1)1−α
]
,

for all π,z. We now relate the distance to π∗ to the distance to (w∗,q∗) with the following result.

Lemma 3.23. For w,q12,q21 ∈ [0,1] we have

(π11 − π∗
11)2 + (π12 − π∗

12)2 + (π21 − π∗
21)2

≥ max
(

1
2(w − w∗)2,

(1 − w∗)2

3 (q∗
21 − q21)2 , (w∗)2 (q12 − q∗

12)
2
)
.

This last result allows us to conclude the proof of Proposition 3.3.

Proof of Lemma 3.21

We will repeatedly use the following inequality

∀x,y > 0,
∣∣∣x1−γ − y1−γ

∣∣∣ ≥ (1 − γ)|x− y|
(x ∨ y)γ . (3.94)

Let (π,z) be in Y . Our goal is to lower bound a on subsets of Y by a quantity related to
the difference between some parameters. Inequalities (3.95), (3.96), (3.98) and (3.99) will be
proved later.

• For I11 = [−1,b)2 with b = (z∗ ∧ z ∧ 1) − 1, we have
∫
I11
a(x1,x2)2dx1dx2 ≥ (1 − α) (1 ∧ |z∗|/2)2

16 (π∗
11 − π11)2 . (3.95)

• For

I22 =


(z∗, z∗ + 1) ×

(
z∗, z∗ + (1 − α)2/α(π∗

22)1/α|z − z∗|
)

if z∗ ≥ z,(
z∗

2 ∨ (z∗ − 1), z∗
)

×
(
z∗, z∗ + (1−α)(π∗

22)1/α

(1−α)(2(π∗
22)1/α+1)+2

|z − z∗|
)

otherwise,

we have∫
I22
a2(x1,x2)dx ≥ α2

43

(3 − α

2 − α

)2 ( 1 − α

5 − 3α

)1−α
(π∗

22)1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α. (3.96)
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• Let β ∈ (0,1]. For

I12 := (−1,− (1 − z ∧ z∗)+) × (z ∨ z∗ + b−,z ∨ z∗ + b+),
I21 := (z ∨ z∗ + b−,z ∨ z∗ + b+) × (−1,− (1 − z ∧ z∗)+),

with

b+ = 1z∨z∗≥β(1 − |z − z∗|) + 1z∨z∗<β
z ∨ z∗(1 − β)

β

≥ 1z∗≥β(1 − β) + 1z∗<β
z∗(1 − β)

β
= (1 ∧ |z∗|/β) (1 − β) (3.97)

and b− = b+δ, δ ∈ (0,1). We have
∫
I12
a2(x1,x2)dx ≥ (π∗

12 − π12)2 (1 − α)2 (1 ∧ |z∗|/2)
82 (b+)1−α (1 − δ)1Ω12 , (3.98)∫

I21
a2(x1,x2)dx ≥ (π∗

21 − π21)2 (1 − α)2 (1 ∧ |z∗|/2)
82 (b+)1−α (1 − δ)1Ω21 , (3.99)

with

I12 :=
{

|π∗
12 − π12| ≥ 2

[
α|z − z∗|
δb+

+ |π11 − π∗
11|(1 − β)α

]}
,

I21 :=
{

|π∗
21 − π21| ≥ 2

[
α|z − z∗|
δb+

+ |π11 − π∗
11|(1 − β)α

]}
.

Combining (3.95), (3.96), (3.98) and (3.99), we have
∫
a2(x1,x2)dx ≥ (π∗

11 − π11)2 (1 − α)2 (1 ∧ |z∗|/2)2

16

+ |z − z∗|1−αα
2

43

(3 − α

2 − α

)2 ( 1 − α

5 − 3α

)1−α
(π∗

22)1/α (1 ∧ |z∗|/2)1−α

+ (π∗
12 − π12)2 (1 − α)2 (1 ∧ |z∗|/2)

82 (b+)1−α (1 − δ)1Ω12

+ (π∗
21 − π21)2 (1 − α) (1 ∧ |z∗|/2)

82 (b+)1−α (1 − δ)1Ω21 ,

for (π,z) ∈ Y . Then we can apply the following lemma.

Lemma 3.24. Let g,A1,A2,A3,B be functions Θ → R and D1,D2,3,DB,CA,CB be positive con-
stants such that

∀θ ∈ Θ, g(θ) ≥ D1A
2
1(θ) +D2,3

(
A2

2(θ)1Ω2 + A2
3(θ)1Ω3

)
+DB(θ)B1−α,

where Ω2 and Ω3 are subsets of Θ given by

Ωi := {θ ∈ Θ;Ai(θ) ≥ CAA1(θ) + CBB(θ)} .

Then we have

g(θ) ≥ min
(

DB

1 + 4C2
B

,
D1

1 + 4C2
A

, D2,3

) [
A2

1(θ) + A2
2(θ) + A2

3(θ) +B1−α(θ)
]
,

for all θ in Θ.
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In our situation, we get∫
a2(x1,x2)dx ≥ C(α,z∗,π∗)

[
(π∗

11 − π11)2 + (π∗
12 − π12)2 + (π∗

21 − π21)2 + |z − z∗|1−α
]

with

C(α,z∗,π∗) = min

 α2

43

(
3−α
2−α

)2 ( 1−α
5−3α

)1−α
(π∗

22)
1/α (1 ∧ |z∗|/2)1−α

1 + 42 α2

δ2b2
+

,
(1−α)2(1∧|z∗|/2)2

42

1 + 4(1 − β)2α ,

(1 − α)(1 ∧ |z∗|/2)
82 (b+)1−α (1 − δ)

)

≥ min

 α2

43

(
3−α
2−α

)2 ( 1−α
5−3α

)1−α
(π∗

22)
1/α (1 ∧ |z∗|/2)1−α

1 + 42 α2

δ2(1∧|z∗|/2)2(1−β)2

,
(1 − α)2(1 ∧ |z∗|/2)2

42 (1 + 4(1 − β)2α) ,

(1 − α)(1 ∧ |z∗|/2)
82 (1 ∧ |z∗|/2)1−α(1 − β)1−α(1 − δ)

)
> 0.

We can optimize this bound with respect to β and δ, which gives β∗ depending only z∗, α and
π∗. This concludes the proof of Lemma 3.21. We now prove the different inequalities.
Proof of (3.95). For x1,x2 ∈ [−1,0)2, we have

a(x1,x2) = 1 − α

2|x1|α/2|x2|α/2

×

∣∣∣∣∣∣
√√√√π∗

11 + π∗
12
1|x2−z∗|∈(0,1]|x2|α

|x2 − z∗|α
+ π∗

22
1|x1−z∗|∈(0,1]1|x2−z∗|∈(0,1]|x1|α|x2|α

|x1 − z∗|α|x2 − z∗|α
+ π∗

21
1|x1−z∗|∈(0,1]|x1|α

|x1 − z∗|α

−

√√√√π11 + π12
1|x2−z|∈(0,1]|x2|α

|x2 − z|α
+ π22

1|x1−z|∈(0,1]1|x2−z|∈(0,1]|x1|α|x2|α
|x1 − z|α|x2 − z|α

+ π21
1|x1−z|∈(0,1]|x1|α

|x1 − z|α

∣∣∣∣∣∣ .
We set b = min(z∗, z, 1) − 1. For x1,x2 ∈ [−1,b)2, we have

a(x1,x2) = 1 − α

2|x1|α/2|x2|α/2

∣∣∣∣√π∗
11 −

√
π11

∣∣∣∣
and ∫

[−1,b)2
a(x1,x2)2dx1dx2 ≥ [1 − (−)1−α]2

4

∣∣∣∣√π∗
11 −

√
π11

∣∣∣∣2 .
Finally, with (3.94) we always have

∫
[−1,b)2

a(x1,x2)2dx1dx2 ≥

[
1 − (1 − z ∧ z∗)1−α

+

]2
4

(√
π∗

11 −
√
π11

)2

≥ (1 − α) (1 ∧ |z∗|/2)2

42 (π∗
11 − π11)2 .

Proof of (3.96). We need to consider two different cases.

• First case z∗ ≥ z. For x ∈ I22 = (z∗,z∗ + 1) × (z∗, z∗ +V |z− z∗|) with V < 1
|z−z∗| , we have

|x2−z∗|
|x2−z| ≤ V , |x2−z∗|

|x2| ≤ V , |x1−z∗|
|x1−z| ≤ 1 − |z − z∗| ≤ 1 and |x1−z∗|

|x1| ≤ 1
1+z∗ ≤ 1. Therefore, for

x ∈ I22, we have

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

(√
π∗

22 − V α/2
)

+
.
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For V = (1 − α)2/α(π∗
22)1/α < 1

|z−z∗| , we have

∫
I22
a2(x1,x2)dx =

(√
π∗

22 − V α/2
)2

+
4 (V |z − z∗| ∧ 1)1−α

≥ (π∗
22)1/αα2(1 − α)2(1−α)/α|z − z∗|1−α

4 .

• Second case z∗ < z. For x ∈
(
z∗

2 ∨ (z∗ − 1),z∗
)

× (z∗,z∗ + a|z − z∗|), b ≤ 1/2 we have

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α|x2 − z∗|α

√π∗
22 −

(
b

1 − b

)α/2


+

.

For b = (π∗
22)

1/α b′ we have

∫
I22
a2(x1,x2)dx ≥

(√
π∗

22 −
(

b
1−b

)α/2
)2

+
4 (1 ∧ |z∗|/2)1−α b1−α|z − z∗|1−α

≥ (π∗
22)

1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α

4

1 −
(

b′

1 − b′(π∗
22)1/α

)α/2
2

+

(b′)1−α

≥ (π∗
22)

1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α

4
α2

4

1 − b′
(
1 + (π∗

22)1/α
)

1 − b′(π∗
22)1/α

2

(b′)1−α.

With b′ = 1−α
(1−α)(2π+1)+2 we have

∫
I22
a2(x1,x2)dx ≥ α2 (π∗

22)
1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α

42

×
(

2 + (1 − α)(π∗
22)1/α

2 + (1 − α) (1 + (π∗
22)1/α)

)2 ( 1 − α

(1 − α)(2π + 1) + 2

)1−α

≥ α2 (π∗
22)

1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α

42

×
(

3 − α

2 + 2(1 − α)

)2 ( 1 − α

5 − 3α

)1−α

= α2(3 − α)2

43 (2 − α)2

( 1 − α

5 − 3α

)1−α
(π∗

22)
1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α.

Finally, we always have have∫
I22
a2(x1,x2)dx ≥ α2

43

(3 − α

2 − α

)2 ( 1 − α

5 − 3α

)1−α
(π∗

22)1/α (1 ∧ |z∗|/2)1−α |z − z∗|1−α.

Proof of (3.98). We prove it for I12 assuming z∗ ≤ z. The proof is similar for I21 and for z ≤ z∗.
For b = 0 ∧ (z∗ − 1) and 0 < c− < c+ < 1 − |z − z∗|, we set I12 = (−1,b) × (z + c−,z

∗ + 1). For
x1,x2 ∈ I12, we have

2|x1|α/2|x2 − z|α/2

1 − α
a(x1,x2) =

∣∣∣∣∣∣∣∣
(π∗

12 − π12) + π∗
12

(
|x2−z|α
|x2−z∗|α − 1

)
+ (π∗

11 − π11)
|x2−z|α1x2≤1

|x2|α√
π∗

12
|x2−z|α
|x2−z∗|α + π∗

11
|x2−z|α1x2≤1

|x2|α +
√
π∗

12 + π11
|x2−z|α1x2≤1

|x2|α

∣∣∣∣∣∣∣∣ .
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We also have

1x2≤1
|x2 − z|

|x2|
≤ U(z,c−,c+) :=


c+
z+c+

if z + c+ ≤ 1,
1 − z if z + c− < 1 < z + c+,
0 if 1 ≤ z + c−.

For c+ = 1z≥β∗(1 − |z − z∗|) + 1z<β∗
z(1−β∗)
β∗ we have U(z,c−,c+) ≤ 1 − β∗. We also have

1 − |x2 − z|α

|x2 − z∗|α
≤ 1 −

(
c−

c− + |z − z∗|

)α

≤ α

|z−z∗|
c−+|z−z∗|(
c−

c−+|z−z∗|

)1−α = α
|z − z∗|
c−

(
c−

c− + |z − z∗|

)α

≤ α|z − z∗|
c−

.

Therefore, with c− = c+δ, δ ∈ (0,1), on I12 we have

2|x1|α/2|x2 − z|α/2

1 − α
a(x1,x2) ≥

[
|π∗

12 − π12| − α|z∗−z|
b−

− (π∗
11 − π11) (1 − β∗)α

]
+

2 .

If |π∗
12 − π12| ≥ 2 [|π∗

11 − π11|(1 − β∗)α + α|z − z∗|/c−] then

2|x1|α/2|x2 − z|α/2

1 − α
a(x1,x2) ≥ |π∗

12 − π12|
4

and ∫
I12
a2(x1,x2)dx ≥ (π∗

12 − π12)2

82

[
1 − (1 − z ∧ z∗)1−α

+

]
(c+)1−α

[
1 − δ1−α

]
≥ (π∗

12 − π12)2 (1 − α)2 (1 ∧ |z| ∧ |z∗|) (c+)1−α (1 − δ)
82 .

Otherwise we have |π∗
12 − π12| < 2 [|π∗

11 − π11|(1 − β∗)α + α|z − z∗|/b−].

Proof of Lemma 3.22

We need to go through numerous cases and subcases. Let β∗ be given in Lemma 3.21. Without
loss of generality we are going to assume that z∗ > 0.
Case 1 : z ≥ 0 and |z − z∗| ≥ β∗. Let c be a positive constant.

• Subcase 1.1 : z∗ > z or (z∗ < z and π22 ≥ c2π∗
22). For x ∈ I = (z ∨ z∗ + β∗,z ∨ z∗ + 1)2,

we have
a(x1,x2) = (1 − α) (1z>z∗π22 + 1z∗>zπ

∗
22)

2|x1 − z ∨ z∗|α/2|x2 − z ∨ z∗|α/2 ,

and therefore ∫
I
a2(x1,x2)dx = 1z>z∗π22 + 1z∗>zπ

∗
22

4
(
1 − (β∗)1−α

)2

≥ c2π∗
22(1 − α)2

4 (1 − β∗)2 .
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• Subcase 1.2 : 1 ≤ z∗ < z and π22 < c2π∗
22. For x ∈ (z∗,z∗ + 1 ∧ (|z − z∗|/2))2, we have

|x1 − z∗|
|x1 − z|

≤ 1 ∧ |z − z∗|/2
z − z∗ − 1 ∧ |z − z∗|/2 ≤ 1.

We have

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

(√
π∗

22 −
√
π22

)

≥ (1 − α)
√
π∗

22
2|x1 − z∗|α/2|x2 − z∗|α/2 (1 − c) ,

and therefore ∫
I
a2(x1,x2)dx ≥ π∗

22
4 (1 − c)2

(
1 ∧ |z − z∗|

2

)2(1−α)

≥ π∗
22 (1 − c)2

22(2−α) (β∗)2(1−α) .

• Subcase 1.3 : z∗ ∈ (0,1 − β∗] and z∗ < z. Let b be in (0,1). For x ∈ I = (z∗ − bz∗,z∗)2 we
have

|x1 − z∗|
|x1|

≤ bz∗

z∗ − bz∗ = b

1 − b

|x1 − z∗|
|x1 − z|

≤ bz∗

z − z∗ + bz∗ ≤ bβ∗

β∗ + bβ∗ ≤ b

1 − b
.

It implies

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

(√
π∗

22 −
(

b

1 − b

)α)
+
,

and for b = b′ (π∗
22)

1/2α we get
∫
I
a2(x1,x2)dx ≥ (z∗)2(1−α) (π∗

22)
(1−α)/α (b′)2(1−α)

4

(√
π∗

22 −
√
π∗

22

(
b′

1 − (π∗
22)1/2αb′

)α)2

+

≥ (z∗)2(1−α) (π∗
22)

1/α (b′)2(1−α)

4 α2
(

1 − b′

1 − (π∗
22)1/2αb′

)2

+
.

For b′ = 1
1+2(π∗

22)1/2α
+ 1

1−α

, we have

∫
I
a2(x1,x2)dx ≥ (z∗)2(1−α) (π∗

22)
1/α α2

4
(
1 + 2 (π∗

22)
1/2α + 1

1−α

)2(1−α)

(
1 − 1

1 + (π∗
22)1/2α + 1

1−α

)2

.

• Subcase 1.4 : z∗ < z and z∗ ∈ [1 − β∗,1]. Let b be in (0,1). For x ∈ I = (z∗,z∗ + bβ∗)2 we
have

|x1 − z∗|
|x1 − z|

≤ bβ∗

z − z∗ − bβ∗ ≤ b

1 − b
,

|x1 − z∗|
|x1|

≤ bβ∗

z∗ + bβ∗ ≤ b

1 + b
≤ b

1 − b
.
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It implies

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

(√
π∗

22 −
(

b

1 − b

)α)
+
,

and for b = b′ (π∗
22)

1/2α we get
∫
I
a2(x1,x2)dx ≥ (β∗)2(1−α) (π∗

22)
(1−α)/α (b′)2(1−α)

4 π∗
22

(
1 −

(
b′

1 − b′(π∗
22)1/2α

)α)2

+

≥ (β∗)2(1−α) (π∗
22)

1/α α2

4 (b′)2(1−α)
(

1 − b′

1 − b′(π∗
22)1/2α

)2

+
.

For b′ = 1
1+2(π∗

22)1/2α
+ 1

1−α

we have

∫
I
a2(x1,x2)dx ≥ (β∗)2(1−α) (π∗

22)
1/α α2

4
(
1 + 2 (π∗

22)
1/2α + 1

1−α

)2(1−α)

(
1 − 1

1 + (π∗
22)1/2α + 1

1−α

)2

.

We can optimize the subcases 1.1 and 1.2 with c = (β∗/2)2(1−α)

(β∗/2)2(1−α)+(1−α)(1−β∗)
. Gathering the dif-

ferent results, there is a positive constant C1(z∗,π∗
22,α) such that

∫
R2 a(x1,x2)dx ≥ C1(π∗

22,z
∗,α)

for all z satisfying z ≥ 0 and |z − z∗| ≥ 1 − β∗.
Case 2 : z < 0.

• Subcase 2.1 : z∗ ≤ 1. Let b be in (0,1). For x ∈ (z∗,z∗ + b)2 we have |x1−z∗|
|x−z| ≤ |x1−z∗|

|x1| ≤ b
z∗

and therefore

a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

[√
π∗

22 −
(
b

z∗

)α]
+
.

We get
∫

(z∗,z∗+b)2 a2(x1,x2)dx ≥
b2(1−α)[

√
π∗

22−( b
z∗ )α]2

+
4 . For b = z∗(π∗

22)1/2α(1 − α)1/α ≤ 1,
we have ∫

(z∗,z∗+b)2
a2(x1,x2)dx ≥ α2(1 − α)2(1−α)/α(z∗)2(1−α)(π∗

22)1/α

4 .

• Subcase 2.2 : z∗ > 1. For x ∈ (z∗,z∗ + 1)2 we have

a(x1,x2) = 1 − α

2

√
π∗

22
|x1 − z∗|α|x2 − z∗|α

.

Therefore we get
∫

(z∗,z∗+1)2 a2(x1,x2)dx ≥ π∗
22
4 .

Finally, we have ∫
R2
a2(x1,x2)dx ≥ α2(1 − α)2(1−α)/α(1 ∧ z∗)2(1−α)(π∗

22)1/α

4 .

Case 3 : |z − z∗| < β∗ and z ≤ z∗/2. Let b be in (0,1/|z − z∗|). For x ∈ (z∗,z∗ + b|z − z∗|)2 we
have

|x1 − z∗|
|x1|

≤ b|z − z∗|
z∗ + b|z − z∗|

≤ b

|x1 − z∗|
|x1 − z|

≤ b|z − z∗|
b|z − z∗| + |z∗ − z|

≤ b.
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Therefore we get
a(x1,x2) ≥ 1 − α

2|x1 − z∗|α/2|x2 − z∗|α/2

[√
π∗

22 − bα
]

+
.

We get ∫
(z∗,z∗+b|z−z∗|)2

a2(x1,x2)dx ≥
b2(1−α)|z − z∗|2(1−α) [

√
π∗

22 − bα]2+
4

and for b = (π∗
22)1/2α(1 − α)1/α ≤ 1/|z − z∗| we have

∫
(z∗,z∗+b|z−z∗|)2

a2(x1,x2)dx ≥ |z − z∗|2(1−α)(1 − α)2(1−α)/α (π∗
22)

(1−α)/α

4 π∗
22α

2

≥ α2 (|z∗|/2)2(1−α) (1 − α)2(1−α)/α (π∗
22)

1)/α

4 .

Proof of Lemma 3.24.

• For θ in Ω2 ∩ Ω3, we have

g(θ) ≥ D1A
2
1 +D2,3

(
A2

2 + A2
3

)
+DBB

1−α

≥ min (D1, D2,3, DB)
[
A2

1 + A2
2 + A2

3 +B1−α
]
.

• For θ in Ω2 ∩ ΩC
3 , we have

g(θ) ≥ D1A
2
1 +D2,3A

2
2 +DBB

1−α

and
A2

3 < (CAA1 + CBB)2 ≤ 2C2
AA

2
1 + 2C2

BB
1−α.

For b = DB

1+2C2
B

∧ D1
1+2C2

A
> 0 we have

g(θ) ≥ D2,3A
2
2 +

(
D1 − b2C2

A

)
A2

1 +D2,3A
2
2 + (DB − b2C2

B)B1−α + bA2
3

≥ min
(

DB

1 + 2C2
B

,
D1

1 + 2C2
A

, D2,3

) [
A2

1 + A2
2 + A2

3 +B1−α
]
.

• For θ in ΩC
2 ∩ ΩC

3 , we have
g(θ) ≥ D1A

2
1 +DBB

1−α

and
A2

2 + A2
3 < 2 (CAA1 + CBB)2 ≤ 4C2

AA
2
1 + 4C2

BB
1−α.

For b = DB

1+4C2
B

∧ D1
1+4C2

A
> 0 we have

g(θ) ≥ D2,3A
2
2 +

(
D1 − b4C2

A

)
A2

1 + (DB − b4C2
B)B1−α + b

(
A2

2 + A2
3

)
≥ min

(
DB

1 + 4C2
B

,
D1

1 + 4C2
A

) [
A2

1 + A2
2 + A2

3 +B1−α
]
.

Finally, we always have

g(θ) ≥ min
(

DB

1 + 4C2
B

,
D1

1 + 4C2
A

, D2,3

) [
A2

1 + A2
2 + A2

3 +B1−α
]
.
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Proof of Lemma 3.23

We assume there is w,w∗,q12,q
2
12,q21,q

∗
21 in [0,1] such that

π11 = w(1 − q12), π12 = wq12, π21 = (1 − w)q21

and

π∗
11 = w∗(1 − q∗

12), π∗
12 = w∗q∗

12, π
∗
21 = (1 − w∗)q∗

21.

• We have

(π11 − π∗
11)2 + (π12 − π∗

12)2 = w2
[
2
(
q12 − 1

2

)2
+ 1

2

]

− 2ww∗
[
2
(
q∗

12 − 1
2

)(
q12 − 1

2

)
+ 1

2

]
+ (w∗)2

[
2
(
q∗

12 − 1
2

)2
+ 1

2

]

= 1
2(w − w∗)2 + 2

(
w
(
q12 − 1

2

)
− w∗

(
q∗

12 − 1
2

))2

≥ 1
2(w − w∗)2. (3.100)

Therefore, we also have

(π11 − π∗
11)2 + (π12 − π∗

12)2 + (π21 − π∗
21)2

≥ 1
2(w − w∗)2 + ((1 − w)q21 − (1 − w∗)q∗

21)
2

= (1 − w)2
[1
2 + q2

21

]
+ (1 − w∗)2

[1
2 + (q∗

21)2
]

− (1 − w)(1 − w∗) [1 + 2q21q
∗
21]

=
[1
2 + q2

21

] (
(1 − w) − (1 − w∗)1 + 2q21q

∗
21

1 + 2q2
21

)2

+ (1 − w∗)2
[1
2 + (q∗

21)2
]

−
[1
2 + q2

21

]
(1 − w∗)2

(
1 + 2q21q

∗
21

1 + 2q2
21

)2

≥ (1 − w∗)2

2 (1 + 2q2
21)

[
(1 + 2(q∗

21)2)(1 + 2q2
21) − (1 + 2q21q

∗
21)2

]
= (1 − w∗)2

1 + 2q2
21

(q∗
21 − q21)2

≥ (1 − w∗)2

3 (q∗
21 − q21)2 . (3.101)
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• Similarly, we have

(π11 − π∗
11)2 + (π12 − π∗

12)2 = w2
[
q2

12 + (1 − q12)2
]

+ (w∗)2
[
(q∗

12)2 + (1 − q∗
12)2

]
− 2ww∗ [q12q

∗
12 + (1 − q12)(1 − q∗

12)]

=
[
q2

12 + (1 − q12)2
] (
w − w∗ q12q

∗
12 + (1 − q12)(1 − q∗

12)
q2

12 + (1 − q12)2

)2

+ (w∗)2
[
(q∗

12)2 + (1 − q∗
12)2 − (q12q

∗
12 + (1 − q12)(1 − q∗

12))
2

q2
12 + (1 − q12)2

]

≥ (w∗)2

q2
12 + (1 − q12)2

[(
(q∗

12)2 + (1 − q∗
12)2

) (
(q12)2 + (1 − q12)2

)
− (q12q

∗
12 + (1 − q12)(1 − q∗

12))
2
]

= (w∗)2 (q12 − q∗
12)

2

q2
12 + (1 − q12)2

≥ (w∗)2 (q12 − q∗
12)

2 . (3.102)

Finally, with (3.100),(3.101) and (3.102), we get

(π11 − π∗
11)2 + (π12 − π∗

12)2 + (π21 − π∗
21)2

≥ max
(

1
2(w − w∗)2,

(1 − w∗)2

3 (q∗
21 − q21)2 , (w∗)2 (q12 − q∗

12)
2
)
.

3.E Selection of the spacing parameter
This section gathers the proofs of Theorem 3.11, 3.12, Lemma 3.7 and Corollary 3.6.

3.E.1 Proof of Theorem 3.11
We first need the following result.

Lemma 3.25. Let M be a finite set of probability distributions associated to the set of proba-
bility density functions M, with respect to the σ-finite measure µ. Let P̂ = P̂ (n,X,M) be the
ρ-estimator given by (3.7). For t ∈ [n], there is an event Ω∗ such that P(Ω∗) ≥ 1 − ⌈n/t⌉βt (X)
and for all ξ > 0, with probability at least 1 − 2|M|e−ξ, we have

1Ω∗

n∑
i=1

h2
(
Pi,P̂

)
≤
(4a0

a1
+ 1

)
inf
Q∈M

n∑
i=1

h2 (Pi,Q)

+ 8
3a1

(ξ + 1.47)
[
1 +

√
1 + 18ta2

2α0(t)
]

+ 16.48
a1

,

with α0(t) = 32×1.175ta2
2

a2
1

+ 8
3a1

, a0 = 4, a1 = 3/8 and a2
2 = 3

√
2.

Consequently, we have

E
[
n∑
i=1

h2
(
Pi,P̂

)]
≤ nP

(
(Ω∗)C

)
+
∫ ∞

0
P
(
1Ω∗

n∑
i=1

h2
(
Pi,P̂

)
≥ u

)
du

≤ n⌈n/t⌉βt (X) +
(4a0

a1
+ 1

)
inf
Q∈M

n∑
i=1

h2 (Pi,M ) + 16.48
a1

+ 8
3a1

(2.47 + log(2|M|))
[
1 +

√
1 + 18ta2

2α0(t)
]
.
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We apply this with M = M̂S

(
X(1)

)
and conditionally on X(1). One can check that we have√

1 + 18ta2
2α0(t) ≤ 1 + 24 ta

2
2

a1

√
1.175. We get

E
[
n2∑
i=1

h2
(
P

(2)
i ,P̂ŝ

) ∣∣∣X(1)
]

≤ c′
0 inf
s∈S

n2∑
i=1

h2
(
P

(2)
i , P̂s

(
X(1)

))
+ c′

1 (2.47 + log(2|S|))
[
1 + 96

√
2.35t

]
+ c′

2 + n2⌈n2/t⌉βt
(
X(2)

)
,

with c′
0 = 4a0

a1
+ 1 = 131

3 , c′
1 = 2×8

3a1
= 128

9 and c′
2 = 16.48

a1
= 131.84

3 . As t can be any number in [n2]
we can take the infimum with respect to t in the upper bound. Let P be in PX . We get

E
[
h2
(
P , P̂ŝ

)]
≤ 2
n2

E
[
n2∑
i=1

h2
(
P

(2)
i ,P̂ŝ

)]
+ 2
n2

n2∑
i=1

h2
(
P

(2)
i ,P

)
≤ 2
n2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ 2c′

0
n2

inf
s∈S

E
[
n2∑
i=1

h2
(
P

(2)
i ,P̂s

)]

+ inf
t∈[n2]

{
c′

1
n2

(2.47 + log(2|S|))
[
1 + 96

√
2.35t

]
+ 2⌈n2/t⌉βt

(
X(2)

)}

+ 2c′
2

n2
.

From (3.14), for s in S, we have

1
n2

E
[
n2∑
i=1

h2
(
P

(2)
i ,P̂s

)]
≤ 2
n2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ 4
n1

n1∑
i=1

h2
(
P

(1)
i ,P

)
+ 4
n1

E
[
n1∑
i=1

h2
(
P

(1)
i ,P̂s

)]

≤ 2
n2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ 4
n1

n1∑
i=1

h2
(
P

(1)
i ,P

)
+ 4c0

n1
inf
Q∈Ms

n1∑
i=1

h2
(
P

(1)
i , Q

)
+ 4c1

(s+ 1)
n1

[
17 +Dn(s,1)(Ms)

]

+ 4c2

n1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.

We get

E
[
h2
(
P , P̂ŝ

)]
≤ 2 + 4c′

0
n2

n2∑
i=1

h2
(
P

(2)
i ,P

)
+ 8c′

0
n1

n1∑
i=1

h2
(
P

(1)
i ,P

)
+ inf

t∈[n2]

{
c′

1
n2

(2.47 + log(2|S|))
[
1 + 96

√
2.35t

]
+ 2⌈n2/t⌉βt

(
X(2)

)}

+ 2c′
2

n2
+ 8c′

0
n1

inf
s∈S

{
c0 inf

Q∈Ms

n1∑
i=1

h2
(
P

(1)
i , Q

)

+ c1(s+ 1)
[
Dn(s,1)(M) + 17

]
+ c2

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)}
.

We also have
1
n1

inf
Q∈Ms

n1∑
i=1

h2
(
P

(1)
i ,Q

)
≤ 2h2(P ,Ms) + 2

n1

n1∑
i=1

h2
(
P

(1)
i ,P

)
.
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Proof of Lemma 3.25

For Pi = L(Xi),i = 1, . . . ,n, we write

H2
Q,Q′ :=

n∑
i=1

h2 (Pi,Q) + h2 (Pi,Q′) .

Lemma 3.26. Let δ > 1 and ν > 0 be such that

e−ν +
∑
j≥1

e−δjν ≤ 1.

For t in {1, . . . ,n}, there is an event Ω∗ satisfying P(Ω∗) ≥ 1 − ⌈n/t⌉βt such that for all p in
M and all ξ > 0, we have

P∗
(

sup
q∈M

{
|Zn(X,p,q)|1Ω∗ − a1

2 H
2
P,Q

}
>

2(υ + ξ)
3

[
1 +

√
1 + 18ta2

2α
])

≤ 2|M|e−ξ,

with P∗ = L(X) and α ≥ α0(t) = 32ta2
2δ

a2
1

+ 8
3a1

.

We take δ = 1.175 and υ = 1.47 as in [11] Section A.1. Let ξ > 0 and p ∈ M. On the event
Ω∗ defined by Lemma 3.26 and with Proposition 3 [11], we have for all q ∈ M,

Tn (X,p,q) ≤ ETn (X,p,q) + |Z (X,p,q) |

≤
n∑
i=1

[
a0h

2 (Pi,P ) − a1h
2 (Pi,Q)

]
+ a1

2 H
2
P,Q + 2(ξ + υ)

3

[
1 +

√
1 + 18ta2

2α0(t)
]

=
n∑
i=1

[(
a0 + a1

2

)
h2 (Pi,P ) − a1

2 h
2 (Pi,Q)

]

+ 2
3(ξ + υ)

[
1 +

√
1 + 18ta2

2α0(t)
]
.

Then,

Υn (X,p) = sup
q∈M

Tn (X,p,q)

≤
(
a0 + a1

2

) n∑
i=1

h2
(
Pind
i ,P

)
− a1

2 inf
Q∈M

n∑
i=1

h2 (Pi,Q)

+ 2
3(ξ + υ)

[
1 +

√
1 + 18ta2

2α0(t)
]
,

and

Υn (X,q) = sup
q′∈M

Tn (X,q,p)

≥ Tn (X,q,p) = −Tn (X,p,q)

≥ −
(
a0 + a1

2

) n∑
i=1

h2 (Pi,P ) + a1

2

n∑
i=1

h2 (Pi,Q)

− 2
3(ξ + υ)

[
1 +

√
1 + 18ta2

2α0(t)
]
.
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Since Υn (X,p̂) < Υn (X,p) + 8.24, we have

a1

2

n∑
i=1

h2
(
Pi, P̂

)
≤ 2

(
a0 + a1

2

) n∑
i=1

h2 (Pi,P ) − a1

2 inf
Q∈M

n∑
i=1

h2 (Pi,M )

+ 4
3(ξ + υ)

[
1 +

√
1 + 18ta2

2α0(t)
]

+ 8.24.

Given that M is finite we can take P such that

inf
Q∈M

n∑
i=1

h2 (Pi,Q) =
n∑
i=1

h2 (Pi, P ) .

Hence we have
n∑
i=1

h2
(
Pi, P̂

)
≤
(4a0

a1
+ 1

)
inf
Q∈M

n∑
i=1

h2 (Pi,Q)

+ 8
3a1

(ξ + υ)
[
1 +

√
1 + 18ta2

2α0(t)
]

+ 16.48
a1

.

Proof of Lemma 3.26

Lemma 3.27. For t in [n], there is an event Ω∗ such that P(Ω∗) ≥ 1 − ⌈n/t⌉βt(X) and

∀q,q′ ∈ M,∀x > 0,P
|Zn (X,q,q′)|1Ω∗ >

2x
3

1 +
√

1 +
18ta2

2H
2
Q,Q′

x

 ≤ 2e−x. (3.103)

Let ξ > 0 and α > 0. We define x0 = υ + ξ and for j ≥ 0,

y2
j+1 = δy2

j = δαxj. (3.104)

Let q,q′ be in M. We apply Lemma 3.27 according to the value of H2
Q,Q′ .

• If there is j ≥ 0 such that y2
j ≤ H2

Q,Q′ < y2
j+1, with probability at least 1 − 2e−xj , we have

|Zn(X,q,q′)|1Ω∗ − a1

2 H
2
Q,Q′ ≤ 2xj

3

1 +

√√√√1 +
18ta2

2H
2
Q,Q′

xj

− a1

2 H
2
q,q′

≤ 2xj
3

1 +

√√√√1 +
18ta2

2y
2
j+1

xj

− a1

2 y
2
j

≤ 2xj
3

[
1 +

√
1 + 18ta2

2δα − 3a1α

4

]
≤ 0,

for
α ≥ α0(t) := 32δta2

2
a1

+ 8
3a1

. (3.105)

• If H2
Q,Q′ < y2

0, with probability at least 1 − 2e−x0 , we have

|Zn(X,q,q′)|1Ω∗ − a1

2 H
2
Q,Q′ ≤ |Zn(X,q,q′)|1Ω∗

≤ 2x0

3

[
1 +

√
1 + 18ta2

2α
]
.
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Let p be in M. Finally, we have

P
(

sup
q∈M

{
|Zn(X,p,q)|1Ω∗ − a1

2 H
2
p,q

}
>

2x0

3

[
1 +

√
1 + 18ta2

2α
])

≤
∑
q∈M:

H2
P ,Q

<y2
0

P
(

|Zn(X,p,q)|1Ω∗ − a1

2 H
2
p,q >

2x0

3

[
1 +

√
1 + 18ta2

2α
])

+
∑
j≥0

∑
q∈M:

y2
j ≤H2

p,q
<y2

j+1

P
(

|Zn(X,p,q)|1Ω∗ − a1

2 H
2
p,q > 0

)

≤
∑
q∈M:
H2

p,q
<y2

0

2e−x0 +
∑
j≥0

∑
q∈M:

y2
j ≤H2

p,q
<y2

j+1

2e−xj

≤ 2|M|

e−x0 +
∑
j≥1

e−xj

 = 2|M|

e−(υ+ξ) +
∑
j≥1

e−δj(υ+ξ)


≤ 2|M|e−ξ

e−υ +
∑
j≥1

e−δjυ

 ≤ 2|M|e−ξ.

Proof of Lemma 3.27

We follow the proof of Sart [80] (Proposition B.1). Let t be a positive integer in [n]. Let l be
the smallest integer larger than n/2t . We derive from Berbee’s lemma and more precisely from
Viennet [36] (page 484) that there exist B∗

1 , . . . ,B
∗
2lt such that

• For i = 1, . . . ,l, the random vectors

Bi,1 =
(
X2(i−1)t+1, . . . ,X(2i−1)t

)
and B∗

i,1 =
(
X∗

2(i−1)t+1, . . . ,X
∗
(2i−1)t

)
(3.106)

have the same distribution, and so have the random vectors

Bi,2 =
(
X(2i−1)t+1, . . . ,X2it

)
and B∗

i,2 =
(
X∗

(2i−1)t+1, . . . ,X
∗
2it

)
. (3.107)

• The random vectors B∗
1,1, . . . ,B∗l,1 are independent. The random vectors B∗

1,2, . . . ,B∗l,2
are also independent.

• The event
Ω∗ =

⋂
1≤j≤l

{
Bj,1 = B∗

j,1

}
∩
{
Bj,2 = B∗

j,2

}

satisfies P
(
(Ω∗)C

)
≤ 2lβt (X).

Let q,q′ be in M. For simplicity, we write Zq,q′ = Z(B,q,q′) and we define

Z∗
q,q′,1 :=

l∑
i=1

t∑
j=1

{
ψ

(√
q′

q

(
X∗

2(i−1)t+j

))
− E

[
ψ

(√
q′

q

(
X∗

2(i−1)t+j

))]}
12(i−1)t+j≤n

=
l∑

i=1

t∑
j=1

zq,q
′

2(i−1)t+j12(i−1)t+j≤n
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and

Z∗
q,q′,2 :=

l∑
i=1

t∑
j=1

{
ψ

(√
q′

q

(
X∗

(2i−1)t+j

))
− E

[
ψ

(√
q′

q

(
X∗

(2i−1)t+j

))]}
1(2i−1)t+j≤n

=
l∑

i=1

m∑
j=1

zq,q
′

(2i−1)t+j1(2i−1)t+j≤n.

Let ξ be a positive real number. Since

|Zq,q′ |1Ω∗ > ξ ⇒ |Z∗
q,q′,1|1Ω∗ > ξ/2 or |Z∗

q,q′,2|1Ω∗ > ξ/2, (3.108)

we have

P (|Zq,q′|1Ω∗ > ξ) ≤ P
(
|Z∗

q,q′,1|1Ω∗ > ξ/2
)

+ P
(
|Z∗

q,q′,2|1Ω∗ > ξ/2
)

≤ P
(
|Z∗

q,q′,1| > ξ/2
)

+ P
(
|Z∗

q,q′,2| > ξ/2
)
.

One can notice that Z∗
q,q′,1 and Z∗

q,q′,2 are sums of l independent variables. Therefore, we can
use classic concentration inequalities. First, we can see that

Vq,q′,1 =
l∑

i=1
E


 t∑
j=1

z
2(i−1)t+j
q,q′ 12(i−1)t+j

2


≤
l∑

i=1

t∑
j=1

tE
[(
z

2(i−1)t+j
q,q′

)2
12(i−1)t+j

]

≤ t
n∑
i=1

Var
(
ψ

(√
q′

q
(X∗

i )
))

≤ t
n∑
i=1

a2
2

[
h2(Pi,Q) + h2(Pi,Q′)

]
= ta2

2H
2
Q,Q′ .

The last inequality comes from Proposition 3 in Baraud & Birgé [11] and a2
2 = 3

√
2. Similarly

we have VQ,Q′,2 ≤ ta2
2LQ,Q′ . Therefore, Bennett’s inequality (see Proposition 2.8 and inequality

(2.16) in Massart [67]) guarantees that for all ξ > 0 we have

P (|Zq,q′|1Ω∗ > ξ) ≤ 2 exp
(

− (ξ/2)2

2(ta2
2H

2
q,q′ + ξ/6)

)
.

For x > 0, we take ξ = 2x
3

[
1 +

√
1 +

18ta2
2H

2
Q,Q′

x

]
and with probability less than or equal to 2e−x,

we have

|Zq,q′|1Ω∗ >
2x
3

1 +
√

1 +
18ta2

2H
2
Q,Q′

x

 . (3.109)

3.E.2 Proof of Lemma 3.7
We have

βt (Y) = sup
i
β (σ(Y1, . . . ,Yi);σ(Yi+t, . . . ,Yn))

= sup
i
dTV (L (Y1, . . . ,Yi) ⊗ L (Yi+t, . . . ,Yn) ,L (Y1, . . . ,Yi,Yi+t, . . . ,Yn)) .
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We use the notation Xb
a = (Xa, . . . ,Xb) and similarly for E, Y and Z. The triangle inequality

implies

dTV
(
L
(
Y i

1

)
⊗ L

(
Y n
i+t

)
,L (Y n

1 )
)

≤
∑

e∈{0,1}n

P (E = e) dTV
(
L(Y i

1 |Ei
1 = ei1) ⊗ L(Y n

i+t|EN
i+t = eni+t),L(Y i

1 ,Y
n
i+t|Ei

1 = ei1,E
n
i+t = eni+t)

)

=
∑

e∈{0,1}n

P (E = e) β
(
σ((Xj) j≤i,

ej=1
), σ((Xj)j≥i+k,

ej=1
)
)
.

We now need the following result to conclude.

Lemma 3.28. For any random variables A1,A2,B1,B2, we have

β (σ(A1),σ(A2)) ≤ β (σ(A1,B1), σ(A2,B2)) .

Combining the different inequalities above, we get

βt (Y) ≤ sup
i
β
(
σ(Y i

1 );σ(Y n
i+t)

)
= sup

i

∑
e∈{0,1}n

P (E = e) β
(
σ((Xj) j≤i,

ej=1
), σ((Xj)j≥i+t,

ej=1
)
)

≤ sup
i

∑
e∈{0,1}n

P (E = e) β (σ((Xj)j≤i), σ((Xj)j≥i+t)) = βt (X) .

Proof of Lemma 3.28

Let µ1, µ2, ν1 and ν2 be measures dominating respectively L(A1), L(A2), L(B1) and L(B2).
We have

β (σ(A1),σ(A2))

= 1
2

∫
|pA(a1,a2) − pA1(a1)pA2(a2)|µ1(da1)µ2(da2)

= 1
2

∫
|
∫

(pA,B(a1,b1,a2,b2) − p1(a1,b1)p2(a2,b2)) ν1(db1)ν2(db2)|µ1(da1)µ2(da2)

≤ 1
2

∫
|pA,B(a1,b1,a2,b2) − p1(a1,b1)p2(a2,b2)|ν1(db1)ν2(db2)µ1(da1)µ2(da2

= β (σ(A1,B1);σ(A2,B2)) ,

with pA = dL(A1,A2)
dµ1⊗µ2

, pA1 = dL(A1)
dµ1

, pA2 = dL(A2)
dµ2

, pA,B = dL(A1,B1,A2,B2)
dµ1⊗ν1⊗µ2⊗ν2

, p1 = dL(A1,B1)
dµ1⊗ν1

and
p2 = dL(A2,B2)

dµ2⊗µ2
.

3.E.3 Proof of Theorem 3.12
From (3.82) we have

h2
(
P ,Ms

)
≤ 2Lϵ2 + 2L(K − 1)δ(s) + 2h2

(
P ,M

)
≤ 2Lϵ2 + 2h2

(
P ,M

)
+ 2(s+ 1)L V

n1
.

From Proposition 3.5 we have Dn1(s,1) (Ms) ≤ CLV log n1, for a constant C. For S defined by
(3.71), we have

|S| = 2 + ⌊logτ (⌊(n1 − 2)/2⌋)⌋ ≤ 2 + log n1

log τ ≤ C log n1,
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for some positive constant C. Theorem 3.11 allows us to obtain (3.72).
The following result is proven in Section 3.E.3.

Lemma 3.29. Under Assumption 3.7, there exist positive constants r(Q∗),C(Q∗) > 0 such that

• for all j ∈ [2] and all i ∈ [nj], we have

h2
(
P

(j)
i ,P ∗

)
≤ C(Q∗)e−r(Q∗)i, (3.110)

• for all t ∈ [n2], we have
βt
(
X(2)

)
≤ C(Q∗)e−r(Q∗)t/2, (3.111)

• for all s ≥ L− 1, all b in [s+ 1],

K
(
P∗
s,b||Pind

s,b

)
≤ n(s,b)C(Q∗)e−r(Q∗)s. (3.112)

From (3.110) we have

n1∑
i=1

h2
(
P

(1)
i ,P ∗

)
,
n1∑
i=1

h2
(
P

(1)
i ,P ∗

)
≤ C(Q∗)
er(Q∗) − 1 .

For t = n2 ∧ ⌈4r(Q∗)−1 log n2⌉, with (3.111) we have

⌈n2/t⌉βt
(
X(2)

)
≤

1 for n2 ≤ r(Q∗)−14 log n2,

C(Q∗)n−1
2 otherwise,

≤ n−1
2

(
C(Q∗) ∨ r(Q∗)−14 log n2

)
.

We have the following
⌈

log log n1 − log r(Q∗)
log τ

⌉
>

 log
⌊
n1−2

2

⌋
log τ

 ⇒ log log n1 − log r(Q∗)
log τ >

log
⌊
n1−2

2

⌋
log τ − 1

⇒ τr(Q∗)−1 log n1 ≥
⌊
n1 − 2

2

⌋
⇒ 22 + τr(Q∗)−1 log n1

n1
≥ 1.

For s = ⌈τ j⌉ with j =
⌈

log logn1−log r(Q∗)
log τ

⌉
∧
⌊

log⌊n1−2
2 ⌋

log τ

⌋
, we have

s ≤ τ
log log n1−log r(Q∗)

log τ
+1 + 1 = 1 + τr(Q∗)−1 log n1,

and inequality (3.112) gives

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
≤ C(Q∗)n1e

−r(Q∗)s

≤ C(Q∗)n1

(
22 + τr(Q∗)−1 log n1

n1
∨ 1
n1

)
= 2C(Q∗)(2 + τr(Q∗)−1 log n1).

These last inequalities give (3.73).
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Proof of Lemma 3.29

We just have to follow the proof of Lemma 3.13. We already have (3.110) and (3.112). The
inequality (3.111) can be deduced from the inequality

dTV
(
Qt
k,·,π

)
≤ Ce−rt,

and from the definition of βt.

3.E.4 Proof of Corollary 3.6
We have

P
(
X

(j)
i =

(
Y

(j)
i , . . . ,Y

(j)
i+L−1

))
≥ P

(
E

(j)
i = · · · = E

(j)
i+L−1 = 1

)
= p

(j)
i p

(j)
i+1 . . . p

(j)
i+L−1,

and with the convexity of the squared Hellinger distance

h2
(
P

(j)
i , P ∗

)
≤ p

(j)
i p

(j)
i+1 . . . p

(j)
i+L−1h

2
(
P

(j)
i ,P ∗

)
+
(
1 − p

(j)
i p

(j)
i+1 . . . p

(j)
i+L−1

)
≤ h2

(
P

(j)
i , P ∗

)
+
(
1 − p

(j)
i

)
+ · · · +

(
1 − p

(j)
i+L−1

)
,

where P (j)
i = L

(
Y

(j)
i , . . . ,Y

(j)
i+L−1

)
. One can check that n ≥ 1 +N/2 with our conditions on L.

With Theorem 3.12, Lemma 3.7 and Lemma 3.29 we have

CE
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,M ) + C(Q∗)

n1(er(Q∗) − 1) + C(Q∗)
n2(er(Q∗) − 1)

+ Lϵ2 + L

N1

N1∑
i=1

(
1 − p

(1)
i

)
+ L

N2

N2∑
i=1

(
1 − p

(2)
i

)
+ inf

t∈[n2]

{
t log log n1

n2
+ ⌈n2/t⌉C(Q∗)e−r(Q∗)t/2

}

+ inf
s∈S

{
(s+ 1)LV log n1

n1
+ e−r(Q∗)s

}
,

for some positive constant C and s ≥ L − 1. We can control the last terms with reasonable
choices of t and s following the proof of Theorem 3.12.
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Abstract

We observe n observations generated that we believe were generated by a finite state space
hidden Markov model and we aim at estimating the different parameters, i.e. stationary distri-
bution and transition matrix of the hidden chain and the emission distributions. This chapter
is an extension of the work made in Chapter 3. We establish a general result of model selection
and focus on two specific situations, the selection of the order for a fixed emission model, and
the selection of emission models among a collection for a fixed order.

4.1 Introduction
Let (Yi,Hi)i be a finite state space HMM with parameters (K∗,w∗,Q∗,F ∗). If w∗ is invariant
with respect to Q∗ the process (Yi,Hi)i is stationary. As we did in Chapter 3, we aim at
estimating the different parameters through the distribution of consecutive observations. For
L ≥ 2, we define the distribution PL by PL = Pw∗,Q∗,F ∗ , where

Pw,Q,F =
∑

1≤k1,...,kL≤K
wk1Qk1,k2 . . . QKL−1,kL

L⊗
l=1

Fkl
, (4.1)

and we have L(Yi,Yi+1, . . . ,Yi+L−1) = PL for all i. In Chapter 3 we built an estimator of PL
on a fixed model, the order K and the emission models being fixed. This is restrictive as we
want to consider different emission models and/or different orders. We use model selection to
overcome this problem.

4.2 The model selection procedure
Let X1,X2, . . . ,Xn be random variables taking values in a measurable space (X ,X ). We denote
by PX the class of probability distributions on (X ,X ) and define the distribution Pi :=
L(Xi) ∈ PX for all i ∈ [n].

4.2.1 Reminders of ρ-estimation
We denote by ψ the function given by

ψ :
∣∣∣∣∣ [0,+ ∞] → [−1,1]
x 7→ x−1

x+1
.

Let M be a countable subset of PX such that there is an associated set of density functions
M with respect to a σ-finite measure µ. Let pen be a penalty function mapping M to R. For
n ≥ 1, we denote by Tn and Υn the functions given by

Tn :

∣∣∣∣∣∣∣
X n × M × M → [−1,1]
(x,q,q′) 7→

n∑
k=1

ψ
(√

q′(yi)
q(yi)

)

with the convention 0/0 = 1, a/0 = +∞ for all a > 0, and

Υn :
∣∣∣∣∣ X n × M

(x,q) 7→ supq′∈M {Tn (x,q,q′) − pen(Q′)} + pen(Q) .
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For x in X n, we define the (nonvoid) set En(x) by

En(x) =
{
Q = q · µ

∣∣∣∣∣q ∈ M,Υn (x,q) < inf
q′∈M

Υn (x,q′) + 11.36
}
.

We denote by P̂ (n,X,M ,pen) any measurable element of the closure of En(X) with respect to
the Hellinger distance and we call it a ρ-estimator on M . The constant 11.36 is given by (7)
and (19) in [11] but can be replaced by any smaller positive number.

4.2.2 The estimator
For s ∈ {0,1, . . . ,smax},smax = ⌊(n− 2)/2⌋, we define s+ 1 subsets of observations X(s,1), X(s,2),
. . . , X(s,s+1) by

X
(s,b)
i := Xb+(i−1)(s+1) ∈ X ,∀i ∈ [n(s,b)], (4.2)

for b in [s+1], where n(s,b) :=
⌊
n+s+1−b

1+s

⌋
≥ 2. We define the associated probability distributions

P∗
s,b and Pind

s,b by

P∗
s,b := L

(
X(s,b)

)
and Pind

s,b :=
n(s,b)⊗
i=1

Pb+(i−1)(s+1). (4.3)

We denote for short P∗ = P∗
0,1 the distribution of X = (X1, . . . ,Xn) and Pind = Pind

0,1 =
L(X1) ⊗ · · · ⊗ L(Xn). Our estimator is obtained with the following statistical procedure.

1. Let s be in {0, . . . ,⌊(n − 2)/2⌋}. For b in [s + 1], we denote by P̂s,b the estimators given
by

P̂s,b := P̂ (M ,n(s,b),X(s,b),pen). (4.4)

2. We denote by P̂s = P̂s (M ,X,pen) any element of M that satisfies
s+1∑
b=1

n(s,b)h2
(
P̂s,b,P̂s

)
≤ inf

Q∈M

s+1∑
b=1

n(s,b)h2
(
P̂s,b,Q

)
+ ι, (4.5)

where ι is any fixed constant in (0,7671].
In order to evaluate the performance of our estimator we use the Hellinger distance h defined
as follows. For two probability distributions P and Q on the same measurable space,

h2 (P,Q) = 1
2

∫ (√
dP/dµ−

√
dQ/dµ

)2
dµ,

where µ is any measure that dominates both P and Q, the result being independent of µ.

4.3 Application to finite state space hidden Markov mod-
els

4.3.1 The framework
Let Y1,Y2, . . . ,YN be random variables taking values in a measurable space (Y ,Y). Let L be
{2,3, . . . ,⌊N/2⌋} and n be the integer given by n = N + 1 − L. We define the new random
variables

Xi = (Yi,Yi+1, . . . ,Yi+L−1) ,i = 1, . . . ,n, (4.6)
taking values in the measurable space (X ,X ) =

(
Y L,Y⊗L

)
. We denote by PY the class of

probability distributions on (Y ,Y). Following the discussion in the introduction we might make
the following assumption.
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Assumption 4.1. Let (Yi,Hi)i be a finite state space HMM with parameters (K∗,w∗,Q∗,F ∗)
such that Q∗ is irreducible and aperiodic.

Under this assumption Q∗ has only one invariant distribution π∗ and we define the distri-
bution

P ∗ =
∑

1≤k1,...,kL≤K
π∗
k1Q

∗
k1,k2 . . . Q

∗
KL−1,kL

L⊗
l=1

F ∗
kl
. (4.7)

We do not have identically distributed observations however the distribution Pi converges expo-
nentially fast to P ∗. ForK ≥ 2 and subsets F 1, . . . ,FK of PY , we denote by H

(
K,F 1, . . . ,FK

)
the set of distributions defined by

H
(
K,F 1, . . . ,FK

)
:=
{
Pw,Q,F ; ∀k ∈ [K], w ∈ WK ,

Q ∈ TK , Fk ∈ F k

}
⊂ PX ,

where Pw,Q,F is given by (4.1), WK =
{
w ∈ [0,1]K ;w1 + · · · + wK = 1

}
and

TK =

Q ∈ [0,1]K×K ;
K∑
j=1

Qij = 1, ∀i ∈ {1, . . . ,K}

 .
Let Λ be a countable set and F λ ⊂ PY for λ ∈ Λ. Let ν be a σ-finite positive measure on
(Y ,Y) and we denote by µ the associated σ-finite measure on (X ,X ) given by µ := ν⊗L. Let
Θ be a subset of ⋃K≥2{K} × ΛK .
Assumption 4.2. We dispose of countable sets (Fλ)λ∈Λ of probability density functions (with
respect to ν) such that

1. for all λ ∈ Λ, the set of distributions Fλ := {f · ν; f ∈ Fλ ∈ Fλ} is an ϵ-net of F λ with
respect to the Hellinger distance;

2. for all θ = (K,λ1, . . . ,λK) ∈ Θ and all k1, . . . ,kL ∈ [K] the class of functions

Fλk1 ,...,λkL
=
{
x ∈ Y L 7→ f1(x1) . . . fL(xL); fl ∈ Fλkl

,∀l ∈ [L]
}

is VC-subgraph with VC-index not larger than Vλk1 ,...,λkL
.

Then we write
V θ :=

∑
1≤k1,...,kL≤K

Vλk1 ,...,λkL
.

For θ = (K,λ1, . . . ,λK) ∈ Θ, let M θ be a non-empty subset of Hθ := H
(
K,F λ1 , . . . ,F λK

)
.

We use model selection to build an estimator over the collection of models
(
M
)
θ∈Θ

. We denote
their union by M = ⋃

θ∈Θ M θ. To perform the procedure described in Section 4.2 we need a
countable approximation of M .

For δ ∈ (0,1/K] we define the sets Wδ,K := WK∩([δ,1] ∩ Q)K and Tδ,K := TK∩([δ,1] ∩ Q)K×K .
Let δ : Θ → (0,1] be such that δ(θ) ∈ (0,1/K] for all θ = (K,λ1, . . . ,λK) ∈ Θ. We define

Hθ,δ :=
{
Pw,Q,f ;w ∈ Wδ(θ),K , Q ∈ Tδ(θ),K , fk ∈ Fλk

,∀i ∈ [K]
}
,

where the sets (Fλk
)1≤k≤K are given in Assumption 4.2. We define Mθ,δ as the following

countable set of distributions

Mθ,δ :=

Pw,Q,F ∈ Hθ,δ; ∃Pw′,Q′,F ′ ∈ M θ,
h2 (Qk·,Q

′
k·) ≤ (K − 1)δ

h (Fk,F ′
k) ≤ ϵ,∀k ∈ [K],

h2 (w,w′) ≤ (K − 1)δ,

 , (4.8)

which is a good approximation of M θ for small values of δ and ϵ and we take
M :=

⋃
θ∈Θ

Mθ,δ. (4.9)
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4.3.2 General result of model selection
Let ∆ be a function Θ → R+ satisfying ∑

θ∈Θ
e−∆(θ) ≤ 1. The following result is proven in Section

4.B.1.
Theorem 4.1. Let Y1, . . . ,YN be random variables on (Y ,Y) and s be in {0,1, . . . ,smax}. Under
Assumption 4.2, let P̂s = P̂s (M ,X,pen) be the estimator given by (4.5) with

δ(θ) = V θ

n(s,1)(K − 1) ∧ 1
K
, (4.10)

and
pen(Q) = κ inf

θ∈Θ|Q∈Mθ

[
837

(
1 + log

(
Kn(s,1)

V θ ∧ n(s,1)

))
+ ∆(θ)

]
. (4.11)

There exists a positive constant C such that

CEP∗

[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ Lϵ2 + inf

θ∈Θ

[
h2
(
P ,M θ

)
+ (s+ 1)

n

(
LV θ log n+ ∆(θ)

) ]

+ n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
. (4.12)

In particular, under Assumption 4.1, there exist positive constants C(Q∗),c(Q∗) such that for
s ≥ c(Q∗) log n we have

C(Q∗)EP∗

[
h2
(
P ∗, P̂s

)]
≤ Lϵ2 + inf

θ∈Θ

[
h2
(
P ∗,M θ

)
+ s

n

(
LV θ log n+ ∆(θ)

) ]
. (4.13)

Inequality (4.12) does not require any assumption on the data. Ideally we can take P in
M θ such that most of the distributions Pi lie in a small neighborhood of P so that the first
term in the bound remains small compared to Lϵ2 + (s + 1)

(
LV θ log n+ ∆(θ)

)
. In the case

where we cannot take ϵ = 0 and the quantity V θ depends on it, we have to take ϵ going to 0
with n in a way that balances those two terms.

Under Assumption 4.1 the term n−1
n∑
i=1

h2 (P ∗, Pi) is negligible and a good choice of s guar-

antees the term n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
to be negligible as well with respect to the main term

(s+ 1)
(
LV θ log n+ ∆(θ)

)
. We define H ∗ = ⋃

θ∈Θ H ∗
θ with

H ∗
θ :=

Pw,Q,F ∈ H (θ) ;
Q irreducible ,
Q aperiodic,
and w = Qw

 . (4.14)

If P ∗ ∈ M ∩ H ∗, for s of order log2 n and n large enough we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ log2 n

n
inf
θ∈Θ

P ∗∈M θ

{
LV θ log n+ ∆(θ)

}
.

As long as ∆(θ∗) is of the same order as LV θ∗ log n or smaller, we obtain the same rate as when
we only consider M θ∗ . We can obtain a better power of log n if we know c(Q∗).

In addition of having good performances our estimator possesses properties of robustness. In
order to illustrate them we consider the following situation. Let Z1, . . . ,ZN be random variables
with any distributions and E1, . . . ,EN be Bernoulli random variables such that for all i ∈ [n],

Yi = EiY
′
i + (1 − Ei)Zi,

where Y′ satisfies Assumption 4.1. The following result is proven in Section 4.B.2.
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Corollary 4.1. If E1,Z1, . . . ,EN ,ZN and Y′ are mutually independent, there exist positive
constant C(Q∗),c(Q∗) such that for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗,P̂s

)]
≤ L

N

N∑
i=1

(1 − pi) + Lϵ2 + inf
θ∈Θ

[
h2
(
P ∗,M θ

)
+ (s+ 1)

(
LV θ log n+ ∆(θ)

)]
,

where pi = P(Ei = 1) for all i ∈ [N ].

One can see that our deviation bound is not significantly worse as long as the average
proportion of contamination L

N

N∑
i=1

(1 − pi) remains small compared to the other terms. One

would typically look at the following situation. We assume that there exists θ ∈ Θ such that
P ∗ ∈ M θ. For Hüber’s contamination model, i.e. pi = 1 − αcont for all i, we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ Lαcont + s

n

(
LV θ log n+ ∆(θ)

)
, (4.15)

for s ≥ c(Q∗) log n. The bound on the convergence rate is not deteriorated as long as the
contamination rate αcont is small compared to s

n

(
LV θ log n+ ∆(θ)

)
. We can also consider the

situation P (Ei = 0) = 1i∈I for some subset I ⊂ [N ]. We get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L|I|

N
+ s

n

(
LV θ log n+ ∆(θ)

)
, (4.16)

for s ≥ c(Q∗) log n. As before, our bound on the convergence rate is not deteriorated as long
as the proportion of outliers |I|/N is small compared to s

n

(
LV θ log n+ ∆(θ)

)
.

4.3.3 Selection of the order
We focus on the specific situation where Λ is a single set {λ}. Let K be a subset of {2, . . . ,n}
and

Θ =
⋃

K∈K

{K} × {λ}K .

We consider the following case. There is a countable set F of probability density functions with
respect to ν such that F = {f · ν; f ∈ F} is an ϵ-net of F λ and the class of functions

F⊗L = {x 7→ f1(x1) . . . fL(xL); fl ∈ F ,∀l ∈ [L]} ,

is VC-subgraph with VC-index not larger than V . Then we satisfy Assumption 4.2 and we have
V K = KLV . We take Θ = ⋃

K∈K {K} × {λ}K and drop the dependency on λ in the notation.
The next result is a consequence of Theorem 4.1.

Corollary 4.2. For pen given by (4.11) with ∆(K) = KL and δ given by (4.10), there exists
a positive constant C such that

CE
[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ Lϵ2 +

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ inf
K∈K

[
h2
(
P ,MK

)
+ (s+ 1)L2KLV

log n
n

]
. (4.17)

In particular under Assumption 4.1 there exists positive constants C(Q∗),c(Q∗) such that for
s ≥ c(Q∗) log n,

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ Lϵ2 + inf

K∈K

[
h2
(
P ∗,MK

)
+ L2KLV

s log n
n

]
.
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Inequality (4.17) does not require any assumption on the data. We can see that the model
selection procedure allows to recover the performance we would get if we knew the model
MK realizing the best compromise between the distance h2

(
P ∗,MK

)
and the dimension term

(s + 1)L2KLV n−1 log n. If P ∗ belongs to M , we denote by K∗ the smallest integer K in K
such that P ∗ ∈ MK . We get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L(K∗)LV s log n

n
,

for s ≥ c(Q∗) log n and ϵ = 0. In particular, if we denote by K̂ the smallest integer K such
that P̂s ∈ MK , we have

E
[
h2
(
P ∗, P̂s

)]
≥ h2

(
P ∗, P̂s

)
P
(
K̂ < K∗ − 1

)
.

Since h2
(
P ∗,MK∗−1

)
> 0, we can deduce a bound on the probability of underestimating the

true order. Considering the problem of overestimation would require more work that we did
not do for lack of time.

We consider the following example. We take Y = N and F P = {Poisson(λ);λ > 0} where
Poisson(λ) is the Poisson distribution with parameter λ. It is defined by its density given by
pλ(k) = λke−λ

k! . We take MK = H (K,F P , . . . ,F P ) for K ∈ K = {2, . . . ,N}. Let P(N) denote
the power set of N. For FP = {Poisson(λ);λ ∈ Q ∩ (0,∞)} we satisfy Assumption 4.2 with
ϵ = 0.
Theorem 4.2. Let Y1, . . . ,YN be random variables on (N,P(N)) and s be in {0,1, . . . ,smax}. Let
P̂s = P̂s (M ,X,pen) be the estimator given by (4.5) with δ,pen and ∆ given by (4.10), (4.11)
and ∆(K) = KL. There exists a positive constant C such that for all P ∈ PX ,

CE
[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ inf
2≤K≤n

[
h2
(
P ,MK

)
+ (s+ 1)L2KL log n

]
.

In particular, under Assumption 4.1, there exist positive constants C(Q∗),c(Q∗) such that for
s ≥ c(Q∗) log n,

C(Q∗)EP∗

[
h2
(
P ∗, P̂s

)]
≤ inf

2≤K≤n

[
h2
(
P ∗,MK

)
+ (s+ 1)L2KL log n

]
.

This result is a consequence of Corollary 4.2 and Proposition 3.1. The comments made
earlier apply here as well.

4.3.4 Selection of the emission models
We consider another specific situation where the order is fixed and we want to select the
emission models. Let K be a fixed integer larger than 1. Let L be a subset of ΛK and we take
Θ = {K} × L. The next result is a consequence of Theorem 4.1.
Corollary 4.3. Let ∆ be a mapping L → R+ such that ∑

λ∈E
e−∆(λ) ≤ 1. For pens given by

(4.11) with δ given by (4.10), there exists a positive constant C such that

CEP∗

[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ Lϵ2 +

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ inf
λ∈L

{
h2
(
P ,M λ

)
+ (s+ 1)LV λ

log n
n

}
.
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In particular under Assumption 4.1 there exists positive constants C(Q∗),c(Q∗) such that for
s ≥ c(Q∗) log n, we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ Lϵ2 + inf

λ∈L

[
h2
(
P ∗,M λ

)
+ LV λ

s log n
n

]
.

Inequality (4.17) does not require any assumption on the data. We can see that the model
selection procedure allows to recover the performance we would get if we knew the model
M λ realizing the best compromise between the distance h2

(
P ∗,M λ

)
and the dimension term

(s+ 1)LV λn
−1 log n. If P ∗ belongs to M , we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ LV

∗ s log n
n

,

for s ≥ c(Q∗) log n and V
∗ = min{Vλ;λ ∈ Λ and P ∗ ∈ M λ}. We can apply this result for the

estimation of hidden Markov models with sparse multivariate normal emission densities.
Let d be a positive integer and Cov+∗(d) be the set of d× d symmetric and positive-definite

matrices. We define T+ = {(i,j); 1 ≤ i ≤ j ≤ d} and

T + =
{
A ⊂ T+; {(1,1),(2,2), . . . ,(d,d)} ⊂ A

}
.

For A in T +, we denote by |A| its cardinal and we denote by Cov+∗(d,A) the subset of Cov+∗(d)
given by

Cov+∗(d,A) =
{
C ∈ Cov+∗(d); ∀(i,j) ∈ T+, (i,j) /∈ A ⇔ Ci,j = 0

}
.

We denote by Gd(A) the set of probability density functions (with respect to the Lebesgue
measure) given by

Gd(A) =

gz,Σ : x ∈ Rd 7→
exp

(
−1

2(x− z)TΣ−1(x− z)
)

(2π)d/2 det(Σ)1/2 ; z ∈ Rd,Σ−1 ∈ Cov+∗(d,A)

 ,
and by Gd(A) the associated set of probability distribution. We take Λ = T + and Θ =
{K}×ΛK . We take M A = H (K,Gd(A1), . . . ,Gd(AK)) for A = (A1, . . . ,AK) ∈ ΛK . We satisfy
Assumption 4.2 with ϵ = 0,

Gd,Q(A) =
{
gz,Σ; z ∈ Qd,Σ−1 ∈ Cov+∗(d,A) ∩ Qd×d

}
,

and
V A = KL(3 + dL) + LKL−1(|A1| + · · · + |AK |).

Let σ(Rd) be the Borel σ-algebra on Rd. The following result is proven in Section 4.B.4.

Theorem 4.3. Let Y1, . . . ,YN be random variables on
(
Rd,σ

(
Rd
))

with d ≤ 1+2LKL−1NLKL−1

and s be in {0,1, . . . ,smax}. Let P̂s = P̂s (M ,X,pen) be the estimator given by (4.5) with δ,pen
and ∆ given by (4.10), (4.11) and

∆(A1, . . . ,AK) := dLKL + LKL−1 log n ((|A1| − d) + · · · + (|AK | − d)) ,

respectively. There exists a positive constant C such that for all P ∈ PX ,

CE
[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ n−1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ inf
A∈(T +)K

[
h2
(
P ,M A

)
+ (s+ 1) log n

(
dL2KL + LKL−1(|A1| + · · · + |AK |)

) ]
.
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In particular, under Assumption 4.1, there exist positive constants C(Q∗),c(Q∗) such that for
s ≥ c(Q∗) log n,

C(Q∗)EP∗

[
h2
(
P ∗, P̂s

)]
≤ (4.18)

inf
A∈(T +)K

[
h2 (P ∗,MA) + (s+ 1) log n

(
dL2KL + LKL−1(|A1| + · · · + |AK |)

) ]
.

We can avoid a quadratic dependence on d and only have a linear one when there is a good
approximation of the true distribution that is sparse, i.e. if P ∗ ∈ MA with |A1|, . . . ,|AK | of
order d.
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4.A General results
Let (Mθ)θ∈Θ be countable subsets of PX , with Θ countable set. Let ∆ : Θ → R+ be such that

∑
θ∈Θ

e−∆(θ) ≤ 1.

We assume we have the following bound on the ρ-dimension function (see Definition 4 [11]).
There exist D : Θ × N∗ → R+ and K ≥ 0 such that

DMθ

(
P,P

)
≤ D(θ,n) + TD(θ′,n), (4.19)

for all P = ⊗n
i=1 Pi ∈ P⊗n, all P = ⊗n

i=1 P i ∈ M ⊗n
θ′ and all n ≥ 1. We assume D is

nondecreasing in n for all θ in Θ. For s in {0,1, . . . ,smax}, we take the penalty function given
by

pen(Q) = κ inf
θ∈Θ|Q∈Mθ

[
D(θ,n(s,1))

4.7 + ∆(θ)
]
,

for all Q ∈ M = ⋃
θ∈Θ Mθ with κ = 8 × 35

√
2 + 74.

Theorem 4.4. For any random variables X1, . . . ,Xn on (X ,X ), the estimator P̂s = P̂s (M ,X,pen)
satisfies

EP∗

[
n∑
i=1

h2
(
Pi, P̂s

)]
≤ inf

θ∈Θ

[
c1 inf

Q∈Mθ

n∑
i=1

h2 (Pi, Q) + c2(s+ 1)
(

(T + 1)D(θ,n(s,1))
4.7 + ∆(θ) + 4

)]

+ c2

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
,

with c1 = 304 and c2 = 30084.

4.A.1 Proof of Theorem 4.4
Let b ∈ [s + 1] and P̂s,b be the estimator given by (4.4). From Theorem 2 of Baraud & Birgé
[11], we have

Pind
s,b

( n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
≤ inf

θ∈Θ

[
γ inf
Q∈Mθ

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), Q

)
+ 4κ
a1

(
(T + 1)D(θ,n(s,b))

4.7 + ∆(θ) + 1.49
)]

+ 4κ
a1
ξ

)
≥ 1 − e−ξ,∀ξ > 0,

where γ and κ are given in [11] and satisfy γ ≤ 150 and 4κ
a1

≤ 5014 (see proof of Theorem 1
[13], page 32). Applying Lemma (chapter hmm), we get

EP∗
s,b

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

) ≤ inf
θ∈Θ

[
γ inf
Q∈Mθ

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), Q

)

+ 4κ
a1

(
(T + 1)D(θ,n(s,b))

4.7 + ∆(θ)
)]

+ 4κ
a1

[
3.49 + K

(
P∗||Pind

)]
.
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From the definition of P̂s, we have

n∑
i=1

h2
(
Pi, P̂s

)
=

s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s

)

≤ 2
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 2

s+1∑
b=1

n(s,b)h2
(
P̂s,b, P̂s

)

≤ 2
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 2 inf

Q∈M

s+1∑
b=1

n(s,b)h2
(
P̂s,b, Q

)
+ 2ι

≤ 6
s+1∑
b=1

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)
+ 4 inf

Q∈M

n∑
i=1

h2 (Pi, Q) + 2ι.

Since ι ≤ 7671 ≤ 1.53 × 5014, 4κ/a1 ≤ 5014 and γ ≤ 150 (see proof of Theorem 1 in [13]), we
get

EP∗

[
n∑
i=1

h2
(
Pi, P̂s

)]
≤ 6

s+1∑
b=1

EP∗
s,b

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), P̂s,b

)+ 4 inf
Q∈M

N∑
i=1

h2 (Pi, Q) + 2ι

≤ 6
s+1∑
b=1

inf
θ∈Θ

γ inf
Q∈Mθ

n(s,b)∑
i=1

h2
(
Pb+(i−1)(s+1), Q

)
+ 4κ
a1

(
(T + 1)Dn(s,b)(θ)

4.7 + ∆(θ)
)

+ 24κ
a1

[
3.49(s+ 1) +

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)]
+ 4 inf

Q∈M

n∑
i=1

h2 (Pi, Q) + 2ι

≤ inf
θ∈Θ

[
(6γ + 4) inf

Q∈Mθ

n∑
i=1

h2 (Pi, Q)

+ 24κ(s+ 1)
a1

(
(T + 1)Dn(s,1)(θ)

4.7 + ∆(θ) + 3.49
)]

+ 24κ
a1

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
+ 2ι

≤ inf
θ∈Θ

[
304 inf

Q∈Mθ

n∑
i=1

h2 (Pi, Q) + 30084(s+ 1)
(

(T + 1)D(θ,n(s,1))
4.7 + ∆(θ) + 4

)]

+ 30084
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.

4.B Application to HMMs

4.B.1 Proof of Theorem 4.1
From Proposition 5 in (chapter hmm) and our choice of δ, we satisfy (4.19) with T = 0 and

D (θ,n(s,1)) = 3930LV θ

[
1 + log

(
Kn(s,1)

V θ ∧ n(s,1)

)]
.

From Proposition 6 and (??), we have

inf
Q∈Mθ,δ

n∑
i=1

h2 (Pi, Q) ≤ 2 inf
Q∈M θ

n∑
i=1

h2 (Pi, Q) + 2(K − 1)Lδ(θ) + 2Lϵ2

≤ 2 inf
Q∈M θ

n∑
i=1

h2 (Pi, Q) + 2(s+ 1)LV θ + 2nLϵ2,
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and

h2
(
P ,P̂s

)
≤ 2
n

n∑
i=1

h2
(
P ,Pi

)
+ 2
n

n∑
i=1

h2
(
Pi, P̂s

)
n∑
i=1

h2
(
Pi, P̂s

)
≤ 2h2

(
P ,P̂s

)
+ 2
n

n∑
i=1

h2
(
P ,Pi

)
.

From Theorem 4.4, there exists a positive constant C such that

CEP∗

[
h2
(
P , P̂s

)]
≤ n−1

n∑
i=1

h2
(
Pi, P

)
+ inf

θ∈Θ

[
h2
(
P ,M θ

)
+ nLϵ2

+ (s+ 1)
(
LV θ log n+ ∆(θ)

) ]
+

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
.

This proves (4.12) and we turn to the second inequality. With Lemma ?? (chapter HMM), we
have

h2(P ∗, P̂s) ≤ 2
n

n∑
i=1

h2(Pi,P ∗) + 2
n

n∑
i=1

(Pi,P̂s),

and
n−1

n∑
i=1

h2(Pi,P ∗) ≤ 2C(Q∗)
n(er(Q∗) − 1) .

It leads to

C(Q∗)EP∗

[
h2
(
P ∗, P̂s

)]
≤ inf

θ∈Θ

[
h2
(
P ∗,M θ

)
+ (s+ 1)

n

(
LV θ log n+ ∆(θ)

) ]
+ e−r(Q∗)s,

and we obtain (4.13) with s large enough.

4.B.2 Proof of Corollary 4.1
We have

P
(
Xi = (Y ′

i , . . . ,Y
′
i+L−1)

)
≥ P(Ei = · · · = Ei+L−1 = 1) = pipi+1 . . . pi+L−1,

and with the convexity of the squared Hellinger distance

h2(Pi,P ∗) ≤ pipi+1 . . . pi+L−1h
2(P ′

i ,P
∗) + (1 − pipi+1 . . . pi+L−1)

≤ h2(P ′
i ,P

∗) + (1 − pi) + (1 − pi+1) + · · · + (1 − pi+L−1),

where P ′
i = L(Y ′

i , . . . ,Y
′
i+L−1). One can check that n ≥ 1 +N/2 with our condition on L. With

Theorem ?? and Lemma ??, we have

C(Q∗)E
[
h2
(
P ∗,P̂s

)]
≤ L

N

N∑
i=1

(1 − pi) + Lϵ2

+ inf
θ∈Θ

[
h2
(
P ∗,M θ

)
+ s

log n
n

(
LV θ log n+ ∆(θ)

)]
,

for our condition on s.

4.B.3 Proof of Theorem 4.2
One can check that we have FP = E ((0,∞), log, idN, 1, B) with B(k) = − log(k!).
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4.B.4 Proof of Theorem 4.3
One can check that we have Gd(A) = E

(
Rd × Cov+∗(d,A), η, T, d+ |A|, 0

)
with

T (x) =
(
x, (x2

i )1≤i≤d, (xixj) i<j
(i,j)∈A

)

η(z,C) =
(
Cz,−1

2 (Cii)1≤i≤d ,− (Cij) i<j
(i,j)∈A

)

We define T +
j by T +

j = {A ∈ T +; |A| = j}, for j in {d, . . . ,d(d + 1)/2}. We have |T +
d+k| =( d(d−1)

2
k

)
. One can check that we have

∑
A∈T +

e−∆(A1,...,AK) =
∑

A∈T +

e−dLKL−LKL−1 logn((|A1|−d)+···+(|AK |−d))

= e−dLKL

 ∑
A∈T +

e−LKL−1 logn(|A|−d)

K

= e−dLKL

d(d+1)/2∑
j=d

∑
A∈T +

j

e−LKL−1 logn(j−d)


K

= e−dLKL

d(d−1)/2∑
j=0

(
d(d− 1)/2

j

)
n−LKL−1j

K

= e−dLKL
(
1 + n−LKL−1)Kd(d−1)/2

≤ e−dLKL

e
Kd(d−1)

2 n−LKL−1
≤ 1,

for d ≤ 1 + 2LKL−1NLKL−1 .

4.B.5 Exponential families
Let d be a positive integer and η : Φ → Rd be a function over a non-empty set Φ. Let
T : X → Rd and B : X → R be measurable functions such that∫

X
e⟨η(ϕ),T (x)⟩+B(x)ν(dx) < ∞,∀ϕ ∈ Φ,

we denote by E
(
Φ,η,T,d,B

)
the exponential family defined by

E
(
Φ,η,T,d,B

)
:=
{
fϕ : x 7→ e⟨η(ϕ),T (x)⟩+A(ϕ)+B(x);ϕ ∈ Φ

}
,

where
A(ϕ) := − log

(∫
X
e⟨η(ϕ),T (x)⟩+B(x)ν(dx)

)
.

It is a set of probability density functions with respect to ν. We consider the following situation.

Assumption 4.3. For all λ ∈ Λ,

• F λ is of the form
F λ =

{
q · ν; q ∈ E

(
Φλ,ηλ,Tλ,dλ,Bλ

)}
, (4.20)
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• Φλ is a countable subset of Φλ such that Fλ = {q · ν; q ∈ Fλ} is a dense subset of F λ,
with Fλ := E

(
Φλ, ηλ|Φλ

, Tλ, dλ, Bλ

)
.

In that situation, we satisfy Assumption 4.2 with ϵ = 0 and

Vλk1 ,...,λiL
≤ 3 +

L∑
l=1

dλ
il

and therefore
V θ = 3KL + LKL−1 (dλ1 + · · · + dλK

) ,

for θ = (K,λ1, . . . ,λK).
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Abstract

We observe n observations generated by a hidden Markov model and aim to estimate the
different parameters. We do not assume the state space of the hidden Markov chain to be finite.
We consider the case of univariate normal emission densities and establish the identifiability
of the stationary distribution and Markov kernel given the distribution of two consecutive
observations. We can approximate such a distribution by finite mixtures of multivariate normal
distributions and we establish a risk bound for our estimator.

5.1 Introduction
Let (E ,E) be a measurable space. Let π be a probability distribution on (E ,E). Let Q be a
Markov kernel on (E ,E). Let F be a set of emission distributions on a measurable space (Y ,Y)
of the form

F = {Fh;h ∈ E } ,

and such that the application h 7→ Fh(B) is measurable for all B ∈ Y . We say that (Yi,Hi)i is
a HMM with parameters

(
E ,π,Q,F

)
if (Hi)i is a Markov chain with initial distribution π on

(E ,E) and kernel Q on E × E , and

L (Y1, . . . ,YN |H1, . . . ,HN) =
N⊗
i=1

FHi
.

We adopt the same strategy we considered for finite state space HMMs assuming it is possible
to deduce the parameters from the distribution of consecutive observations.

Let (Yi,Hi)i be a HMM with parameters (E ,π∗,Q∗,F ). If π∗ is invariant with respect to Q∗

the process (Yi,Hi)i is stationary. In that case, for L ≥ 2 we have PL = L(YiYi+1, . . . ,Yi+L−1)
for all i, where the distribution PL is defined by by

PL(B1, . . . ,BL) =
∫

E L

(
L∏
l=1

Fhl
(Bl)

)
π∗(dh1)Q(h1,dh2) . . . Q(hL−1,dhL),

for all Borel sets B1, . . . ,BL ∈ Y . We will see that the stationarity assumption is not necessary,
only the ergodicity of Q∗ is required.

5.2 The framework
Let Y1,Y2, . . . ,YN be random variables taking values in (R,B(R)), where B(R) is the Borel σ-
algebra on R. Let L be in {2,3, . . . ,⌊N/2⌋} and n be the integer given by n = N + 1 − L. We
define the new random variables

Xi = (Yi,Yi+1, . . . ,Yi+L−1) ,i = 1, . . . ,n, (5.1)

taking values in the measurable space
(
RL,σ(RL)

)
.

Assumption 5.1. Let (Yi,Hi)i be a HMM with parameters (E ,π,Q∗,F ) such that Q∗ has a
density q∗ with respect to some measure η such that

0 < q− ≤ (q∗)m(h1,h2) ≤ q+ < +∞. (5.2)
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Under this assumption Q∗ has only one invariant distribution π∗ and we define the distri-
bution P ∗ by

P ∗(B1, . . . ,BL) =
∫

E L

(
L∏
l=1

Fhl
(Bl)

)
π∗(dh1)Q∗(h1,dh2) . . . Q∗(hL−1,dhL), (5.3)

for all Borel sets B1, . . . ,BL ∈ E . In that case we do not necessarily have identically distributed
observations however the distribution L (Yi, . . . ,Yi+L−1) converges exponentially fast to P ∗. Our
aim is to estimate P ∗ based on the observations (Yi)i.

In what follows we believe P ∗ is of the form (5.3) with Gaussian emission distributions or can
be well approximated by such a distribution. We denote by N = {N (z,σ2); (z,σ2) =: h ∈ H }
the class of univariate normal distributions with H = R × (0,∞). Let H be the Borel σ-
algebra on R. Let PH and QH be the class of probability distributions and Markov kernels on
(H ,H) respectively. For π ∈ PH and Q ∈ QH , we define the probability distribution νπ,Q on(
H L,H⊗L

)
by

νπ,Q(dh1, . . . ,dhL) = π(dh1)Q(h1,dh2) . . . Q(hL−1,dhL),

and the distribution Pπ,Q on
(
RL,B(RL)

)
associated to the probability density function

pπ,Q : (x1, . . . ,xL) 7→
∫

H L

e
− (x1−h1)2

2σ2
1√

2πσ2
1

. . .
e

− (xL−hL)2

2σ2
L√

2πσ2
L

νπ,Q(dh1, . . . ,dhL), (5.4)

with respect to the Lebesgue measure. We have the following result of identifiability for a
compact hidden state space.

Theorem 5.1. Let K be a compact subset of H . For all π,π′ ∈ PH and Q,Q′ ∈ QH such
that νπ,Q(KL) = νπ′,Q′(KL) = 1, we have Pπ,Q = Pπ′,Q′ ⇒ νπ,Q = νπ′,Q′.

This result is proven in Section 5.B.1. It is similar to the results of Gassiat et al.[46] for
nonparametric translation HMMs with general state space. Their framework differs from ours
but we can see that translation HMMs with Gaussian noise is a specific case of both their
framework and ours.

5.2.1 Reminders of ρ-estimation
We denote by P the class of probability distributions on

(
RL,σ(RL)

)
. We denote by ψ the

function given by

ψ :
∣∣∣∣∣ [0,+ ∞] → [−1,1]
x 7→ x−1

x+1
.

Let M be a countable subset of P with an associated set of density functions M with respect
to the Lebesgue measure on Rd. For n ≥ 1, we denote by Tn and Υn the functions given by

Tn :

∣∣∣∣∣∣∣
RLn × M × M → [−1,1]
(x,q,q′) 7→

n∑
k=1

ψ
(√

q′(xi)
q(xi)

)

with the convention 0/0 = 1, a/0 = +∞ for all a > 0, and

Υn :
∣∣∣∣∣ RLn × M

(x,q) 7→ supq′∈M Tn (x,q,q′) .
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For x in RLn, we define the (nonvoid) set En(x) by

En(x) =
{
Q = q · µ

∣∣∣∣∣q ∈ M,Υn (X,q) < inf
q′∈M

Υn (X,q′) + 11.36
}
. (5.5)

We denote by P̂ (n,X,M ) any measurable element of the closure of En(X) with respect to the
Hellinger distance and we call it a ρ-estimator on M . The constant 11.36 is given by (7) and
(19) in [11] but can be replaced by any smaller positive number.

5.2.2 Our estimation procedure
We build a subset of the observations by taking them separated by blocks of length s. Formally,
for s ∈ {0,1, . . . ,smax},smax := ⌊(n− 2)/2⌋ and b ∈ [s+ 1], we define

n(s,b) :=
⌊
n+ s+ 1 − b

1 + s

⌋
≥ 2,

for i ∈ [n(s,b)]
X

(s,b)
i := Xb+(i−1)(s+1) ∈ RL,∀i ∈ [n(s,b)], (5.6)

and
X(s,b) :=

(
X

(s,b)
i , i ∈ [n(s,b)]

)
.

We obtain s + 1 subsets X(s,1), . . . ,X(s,s+1) with sizes n(s,1), . . . ,n(s,s + 1) respectively. For
each block b ∈ [s+ 1], we consider the probabilities P∗

s,b and Pind
s,b which are defined by

P∗
s,b := L

(
X(s,b)

)
and Pind

s,b :=
n(s,b)⊗
i=1

L
(
X

(s,b)
i

)
. (5.7)

We denote for short P∗ := P∗
0,1 the distribution of X = (X1, . . . ,Xn) and

Pind := Pind
0,1 = L(X1) ⊗ · · · ⊗ L(Xn) =

n⊗
i=1

Pi.

In order to measure the dependence within the X(s,b)
i we use the Kullback-Leibler divergence

K defined as follow. For two probability distributions P and Q on the same measurable space,

K(Q||P ) =


∫

log
(
dQ
dP

)
dQ if Q ≪ P,

+∞ otherwise.

Our estimator is obtained with the following statistical procedure.
1. Let s be in {0,1, . . . ,smax}. For b in [s+ 1], we denote by P̂s,b the estimators given by

P̂s,b := P̂
(
n(s,b),X(s,b),M

)
.

2. We denote by P̂s = P̂s (Y,M ) any element of M that satisfies
s+1∑
b=1

n(s,b)h2
(
P̂s,b,P̂s

)
≤ inf

Q∈M

s+1∑
b=1

n(s,b)h2
(
P̂s,b,Q

)
+ ι, (5.8)

where ι is any fixed constant in (0,1273].
In order to evaluate the performance of our estimator we use the Hellinger distance h defined
by

h2(Q,Q′) = 1
2

∫ (√
dQ

dµ
−
√
dQ′

dµ

)2

dµ,

where µ is a measure that dominates both Q and Q′, the result being independent of µ.
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5.3 Approximation of general HMMs by finite mixtures
It is too complicated to consider the class of all distributions Pπ,Q for the estimation but such
a probability can be well approximated by a finite mixture when w and Q are supported on
compact sets. For K ≥ 2, we denote by MK the set of distributions defined by

MK :=
{

K∑
k=1

wk
L⊗
l=1

Fk,l;w ∈ WK , Fk,l ∈ N , ∀k ∈ [K],∀l ∈ [L]
}
, (5.9)

where
WK =

{
w ∈ [0,1]K ;w1 + · · · + wK = 1

}
. (5.10)

For A > 0 and R > 1, we denote by C (A,R) the set of probability distributions given by

C (A,R) :=
{
Pπ,Q; ∃l ∈ R,∃s ∈ (0,∞),

∫
D(A,R,s,l)

Q(hL−1, dhL) . . . Q(h1,dh2)w(dh1) = 1
}
,

with D(A,R,s,l) = ([l ± sA] × s[1,R])L. We have the following approximation result that is
proven in Section 5.B.4.
Proposition 5.1. For K ≥ 1 + (24A2L+ 1)L (48A2L+ 1)L and R ≥ 1, L ≥ 1, for any Pπ,Q
in C (A,R), we have

h2
(
Pπ,Q,MK

)
≤ K

L−1
4L

√1 +
√

2
Leπ

L−1

exp
(

− K1/2L

12LR2
√

6

)√1 +
√

2
Leπ

K1/4L +R
2L − 1

2

 .
For a fixed R we can take a well-chosen value of K to obtain the desired approximation

guarantee. We build countable subsets of MK to apply our estimation procedure. For 0 < δ <
1/K, we define the subset MK,δ by

MK,δ :=
{

K∑
k=1

wk
L⊗
l=1

Fk,l;w ∈ Wδ,K , Fk,l ∈ F ,∀t ∈ [T ],∀l ∈ [L]
}
,

with F := {N (z,σ2); z ∈ Q, σ ∈ Q ∩ (0,∞)} and Wδ,K := WK ∩ ([δ,1] ∩ Q)K .

5.4 Main result
Our main result is the following theorem and is proven in Section 5.B.2.
Theorem 5.2. Let P̂s = P̂s (Y,MK,δ) be the estimator given by (5.8) with

δ = 3 + 2L
n(s,1) ∧ 1

K
and K =

⌈
(12

√
6LR2 log n)2L

⌉
. (5.11)

There exists a positive constant C such that for all R ∈ [1,(n/12
√

6L log n)1/4L] and all P ∈
PX , we have

CE
[
h2
(
P , P̂s

)]
≤ h2

(
P ,C (A,R)

)
+ n−1

n∑
i=1

h2
(
Pi, P

)
+

s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)

+ (s+ 1)
(
12

√
6
)2L

R4LL2L+2 log2L+1 n

n
, (5.12)

where A = A(R,n) :=
√

12
√

6−1
4
√

3 R log1/2 n. In particular under Assumption 5.1 there exist
positive constants C(Q∗),c(Q∗) such that for s ≥ c(Q∗) log n,

C(Q∗)E
[
h2
(
P ∗,P̂s

)]
≤ h2 (P ∗,C (A,R)) +

(
12

√
6
)2L

L2L+2R4L s log2L+1 n

n
. (5.13)
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Inequality (5.12) does not require any assumption on the data. One should notice that the
statistician does not need to specify a value of A and R. In fact, we could have in the bound
an infimum with respect to R in [1,(n/12

√
6L log n)1/4L] of the quantity

h2
(
P ,C (A,R)

)
+ (s+ 1)

(
12

√
6
)2L

R4LL2L+2 log2L+1 n

n
.

We can deduce from (5.13) a bound on the convergence rate over the class

C ∗ =
⋃
R>0

C ∗(R) with C ∗(R) :=
{
Pw,Q ∈

⋃
A>0

C (A,R);Q satisfies (5.2)
}
.

For P ∗ = Pw∗,Q∗ in C ∗, there exist R∗ > 0 such that P ∗ ∈ C ∗(R∗) and for s of order log2 n we
have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤
(
12

√
6
)2L

L2L+2(R∗)2L log2L+3 n

n
,

for n large enough. This result does not require information on the constant c(Q∗). If it were
the case we could take an optimal value of s and obtain a slightly better power of log n in our
bound.

To illustrate the robustness of our estimator we consider the following situation. Let
Z1, . . . ,ZN be random variables with any distributions and E1, . . . ,EN be Bernoulli random
variables such that for all i ∈ [n],

Yi = EiY
′
i + (1 − Ei)Zi,

where Y′ satisfies Assumption 5.1. The following result is proven in Section 5.B.3.
Corollary 5.1. Let R be in [1,(n/12

√
6L log n)1/4L]. Let P̂s = P̂s (Y,MK,δ) be the estima-

tor given by (5.8) with δ and K given by (5.11). If E1,Z1, . . . ,EN ,ZN and Y′ are mutually
independent, there exist positive constants C(Q∗),c(Q∗) such that for s ≥ c(Q∗) log n we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,C (A,R)) + L

N

N∑
i=1

(1 − pi) (5.14)

+
(
12

√
6
)2L

L2L+2R4L s log2L+1 n

n
,

where A = A(R,n) :=
√

12
√

6−1
4
√

3 R log1/2 n and pi = P(Ei = 1) for all i ∈ [N ].
One can see that our deviation bound is not significantly worse as long as the average

proportion of contamination L
N

N∑
i=1

(1 −pi) remains small compared to the last term on the right
hand side of (5.14). One would typically look at the following situation. We assume that the
model is well specified, i.e. P ∗ ∈ C ∗(R∗). For Hüber’s contamination model, i.e. pi = 1 −αcont
for all i, and for n large enough we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ Lαcont +

(
12

√
6
)2L

L2L+2(R∗)4L s log2L+1 n

n
,

for s ≥ c(Q∗) log n. The bound on the convergence rate is not deteriorated as long as the
contamination rate αcont is of order not larger than

(
12

√
6
)2L

L2L+2R4L log2L+2 n
n

. We can also
consider the situation where P(Ei = 0) = 1i∈I for some subset I ⊂ [N ]. For s ≥ c(Q∗) log n
and n large enough we get

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ L|I|

N
+
(
12

√
6
)2L

L2L+2(R∗)4L s log2L+1 n

n
.

As before, our bound on the convergence rate is not deteriorated as long as the proportion of
outliers |I|/N is small compared to the second term on the right hand side.
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Appendix

5.A General

5.B General hidden Markov models

5.B.1 Proof of Theorem 5.1
We use the extension to the multidimensional case of Theorem 1 of Bruni and Koch [20] (see
4.(b) on page 1352) with n = 2L,p = L and D = KL which is a compact subset of R2L. We
can take

Λ2 =
{
λ : (h1, . . . ,hL) ∈7→

(
z,diag(σ2

1, . . . ,σ
2
L)
)

∈ RL × RL×L
}
,

with the notation hi = (zi,σ2
i ) and

diag(d1, . . . ,dL) =


d1 0

. . .

0 dL

 .

For a probability distribution A on D, we denote by PA the distribution on RL associated to
the density

pA : (x1, . . . ,xL) 7→
∫
D

e−(x1−h1)2/2σ2
1√

2πσ2
1

. . .
e−(xL−hL)2/2σ2

L√
2πσ2

L

A(dh1, . . . ,dhL).

The results of Bruni and Koch [20] give the identifiability PA = PA′ ⇒ A = A′, for all
distributions A,A′ on D. We can conclude taking A = νπ,Q and A′ = νπ′,Q′ .

5.B.2 Proof of Theorem 5.2
From Lemma 3.15 and Section 3.4.3, we have that

{
x 7→ gz1,σ2

1
(x1) . . . gzL,σ

2
L
(xL); zi ∈ R, σ2

i ∈ (0,∞)
}

is VC-subgraph with VC-index 3 + L1(1+3)
2 = 3 + 2L. The ρ-dimension function is properly

defined in Baraud & Birgé [11]. With Proposition A.1 of Lecestre [62], we get

Dn(s,1) (MK,δ) ≤ 545.3K(3 + 2L)
[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n(s,1)

K(3 + 2L)

)]
.

For δ and K given by (5.11) we have

Dn(s,1) (QK,δ) ≤ C
(
12

√
6
)2L

R2LL2L+1 log2L n log
((

12
√

6LR2 log n
)2L

∨ n
)

≤ C
(
12

√
6
)2L

R2LL2L+2 log2L+1 n,

where C is a numeric constant that can differ from one line to the next. One can easily check
that for A = A(R,n),⌈(

12
√

6LR2 log n
)2L

⌉
≥ 1 + (24A2L+ 1)L(48A2L+ 1)L.
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With Proposition 5.1 and Lemma B.2 [62] we get

h2 (Q,MK,δ) ≤ 2h2 (Q,MK) + 2(K − 1)(3 + 2L)
n(s,1)

≤ 4h2 (Q,C (A,R)) + 2(K − 1)(3 + 2L)
n(s,1)

+ 4
[(

12
√

6LR2 log n
)2L

+ 1
] L

4L

√1 +
√

2
Leπ

L 1
n

[
1 +R

2L − 1
2

]

≤ 4h2 (µ,C (A,R)) + 2

(
12

√
6LR2 log n

)2L
(3 + 2L)

n(s,1)

+ 4
[
1 + (12

√
6LR2 log n)−2L

] 1
4

[
R−12−L + 1 − 2−L

2

]

×

2
√

12
√

6(1 +
√

2)
eπ

L logL/2 n

n
RL+1.

We can apply Theorem 3.1 and obtain (5.12). The next lemma is proven in Section 5.B.5.

Lemma 5.1. Under Assumption 5.1 there are positive constants C(Q∗) and r(Q∗) such that

n−1
s+1∑
b=1

K
(
P∗
s,b||Pind

s,b

)
≤ C(Q∗)e−r(Q∗)s,∀s ≥ L+m− 2,∀b ∈ [s+ 1],

and
h2 (P ∗,Pi) ≤ C(Q∗)e−r(Q∗)i,∀i ∈ [n].

We can deduce (5.13) from this result and (5.12).

5.B.3 Proof of Corollary 5.1
We have

P
(
Xi = (Y ′

i , . . . ,Y
′
i+L−1)

)
≥ P (Ei = · · · = Ei+L−1 = 1) = pipi+1 . . . pi+L−1,

and with the convexity of the squared Hellinger distance

h2 (Pi, P ∗) ≤ pipi+1 . . . pi+L−1h
2 (P ′

i ,P
∗) + (1 − pipi+1 . . . pi+L−1)

≤ h2 (P ′
i ,P

∗) + (1 − pi) + · · · + (1 − pi+L−1),

where P ′
i = L(Y ′

i , . . . ,Y
′
i+L−1). One can check that n ≥ 1+N/2 with our conditions on L. With

Theorem 5.2, Lemma 3.2 and Lemma 5.1, we have

C(Q∗)E
[
h2
(
P ∗, P̂s

)]
≤ h2 (P ∗,C (A,R)) + L

N

N∑
i=1

(1 − pi)

+ (s+ 1)
(
12

√
6
)2L

R4LL2L+2 log2L+1 n

n
+ e−c(Q∗)s,

for some positive constant C(Q∗),r(Q∗) and s ≥ L− 1.
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5.B.4 Proof of Proposition 5.1

For a > 0 and 0 < σ < σ < ∞, we denote by Gmix(T,a,σ,σ) the set of mixture probability
distributions of the form

T∑
t=1

wtgz∗
t,1,σ

∗
t,1

(x1) . . . ϕz∗
t,L,σ

∗
t,L

(xL),

where w ∈ WT , σ∗
t,l ∈ [σ,σ],z∗

t,l ∈ [−a,a] for all t ∈ [T ] and l ∈ [L]. If H is probability
distribution on (R × (0,∞))L, we define the density function

pH(x1, . . . ,xL) =
∫
gh1(x1) . . . ghL

(xL)H(dh1, . . . ,dhL),

and its associated distribution PH(dx) = pH(x)dx.

Lemma 5.2. Let n ≥ 1, a > 0 and 0 < σ < σ < ∞. If H is supported on ([−a,a] × [σ,σ])L,
then for K ≥ nL(2n− 1)L + 1 and M ≥ a+ σ

√
log+(2πσ2), we have

dTV (PH ,Gmix(T, a,σ,σ)) ≤ (2M)L
(2πσ2)L/2

(eL (M + a)2

2nσ2

)n
+
e− (M−a)2

2σ2
√

2πσ2

2M
2

(
2L − 1

) .

As a direct consequence of this lemma and the fact that the Hellinger distance is invariant
to translation or scaling we have the following. For any l ∈ R, any probability distribution H
supported on ([l ± sA] × s2[1,R2])L and for T ≥ nL(2n− 1)L + 1, with M = Am we have

h2 (PH ,Gmix(T,a,σ,σ)) ≤ (2Am)L
(2π)L/2

(eLA2 (m+ 1)2

2n

)n
+
e− A2(m−1)2

2R2 R
√

2π
2Am

2
(
2L − 1

) ,

for m ≥ 1 + R
A

√
log+(2πR2) = m− ≥ 1. Therefore,

h2 (PH ,Gmix(T,a,σ,σ)) ≤ inf
m≥m−−1

(2A(m+ 1))L
(2π)L/2


(
eLA2(m+ 2)2

2n

)n
+
e− A2m2

2R2 R
√
π/2

A(m+1)

2
(
2L − 1

)
≤ inf

m≥m−+1

(
2
√

2/πAm
)L (2eLA2m2

n

)n
+
R
(
2L − 1

)
2

(
2
√

2/πAm
)L−1

e− A2m2
2R2 .

We denote by W the Lambert W function restricted to (0,∞) such that W (x) is the only
positive number such that W (x)eW (x) = x. For

m =

√
2W (1/4eR2L)R

A
n1/2 and n ≥ 2A2

W (1/4eR2L)R2 ,
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we get (
2
√

2/πAm
)L (2eLA2m2

n

)n
+
R
(
2L − 1

)
2

(
2
√

2/πAm
)L−1

e− A2m2
2R2

=
(

4R
√
nW (1/4eR2L)/π

)L (
eL4R2W (1/4eR2L)

)n
+

3
2R

(
2L − 1

)
2

(
4R
√
nW (1/4eR2L)/π

)L−1
e−nW (1/4eR2L)

=
4R

√
nW (1/4eR2L)

π

L−1

R exp
(
−nW (1/4eR2L)

)

×

4
√
nW (1/4eR2L)

π
+ 2L − 1

2

 .
Following the proof of Proposition 3.5 [62], we have W (x) < x for all x > 0 and W (w) ≥ x(1−x)
for all x ∈ (0,1). Therefore,

W (1/4eR2L) ≥ 1
4eR2L

(
1 − 1

4eR2L

)
≥ 1

12LR2

and

h2 (PH ,Gmix(T,a,σ,σ)) ≤

4R
√
nW (1/4eR2L)

π

L−1

R exp
(
−nW (1/4eR2L)

)

×

4
√
nW (1/4eR22L)

π
+ 2L − 1

2


≤
(

2
√

n

eLπ

)L−1
exp

(
− n

12LR2

)
×
[
2
√

n

Leπ
+R

2L − 1
2

]
.

For K ≥ 1 + (24A2L+ 1)L (48A2L+ 1)L, the set

B =
{
n ∈ N : K ≥ nL(2n− 1)L + 1 and n ≥ 2A2

R2W (1/4eR2)

}

is not empty, e.g. ⌈24A2L⌉ ∈ B. We set n = maxB ≥ 1, i.e.

n =
⌊1

4

[
1 +

√
1 + 8(K − 1)1/L

]⌋
≤ 1 +

√
2

4 K1/2L,

and we have

kL(2k − 1)L + 1 ≤ T < (k + 1)L(2k + 1)L + 1 ⇒ n = k ≥ T 1/2L k√
(k + 1)(2k + 1)

.

As x 7→ x√
(2x+1)(x+1)

is non-decreasing on [1, + ∞), we have n ≥ K1/2L/
√

6 since K ≥ 2.
Finally, we have

h2
(
PH ,MK

)
≤ h2 (PH ,Gmix(K,a,σ,σ))

≤

2
√

1 +
√

2
e4Lπ K1/2L

L−1

exp
(

− K1/2L

12LR2
√

6

)
×

2
√

1 +
√

2
4Leπ K1/4L +R

2L − 1
2


≤ K

L−1
4L

√1 +
√

2
eLπ

L−1

exp
(

− K1/2L

12LR2
√

6

)√1 +
√

2
Leπ

K1/4L +R
2L − 1

2

 .
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We can conclude by noticing that if Pπ,Q ∈ C (A,R) the distribution H(dh1, . . . ,dhL) =
π(dh1)Q(h1,dh2) . . . Q(hL−1,dhL) is supported on ([l ± sA] × s2[1,R2])L for some l ∈ R and
s > 0.

Proof of Lemma 5.2

We follow the proof of Lemma C.1 in [62]. For any y ≥ 0 and n ≥ 1, we have∣∣∣∣∣e−y −
n−1∑
k=0

(−1)kyk
k!

∣∣∣∣∣ ≤ (ey)n

nn
.

For y =
L∑
l=1

(xl−zl)2

2σ2
l

= 1
2

∣∣∣∣∣∣x−z
σ

∣∣∣∣∣∣2
2
, we get

∣∣∣∣∣∣
L∏
l=1

gzl,σ
2
l
(xl) − 1

(2π)L/2σ1 . . . σL

n−1∑
k=0

(−1)k
k!2k

(∣∣∣∣∣∣∣∣x − z
σ

∣∣∣∣∣∣∣∣2
2

)k∣∣∣∣∣∣
≤ 1

(2π)L/2σ1 . . . σL

 e
2

∣∣∣∣∣∣x−z
σ

∣∣∣∣∣∣2
2

n


n

.

One can see that 1
(2π)L/2σ1...σL

n−1∑
k=0

(−1)k

k!2k

(∣∣∣∣∣∣x−z
σ

∣∣∣∣∣∣2
2

)k
is a polynomial function in z1, . . . ,zL,σ

−1
1 , . . . ,σ−1

L

of the form
L∑
i=1

2(n−1)∑
ji=0

n−1∑
li=0

cj1,l1,...,jL,lLz
j1
1 σ

−(2l1+1)
1 . . . zjLL σ

−(2lL+1)
L .

From Lemma A.1 in Ghosal & van der Vaart [49], there is a discrete distribution H ′ with at
most nL(2n− 1)L + 1 support points such that∫

zj11 σ
−(2l1+1)
1 . . . zjLL σ

−(2lL+1)
L dH(zL1 ,σL1 ) =

∫
zj11 σ

−(2l1+1)
1 . . . zjLL σ

−(2lL+1)
L dH ′(h1, . . . ,hL),

for all ji = 0, . . . ,2(n− 1) and all li = 0, . . . ,n− 1. Hence, we have

|pH(x) − pH′(x)|

≤

∣∣∣∣∣∣pH(x) −
∫ 1

(2π)L/2σ1 . . . σL

n−1∑
k=0

(−1)k
k!2k

(∣∣∣∣∣∣∣∣x − z
σ

∣∣∣∣∣∣∣∣2
2

)k
dH(h1, . . . ,hL)

∣∣∣∣∣∣
+

∣∣∣∣∣∣pH′(x) −
∫ 1

(2π)L/2σ1 . . . σL

n−1∑
k=0

(−1)k
k!2k

(∣∣∣∣∣∣∣∣x − z
σ

∣∣∣∣∣∣∣∣2
2

)k
dH ′(h1, . . . ,hL)

∣∣∣∣∣∣
≤
∫ 1

(2π)L/2σ1 . . . σL

 e
2

∣∣∣∣∣∣x−z
σ

∣∣∣∣∣∣2
2

n


n

dH(h1, . . . ,hL)

+
∫ 1

(2π)L/2σ1 . . . σL

 e
2

∣∣∣∣∣∣x−z
σ

∣∣∣∣∣∣2
2

n


n

dH ′(h1, . . . ,hL).

Let M be greater than a. For I ⊂ [L] we define the set

AI := {x; |xi| > M ≥ |xj|, ∀i ∈ I,∀j /∈ I}

such that RL is the disjoint union of the (AI)I⊂[L].
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• For x ∈ A∅ i.e. ||x||∞ = maxi |xi| ≤ M , we have

|pH(x) − pH′(x)| ≤ 2
(2πσ2)L/2

(
eL (M + a)2

2nσ2

)n
.

• For x ∈ AI with I ̸= ∅, we have

pH(x) =
∫ L∏

i=1

1√
2πσ2

i

exp
(

−(xi − zi)2

2σ2
i

)
dH(h1, . . . ,hL)

≤
( 1

2πσ2

)L/2 ∏
i∈I

exp
(

−(|xi| − a)2

2σ2

)
,

and the inequality holds for pH′ as well.

We have

dTV (PH ,PH′) = 1
2

∫
|pH(x) − pH′(x)|dx

≤ 1
2 sup

||x||∞≤M
|pH(x) − pH′(x)|

∫
||x||∞≤M

dx

+ 1
2

∑
I⊂[L]:I ̸=∅

∫
AI

pH(x) ∨ pH′(x)dx

≤ 1
(2πσ2)L/2

(
eL (M + a)2

2nσ2

)n ∫
||x||∞≤M

dx

+ 1
2(2πσ2)L/2

∑
I⊂[L]:I ̸=∅

(2M)L−|I|
(

2
∫ ∞

M
exp

(
−(x− a)2

2σ2

)
dx

)|I|

≤ (2M)L
(2πσ2)L/2

(
eL (M + a)2

2nσ2

)n

+ 1
2(2πσ2)L/2

∑
I⊂[L]:I ̸=∅

(2M)L−|I|
(

exp
(

−(M − a)2

2σ2

)√
2πσ2

)|I|

.

Finally, for M ≥ a+ σ
√

log(2πσ2) and T ≥ nL(2n− 1)L + 1, we get

dTV (PH ,Gmix(T,a,σ,σ)) ≤ dTV (pH ,pH′)

= (2M)L
(2πσ2)L/2

(eL (M + a)2

2nσ2

)n
+
e− (M−a)2

2σ2
√

2πσ2

2M
2

(
2L − 1

) .
5.B.5 Proof of Lemma 5.1
Let s be not be smaller than L− 1 and b be in [s+ 1]. Following the proof of Lemma 3.13, we
have

K
(
P∗
s,b||Pind

s,b

)
≤

n(s,b)−1∑
i=1

K
(
L
(
H

(L,s,b)
i ,H

(L,s,b)
i+1

)
||L

(
H

(L,s,b)
i

)
⊗ L

(
H

(L,s,b)
i+1

))
.

For smax ≥ s ≥ m+ L− 2, we have

dL(H(L,s,b)
i ,H

(L,s,b)
i+1 )

dL(H(L,s,b)
i ) ⊗ L(H(L,s,b)

i+1 )
≤ q+

q−
< ∞.
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With Theorem 7 of Verdú [86], there is a constant C such that

K
(
P∗
s,b||Pind

s,b

)
≤ C

√
q+

q−

n(s,b)−1∑
i=1

dTV
(
L
(
H

(L,s,b)
i ,H

(L,s,b)
i+1

)
,L
(
H

(L,s,b)
i

)
⊗ L

(
H

(L,s,b)
i+1

))

= C

√
q+

q−

n(s,b)−1∑
i=1

dTV
(
L
(
Hb+(i−1)(s+1)+L−1, Hb+i(s+1)

)
,L
(
Hb+(i−1)(s+1)+L−1

)
⊗ L

(
Hb+i(s+1)

))

= C

√
q+

q−

n(s,b)−1∑
i=1

E
[
dTV

(
L
(
Hb+i(s+1)|Hb+(i−1)(s+1)+L−1

)
,L
(
Hb+i(s+1)

))]
.

We have that E is an accessible (m,Q−) small set, with Q− given by Q−(dx) = q−η(dx). From
Theorem 11.4.2 of Douc et al.[33], the kernel Q∗ has a unique invariant probability distribution
π∗ and there exist positive constants C(Q∗) and r(Q∗) such that

dTV
(
ξ(Q∗)t, π

)
≤ C(Q∗)e−r(Q∗)t,

for any probability distribution ξ on (E ,E). We get

K
(
P∗
s,b||Pind

s,b

)
≤ 2C

√
q+

q−
C(Q∗)(n(s,b) − 1)e−r(Q∗)(s+1).

We also have

h2 (P ∗,Pi) ≤ dTV (P ∗,Pi) ≤ dTV (π∗,L(Hi)) = dTV (π∗,πQi−1) ≤ Ce−r(Q∗)(i−1).
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